Skip to main content

Advertisement

Log in

Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Designing and developing advanced energy storage equipment with excellent energy density, remarkable power density, and outstanding long-cycle performance is an urgent task. Zinc-ion hybrid supercapacitors (ZIHCs) are considered great potential candidates for energy storage systems due to the features of high power density, stable cycling lifespans, high safety, low cost, and long-term durability, which originate from the combination of the dual advantages of supercapacitors and zinc-ion batteries. Recently, to pursue the long lifespan of ZIHCs, effective progress has been made in the development and application of ZIHC cathode materials based on carbon-based materials. This review takes carbon-based materials as the starting point and discusses the charge storage mechanism of ZIHCs. Moreover, the application of various carbon-based materials is systematically summarized in ZIHCs, including activated carbon (AC), biomass carbon (BC), porous carbon (PC), and heteroatom-doped carbon (HDC). In addition, recent advances in the structural design of electrolytes and Zn anodes and their effects on electrochemical performance are summarized. Ultimately, the current challenges and the potential directions for ZIHCs are presented. This paper intends to provide directions for the further development of high-performance ZIHCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Du W, Wang XN, Zhan J, Sun XQ, Kang LT, Jiang FY, Zhang XY, Shao Q, Dong MY, Liu H, Murugadoss V, Guo ZH (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915

    Article  CAS  Google Scholar 

  2. Dang CC, Mu Q, Xie XB, Sun XQ, Yang XY, Zhang YP, Maganti S, Huang M, Jiang QL, Seok I, Du W, Hou CX (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5(2):606–626

    Article  Google Scholar 

  3. Yang WY, Peng DN, Kimura H, Zhang XY, Sun XQ, Pashameah RA, Alzahrani E, Wang B, Guo ZH, Du W, Hou CX (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157

    Article  CAS  Google Scholar 

  4. Hou CX, Tai ZX, Zhao LL, Zhai YJ, Hou Y, Fan YQ, Dang F, Wang J, Liu HK (2018) High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A 6:9723–9736

    Article  CAS  Google Scholar 

  5. Hou CX, Hou Y, Fan YQ, Zhai YJ, Wang Y, Sun ZY, Fan RH, Dang F, Wang J (2018) Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries. J Mater Chem A 6:6967–6976

    Article  CAS  Google Scholar 

  6. Hou CX, Wang J, Du W, Wang J, Du Y, Liu C, Zhang J, Hou H, Dang F, Zhao L, Guo Z (2019) One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J Mater Chem A 7:13460–13472

    Article  CAS  Google Scholar 

  7. Hou CX, Yang W, Kimur H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu B, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195

    Article  Google Scholar 

  8. Ma YP, Xie XB, Yang WY, Yu ZP, Sun XQ, Zhang YP, Yang XY, Kimura H, Hou CX, Guo ZH, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4(4):906–924

    Article  CAS  Google Scholar 

  9. Hou C, Yang W, Xie X, Sun X, Wang J, Naik N, Pan D, Mai X, Guo Z, Dang F, Du W (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interface Sci 596:396–407

    Article  CAS  Google Scholar 

  10. Li B, Guo MH, Chen XQ, Miao YY (2022) Hydrothermally synthesized N and S co-doped mesoporous carbon microspheres from poplar powder for supercapacitors with enhanced performance. Adv Compos Hybrid Mater 5:2306–2316

    Article  CAS  Google Scholar 

  11. Chen Y, Wu SH, Li XH, Liu MY, Chen Z, Zhang PT, Li SJ (2022) Efficient and stable low-cost perovskite solar cells enabled by using surface passivated carbon as the counter electrode. J Mater Chem C 10:1270–1275

    Article  CAS  Google Scholar 

  12. Zhang YM, Liu LY, Zhao LL, Hou CX, Huang MN, Algadi H, Li DY, Xia Q, Wang J, Zhou ZR, Han X, Long YX, Li YB, Zhang ZD, Liu Y (2022) Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Mater 5:2601–2610

    Article  CAS  Google Scholar 

  13. Wang R, Meng ZH, Yan XM, Tian T, Lei M, Pashameahe RA, Abo-Dieff HM, Algadi H, Huang NN, Guo ZH, Tang HL (2023) Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batterie. J Mater Sci Technol 137:215–222

    Article  Google Scholar 

  14. Chen AL, Wang CY, A. Abu Ali O, F. Mahmoud S, Shi YT, Ji YX, Algadi H, M. El-Bahy S, Huang MN, Guo ZH, Cui DP, Wei HG (2022) MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications. Compos A 163:107174

    Article  CAS  Google Scholar 

  15. Wang X, Wei H, Liu X, Du W, Zhao X, Wang X (2019) Novel three-dimensional polyaniline nanothorns vertically grown on buckypaper as high-performance supercapacitor electrode. Nanotechnology 30(32)

    Article  CAS  Google Scholar 

  16. Ahmed FBM, Khalafallah D, Zhi MJ, Hong ZL (2022) Porous nanoframes of sulfurized NiAl layered double hydroxides and ternary bismuth cerium sulfide for supercapacitor electrodes. Adv Compos Hybrid Mater 5:2500–2514

    Article  CAS  Google Scholar 

  17. Zhao YL, Liu F, Zhu KJ, Maganti S, Zhao ZY, Bai PK (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5:1537–1547

    Article  CAS  Google Scholar 

  18. Pathak M, Rout CS (2022) Hierarchical NiCo2S4 nanostructures anchored on nanocarbons and Ti3C2Tx MXene for high-performance flexible solid-state asymmetric supercapacitors. Adv Compos Hybrid Mater 5:1404–1422

    Article  CAS  Google Scholar 

  19. Pu L, Zhang J, Jiresse NKL, Gao YF, Zhou HJ, Naik N, Gao P, Guo ZH (2022) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater 5:356–369

    Article  CAS  Google Scholar 

  20. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Xu B, Algadi H, Pashameah R, Alanazi AK, Alzahrani E, Du W, Guo Z, Hou CX (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  Google Scholar 

  21. Sun Z, Qu KQ, Li JH, Yang S, Yuan BN, Huang ZH, Guo ZH (2021) Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adv Compos Hybrid Mater 4:1413–1424

    Article  CAS  Google Scholar 

  22. Du W, Wang XN, Ju XY, Xu K, Gao MJ, Zhang XT (2017) Carbonized enteromorpha prolifera with porous architecture and its polyaniline composites as high-performance electrode materials for supercapacitors. J Electroanal Chem 802:15–21

    Article  CAS  Google Scholar 

  23. Wu D, Xie XB, Zhang JJ, Ma YP, Hou CX, Sun XQ, Yang XY, Zhang YP, Kimura H, Du W (2022) Embedding NiS nanoflakes in electrospun carbon fibers containing NiS nanoparticles for hybrid supercapacitors. Chem Eng J 446

    Article  CAS  Google Scholar 

  24. Wu D, Xie XB, Ma YP, Zhang JJ, Hou CX, Sun XQ, Yang XY, Zhang YP, Kimura H, Du W (2022) Morphology controlled hierarchical NiS/carbon hexahedrons derived from nitrilotriacetic acid-assembly strategy for high-performance hybrid supercapacitors. Chem Eng J 433

    Article  CAS  Google Scholar 

  25. Li C, Wu W, Wang P, Zhou W, Wang J, Chen Y, Fu L, Zhu Y, Wu Y, Huang W (2019) Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2 V by using an alkaline-acidic electrolyte. Adv Sci 6(1):1801665

    Article  Google Scholar 

  26. Dong LB, Ma XP, Li Y, Zhao L, Liu WB, Cheng JY, Xu CJ, Li BH, Yang QH, Kang FY (2018) Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Eng Storage Mater 13:96–102

    Google Scholar 

  27. Zhang D, Li L, Gao YH, Wu YC, Deng JP (2021) Carbon-based materials for a new type of zinc-ion capacitor. ChemElectroChem 8(9):1541–1557

    Article  CAS  Google Scholar 

  28. Hui J, Yan CP, Shi Y, Ma QC, Yang Z (2022) A biomass cathode derived from hyacinth bean for aqueous zinc-ion capacitors. Ionics 28(3):1495–1499

    Article  CAS  Google Scholar 

  29. Kundu DP, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Eng 1(10). https://doi.org/10.1038/nenergy.2016.119

  30. Xia C, Guo J, Li P, Zhang X, Alshareef HN (2018) Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed Engl 57(15):3943–3948

    Article  CAS  Google Scholar 

  31. Blanc LE, Kundu D, Nazar LF (2020) Nazar, scientific challenges for the implementation of Zn-ion batteries. Joule 4(4):771–799

    Article  CAS  Google Scholar 

  32. Tian YH, Amal R, Wang DW (2016) An aqueous metal-ion capacitor with oxidized carbonnanotubes and metallic zinc electrodes. Front Energ Res 4. https://doi.org/10.3389/fenrg.2016.00034

  33. Xu ZX, Ma RJ, Wang XL (2022) Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Eng Storage Mater 46:233–242

    Google Scholar 

  34. Zhang YP, Ding P, Wu WB, Kimura H, Shen YH, Wu D, Xie XB, Hou CX, Sun XQ, Yang YX, Du W (2023) Facile synthesis of reduced graphene oxide@Co3O4 composites derived from assisted liquid-phase plasma electrolysis for high-performance hybrid supercapacitors. Appl Sur Sci 609

    Article  CAS  Google Scholar 

  35. Gou Q, Zhao S, Wang J, Li M, Xue J (2020) Recent advances on boosting the cell voltage of aqueous supercapacitors. Nanomicro Lett 12(1):98

    CAS  Google Scholar 

  36. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186

    Article  CAS  Google Scholar 

  37. Wan F, Zhang LL, Wang XY, Bi SS, Niu ZQ, Chen J (2018) An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv Funct Mater 28(45):1804975

    Article  Google Scholar 

  38. Chao D, Ye C, Xie F, Zhou W, Zhang Q, Gu Q, Davey K, Gu L, Qiao SZ (2020) Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv Mater 32(25):2001894

    Article  CAS  Google Scholar 

  39. Yin J, Zhang WL, Alhebshi NA, Salah N, Alshareef HN (2021) Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Adv Eng Mater 11(21):2100201

    Article  CAS  Google Scholar 

  40. Lu YY, Li ZW, Bai ZY, Mi HY, Ji CC, Pang H, Yu C, Qiu JS (2019) High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 66

    Article  CAS  Google Scholar 

  41. Sun QK, Zhou LJ, Lu LJ, Zhou GQ, Chen JP (2018) ReconFig.urable high-resolution microwave photonic filter based on dual-ring-assisted MZIs on the Si3N4 platform. IEEE Photo J 10(6):1–12

  42. Zhang Y, Liu Y, Wu M, Wang H, Wu L, Xu B, Zhou W, Fan X, Shao J, Yang T (2020) MicroRNA-664a-5p promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by directly downregulating HMGA2 Biochem Biophys Res Commun 521(1):9–14

    Article  CAS  Google Scholar 

  43. Zheng YW, Zhao W, Jia DD, Liu Y, Cui L, Wei D, Zheng RK, Liu JQ (2020) Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem Eng J 387

    Article  CAS  Google Scholar 

  44. Li ZW, Chen DH, An YF, Chen CL, Wu LY, Chen ZJ, Sun Y, Zhang XG (2020) Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Eng Storage Mater 28:307–314

    CAS  Google Scholar 

  45. Huang Z, Wang T, Song H, Li X, Liang G, Wang D, Yang Q, Chen Z, Ma L, Liu Z, Gao B, Fan J, Zhi C (2021) Effects of anion carriers on capacitance and self-discharge behaviors of zinc-ion capacitors. Angew Chem Int Ed Engl 60(2):1011–1021

    Article  CAS  Google Scholar 

  46. Gong XF, Chen JW, Lee PS (2021) Zinc-ion hybrid supercapacitors: progress and future perspective. Batteries Supercaps 4(10):1529–1546

    Article  CAS  Google Scholar 

  47. Wu SL, Chen YT, Jiao TP, Zhou J, Cheng JY, Liu B, Yang SR, Zhang KL, Zhang WJ (2019) An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 Cycles. Adv Eng Mater 9(47):1902915

    Article  CAS  Google Scholar 

  48. Huang ZD, Chen A, Mo FN, Liang GJ, Li XL, Yang Q, Guo Y, Chen Z, Li Q, Dong BB, Zhi CY (2020) Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv Eng Mater 10(24):2001024

    Article  CAS  Google Scholar 

  49. Wang JC, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710

    Article  CAS  Google Scholar 

  50. Xie XB, Wang YK, Sun XQ, Yu RH, Du W (2023) Optimizing impedance matching by a dual-carbon Co-regulation strategy of Co3O4@rGO/celery stalks derived carbon composites for excellent microwave absorption. J Mater Sci Technol 133:1–11

    Article  Google Scholar 

  51. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V(2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cell. J Mater Sci Technol 126:152–160.https://doi.org/10.1016/j.jmst.2022.03.012

  52. Xie XB, Qin YT, Wang YK, Wang YX, Feng XY, Chen MN, Ban QF, Hideo K, Du W (2022) Wide microwave absorption bandwidth of the puffed-rice-based carbon obtained at 950 °C. J Mater Sci Mater Electron 33(17):14134–14143

    Article  CAS  Google Scholar 

  53. Wang H, Wang M, Tang YB (2018) A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Eng Storage Mater 13:1–7

    Google Scholar 

  54. Zhang P, Li Y, Wang G, Wang F, Yang S, Zhu F, Zhuang X, Schmidt OG, Feng X (2019) Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv Mater 31(3):1806005

    Article  Google Scholar 

  55. An GH (2020) Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon. Appl Surf Sci 530

    Article  CAS  Google Scholar 

  56. Yu PF, Zeng Y, Zeng YX, Dong HW, Hu H, Liu YL, Zheng MT, Xiao Y, Lu XH, Liang YR (2019) Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim Acta 327

    Article  CAS  Google Scholar 

  57. Wang DW, Pan ZM, Lu ZM (2020) From starch to porous carbon nanosheets: promising cathodes for high-performance aqueous Zn-ion hybrid supercapacitors. Microporous Mesoporous Mater 306

    Article  CAS  Google Scholar 

  58. Pan ZM, Lu ZM, Xu L, Wang DW (2020) A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Appl Surf Sci 510

    Article  CAS  Google Scholar 

  59. Jiang CH, Zou ZM (2020) Waste polyurethane foam filler-derived mesoporous carbons as superior electrode materials for EDLCs and Zn-ion capacitors. Diamond Relat Mater 101

    Article  CAS  Google Scholar 

  60. Chen SM, Ma LT, Zhang K, Kamruzzaman M, Zhi CY, Zapien JA (2019) A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J Mater Chem A 7(13):7784–7790

    Article  CAS  Google Scholar 

  61. Lee YG, An GH (2020) Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl Mater Inter 12(37):41342–41349

    Article  CAS  Google Scholar 

  62. Liu PG, Gao Y, Tan YY, Liu WF, Huang YP, Yan J, Liu KY (2019) Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res 12(11):2835–2841

    Article  CAS  Google Scholar 

  63. Jian Z, Yang NJ, Vogel M, Leith S, Schönherr H, Jiao TP, Zhang WJ, Müller J, Butz B, Jiang X (2020) Flexible diamond fibers for high-energy-density zinc-ion supercapacitors. Adv Eng Mater 10(44):2002202

    Article  CAS  Google Scholar 

  64. Li Y, Lu PF, Shang P, Wu LS, Wang X, Dong YF, He RH, Wu ZS (2021) Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc ion hybrid capacitors with remarkable rate capability. J Eng Chem 56:404–411

    CAS  Google Scholar 

  65. Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26(17): 2676–82, 2615

  66. Zhao P, Yang BJ, Chen JT, Lang JW, Zhang TY, Yan XB (2020) A safe, high-performance, and long-cycle life zinc-ion hybrid capacitor based on three-dimensional porous activated carbon. Acta Phys Chim Sin 36(2):1904050

    Article  Google Scholar 

  67. Tang H, Yao JJ, Zhu YR (2021) Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv Eng Mater 11(14):2003994

    Article  CAS  Google Scholar 

  68. He L, Liu Y, Li CY, Yang DZ, Wang WG, Yan WQ, Zhou WB, Wu ZX, Wang LL, Huang QH, Zhu YS, Chen YH, Fu LJ, Hou XH, Wu YP (2019) A low-cost Zn-based aqueous supercapacitor with high energy density. ACS Appl Eng Mater 2(8):5835–5842

    Article  CAS  Google Scholar 

  69. Zou ZM, Luo XL, Wang L, Zhang Y, Xu ZJ, Jiang CH (2021) Highly mesoporous carbons derived from corn silks as high performance electrode materials of supercapacitors and zinc ion capacitors. J Eng Storage 44

    Article  Google Scholar 

  70. Liu H, Liu XX, Li W, Guo X, Wang Y, Wang GX, Zhao DY (2017) Porous carbon composites for next generation rechargeable lithium batteries. Adv Eng Mater 7(24):1700283

    Article  Google Scholar 

  71. Kumar R, Sahoo S, Joanni E, Singh RK, Maegawa K, Tan WK, Kawamura G, Kar KK, Matsuda A (2020) Heteroatom doped graphene engineering for energy storage and conversion. Mater Today 39:47–65

    Article  CAS  Google Scholar 

  72. Zhang H, Liu Q, Fang Y, Teng C, Liu X, Fang P, Tong Y, Lu X (2019) Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv Mater 31(44):1904948

    Article  CAS  Google Scholar 

  73. Deng XY, Li JJ, Shan Z, Sha JW, Ma LY (2020) A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J Mater Chem A 8(23):11617–11625

    Article  CAS  Google Scholar 

  74. Agnoli S, Favaro M (2016) Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications. J Mater Chem A 4(14):5002–5025

    Article  CAS  Google Scholar 

  75. Siahrostami S, Tripkovic V, Lundgaard KT, Jensen KE, Hansen HA, Hummelshoj JS, Myrdal JS, Vegge T, Norskov JK, Rossmeisl J (2013) First principles investigation of zinc-anode dissolution in zinc-air batteries. Phys Chem Chem Phys 15(17):6416–6421

    Article  CAS  Google Scholar 

  76. Liu M, Pu X, Cong Z, Liu Z, Liu T, Chen Y, Fu J, Hu W, Wang ZL (2019) Resist-dyed textile alkaline Zn microbatteries with significantly suppressed Zn dendrite growth. ACS Appl Mater Inter 11(5):5095–5106

    Article  CAS  Google Scholar 

  77. Yang Q, Liang G, Guo Y, Liu Z, Yan B, Wang D, Huang Z, Li X, Fan J, Zhi C (2019) Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater 31(43):1903778

    Article  CAS  Google Scholar 

  78. Zeng Y, Zhang X, Qin R, Liu X, Fang P, Zheng D, Tong Y, Lu X (2019) Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater 31(36):1903675

    Article  Google Scholar 

  79. Zhang J, Han X, Wu XW, Liu Y, Cui Y (2019) Chiral DHIP- and pyrrolidine-based covalent organic frameworks for asymmetric catalysis. ACS Sustainable Chem Eng 7(5):5065–5071

    Article  CAS  Google Scholar 

  80. Guo J, Ming J, Lei YJ, Zhang WL, Xia C, Cui Y, Alshareef HN (2019) Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett 4(12):2776–2781

    Article  CAS  Google Scholar 

  81. Zhu QS, Zhao Y, Miao BJ, M. Abo-Dief H, Qu MC, Pashameah RA, Xu BB, Huang MA, Algadi H, Liu XH, Guo ZH, (2022) Hydrothermally synthesized ZnO-RGO-PPy for water-borne epoxy nanocomposite coating with anticorrosive reinforcement. Prog Org Coat 172

    Article  CAS  Google Scholar 

  82. Lee BS, Cui S, Xing X, Liu H, Yue X, Petrova V, Lim HD, Chen R, Liu P (2018) Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl Mater Interfaces 10(45):38928–38935

    Article  CAS  Google Scholar 

  83. Dong LB, Yang W, Yang W, Tian H, Huang YF, Wang XL, Xu CJ, Wang CY, Kang FY, Wang GX (2020) Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem Eng J 384

    Article  CAS  Google Scholar 

  84. Liu K, Pei A, Lee HR, Kong B, Liu N, Lin D, Liu Y, Liu C, Hsu PC, Bao Z, Cui Y (2017) Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J Am Chem Soc 139(13):4815–4820

    Article  CAS  Google Scholar 

  85. Zhao ZM, Zhao JW, Hu ZL, Li JD, Li JJ, Zhang YJ, Wang C, Cui GL (2019) Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci 12(6):1938–1949

    Article  CAS  Google Scholar 

  86. Wang PJ, Xie XS, Xing ZY, Chen XH, Fang GZ, Lu BG, Zhou J, Liang SQ, Fan HJ (2021) Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv Eng Mater 11(30):2101158

    Article  CAS  Google Scholar 

  87. Owusu KA, Pan X, Yu R, Qu L, Liu Z, Wang Z, Tahir M, Haider WA, Zhou L, Mai L (2020) Introducing Na2SO4 in aqueous ZnSO4 electrolyte realizes superior electrochemical performance in zinc-ion hybrid capacitor. Mater Today Energ 18:100529

    Article  CAS  Google Scholar 

  88. Zhou HT, Liu C, Wu JC, Liu MH, Zhang D, Song HL, Zhang XY, Gao HQ, Yang JH, Chen D (2019) Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. J Mater Chem A 7(16):9708–9715

    Article  CAS  Google Scholar 

  89. Han L, Huang HL, Fu XB, Li JF, Yang ZL, Liu XJ, Pan LK, Xu M (2020) A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem Eng J 392

    Article  CAS  Google Scholar 

  90. Han L, Huang HL, Li JF, Zhang XL, Yang ZL, Xu M, Pan LK (2020) A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition. J Mater Chem A 8(30):15042–15050

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52207249), the Natural Science Foundation of Shandong Province (ZR2022ME089), and the Yantai Basic Research Project (2022JCYJ04).

Author information

Authors and Affiliations

Authors

Contributions

As per the journal requirement of more than ten contributors, the required contribution can be briefly stated as follows. Yongpeng Ma: conceptualization, methodology, validation, formal analysis, writing – original draft; Chuanxin Hou: conceptualization, writing – original draft, preparation, methodology, writing – review and editing; Hideo Kimura: conceptualization, resources, and writing – review and editing; Xiubo Xie, Huiyu Jiang, Yuping Zhang, and Xueqin Sun: writing – review and editing; Xiaoyang Yang: methodology, validation; Wei Du: supervision, project administration, writing – review and editing.

Corresponding authors

Correspondence to Chuanxin Hou or Wei Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Hou, C., Kimura, H. et al. Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Adv Compos Hybrid Mater 6, 59 (2023). https://doi.org/10.1007/s42114-023-00636-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00636-1

Keywords

Navigation