Skip to main content
Log in

Nitrogen-bonded ultrasmall palladium clusters over the nitrogen-doped carbon for promoting Suzuki cross-coupling reactions

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Suzuki cross-coupling reactions activated by palladium (Pd) catalysts are efficient routes for the synthesis of useful organics. Traditional homogeneous ligand Pd catalysts face tedious separation process and are sensitive to the reaction environments. Here, we report an ultrasmall Pd cluster over the nitrogen-doped carbon materials. The strong electronic interaction between Pd and nitrogen not only suppresses the agglomeration of Pd metals during annealing process but also donates electrons to the Pd centers. The high atom utilization efficiency and electron-rich properties enable the Pd clusters display a high turnover frequency of 198 h−1 for the Suzuki cross-coupling reactions under a mild condition, which is nearly 18-fold higher than the carbon black supported Pd nanocrystals (10.5 h−1). More important, no decay of the activity was observed after five recycle runs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ruiz-Castillo P, Buchwald SL (2016) Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem Rev 116:12564–12649

    Article  CAS  Google Scholar 

  2. Fihri A, Bouhrara M, Nekoueishahraki B, Basset J-M, Polshettiwar V (2011) Nanocatalysts for Suzuki cross-coupling reactions. Chem Soc Rev 40:5181–5203

    Article  CAS  Google Scholar 

  3. Balanta A, Godard C, Claver C (2011) Pd nanoparticles for C-C coupling reactions. Chem Soc Rev 40:4973–4985

    Article  CAS  Google Scholar 

  4. Johansson Seechurn CC, Kitching MO, Colacot TJ, Snieckus V (2012) Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angew Chem Int Ed 51:5062–5085

    Article  CAS  Google Scholar 

  5. Yin L, Liebscher J (2007) Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chem Rev 107:133–173

    Article  CAS  Google Scholar 

  6. Billingsley KL, Anderson KW, Buchwald SL (2006) A highly active catalyst for Suzuki-Miyaura cross-coupling reactions of heteroaryl compounds. Angew Chem Int Ed 45:3484–3488

    Article  CAS  Google Scholar 

  7. Wang F, Mielby J, Richter FH, Wang G, Prieto G, Kasama T, Weidenthaler C, Bongard HJ, Kegnaes S, Furstner A, Schuth F (2014) A polyphenylene support for Pd catalysts with exceptional catalytic activity. Angew Chem Int Ed 53:8645–8648

    Article  CAS  Google Scholar 

  8. Chen Z, Vorobyeva E, Mitchell S, Fako E, Ortuno MA, Lopez N, Collins SM, Midgley PA, Richard S, Vile G, Perez-Ramirez J (2018) A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat Nanotechnol 13:702–707

    Article  CAS  Google Scholar 

  9. Jana R, Dewan M, Roymahapatra G (2021) Synthesis of 9, 10-Dihydrophenanthrene, Phenanthrene, Mono- and Dialkyl Phenanthrene and Octa-hydro Phenanthrene by Palladium-catalyzed Heck Reactions. ES Mater Manuf 14:51–58

    CAS  Google Scholar 

  10. Jana R, Dewan M, Roymahapatra G (2021) Synthesis of Fused Pyran and Tetracyclic Pyran Rings by Intramolecular Palladium-catalyzed & beta-H Elimination and C-H Bond Functionalization. ES Mater Manuf 13:40–52

    CAS  Google Scholar 

  11. Wallow TI, Novak BM (1991) In aqua synthesis of water-soluble poly(p-phenylene) derivatives. J Am Chem Soc 113:7411–7412

    Article  CAS  Google Scholar 

  12. Sullivan JA, Flanagan KA, Hain H (2009) Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite. Catal Today 145:108–113

    Article  CAS  Google Scholar 

  13. Liu J, Gui, J, Zhou, W, Tian, X, Liu, Z, Wang, J, Liu, J, Yang, L, Zhang, P, Huang, W, Tu, J, and Cao, Y (2021) Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy 86:106112

  14. Das DD, Sayari A (2007) Applications of pore-expanded mesoporous silica 6. Novel synthesis of monodispersed supported palladium nanoparticles and their catalytic activity for Suzuki reaction. J Catal 246:60–65

    Article  CAS  Google Scholar 

  15. Budroni G, Corma A, García H, Primo A (2007) Pd nanoparticles embedded in sponge-like porous silica as a Suzuki-Miyaura catalyst: Similarities and differences with homogeneous catalysts. J Catal 251:345–353

    Article  CAS  Google Scholar 

  16. Gniewek A, Ziółkowski JJ, Trzeciak AM, Zawadzki M, Grabowska H, Wrzyszcz J (2008) Palladium nanoparticles supported on alumina-based oxides as heterogeneous catalysts of the Suzuki-Miyaura reaction. J Catal 254:121–130

    Article  CAS  Google Scholar 

  17. Rai RK, Tyagi D, Gupta K, Singh SK (2016) Activated nanostructured bimetallic catalysts for C-C coupling reactions: recent progress. Catal Sci Technol 6:3341–3361

    Article  CAS  Google Scholar 

  18. Ye T-N, Lu Y, Xiao Z, Li J, Nakao T, Abe H, Niwa Y, Kitano M, Tada T, Hosono H (2019) Palladium-bearing intermetallic electride as an efficient and stable catalyst for Suzuki cross-coupling reactions. Nat Commun 10:5653

    Article  CAS  Google Scholar 

  19. Tian C, Li C, Chen D, Li Y, Xing L, Tian X, Cao Y, Huang W, Liu Z, Shen Y (2021) Sandwich hydrogel with confined plasmonic Cu/carbon cells for efficient solar water purification. J Mater Chem A 9:15462–15471

    Article  CAS  Google Scholar 

  20. Dai Y, Lu P, Cao Z, Campbell CT, Xia Y (2018) The physical chemistry and materials science behind sinter-resistant catalysts. Chem Soc Rev 47:4314–4331

    Article  CAS  Google Scholar 

  21. Yin P, Hu S, Qian K, Wei Z, Zhang L-L, Lin Y, Huang W, Xiong H, Li W-X, Liang H-W (2021) Quantification of critical particle distance for mitigating catalyst sintering. Nat Commun 12:4865

    Article  CAS  Google Scholar 

  22. Meier JC, Galeano C, Katsounaros I, Witte J, Bongard HJ, Topalov AA, Baldizzone C, Mezzavilla S, Schüth F, Mayrhofer KJJ (2014) Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol 5:44–67

    Article  CAS  Google Scholar 

  23. Gerber IC, Serp P (2020) A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 120:1250–1349

    Article  CAS  Google Scholar 

  24. Bahuguna A, Kumar A, Krishnan V (2019) Carbon-Support-Based Heterogeneous Nanocatalysts: Synthesis and Applications in Organic Reactions. Asian J Org Chem 8:1263–1305

    Article  CAS  Google Scholar 

  25. Liu F, Zhao Y, Hou H, Zhao Y, Wang Z, Huang Z (2021) Synthesis of silicon-based nanosheets decorated with Pd/Li particles with enhanced hydrogen storage properties. Adv Compos Hybrid Mater 4:1343–1353

    Article  CAS  Google Scholar 

  26. Tauster SJ, Fung SC, Garten RL (1978) Strong Metal-Support Interactions - Group-8 Noble-Metals Supported on TiO2. J Am Chem Soc 100:170–175

    Article  CAS  Google Scholar 

  27. Wang H, Wang L, Lin D, Feng X, Niu Y, Zhang B, Xiao F-S (2021) Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat Catal 4:418–424

    Article  CAS  Google Scholar 

  28. van Deelen TW, Mejia CH, de Jong KP (2019) Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2:955–970

    Article  CAS  Google Scholar 

  29. Wang L, Wang S, Deng X, Zhang Y, Xiong C (2014) Development of Coconut Shell Activated Carbon-Tethered Urease for Degradation of Urea in a Packed Bed. ACS Sustain Chem Eng 2:433–439

    Article  CAS  Google Scholar 

  30. Wang L, Zhang J, Tan Z, Jiang H, Xiong C (2015) Development of Ionic Liquids Tethered to Coconut Shell Activated Carbon for Biogas Upgrading in a Packed Bed. Energy Technol 3:509–517

    Article  CAS  Google Scholar 

  31. Du W, Wang X, Zhan J, Sun X, Kang L, Jiang F, Zhang X, Shao Q, Dong M, Liu H, Murugadoss V, Guo Z (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915

    Article  CAS  Google Scholar 

  32. Idrees M, Batool S, Kong J, Zhuang Q, Liu H, Shao Q, Lu N, Feng Y, Wujcik EK, Gao Q, Ding T, Wei R, Guo Z (2019) Polyborosilazane derived ceramics - Nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim Acta 296:925–937

    Article  CAS  Google Scholar 

  33. Shi C, Qi H, Ma R, Sun Z, Xiao L, Wei G, Huang Z, Liu S, Li J, Dong M, Fan J (2019) N,S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells. Mater Sci Engin C 105:110132

  34. Zhai Y, Wang J, Gao Q, Fan Y, Hou C, Hou Y, Liu H, Shao Q, Wu S, Zhao L, Ding T, Dang F, Guo Z (2019) Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li-O2 batteries. J Catal 377:534–542

    Article  CAS  Google Scholar 

  35. Liang J, Li X, Zuo J, Lin J, Liu Z (2021) Hybrid 0D/2D heterostructures: in-situ growth of 0D g-C3N4 on 2D BiOI for efficient photocatalyst. Adv Compos Hybrid Mater 4:1122–1136

    Article  CAS  Google Scholar 

  36. Lu X, Zhu D, Li X, Li M, Chen Q, Qing Y (2021) Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater 4:946–956

    Article  CAS  Google Scholar 

  37. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238

    Article  CAS  Google Scholar 

  38. Sun Z, Qu K, Li J, Yang S, Yuan B, Huang Z, Guo Z (2021) Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adv Compos Hybrid Mater 4:1413–1424

    Article  CAS  Google Scholar 

  39. Vijeata A, Chaudhary GR, Umar A, Chaudhary S (2021) Distinctive Solvatochromic Response of Fluorescent Carbon Dots Derived from Different Components of Aegle Marmelos Plant. Eng Sci 15:197–209

    Google Scholar 

  40. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5:419–430

    Article  CAS  Google Scholar 

  41. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    CAS  Google Scholar 

  42. Wu H, Sun H, Han F, Xie P, Zhong Y, Quan B, Zhao Y, Liu C, Fan R, Guo Z (2022) Negative Permittivity Behavior in Flexible Carbon Nanofibers- Polydimethylsiloxane Films. Eng Sci 17:113–120

    CAS  Google Scholar 

  43. Wang L, Yin P, Zhang L-L, Shen S-C, Xu S-L, Chen P, Liang H-W (2020) Nitrogen-fixing of ultrasmall Pd-based bimetallic nanoclusters on carbon supports. J Catal 389:297–304

    Article  CAS  Google Scholar 

  44. Wang L, Chen MX, Yan QQ, Xu SL, Chu SQ, Chen P, Lin Y, Liang HW (2019) A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci Adv 5:eaax6322

  45. Bhunia A, Boldog I, Moeller A, Janiak C (2013) Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation. J Mater Chem A 1:14990–14999

    Article  CAS  Google Scholar 

  46. Fechler N, Zussblatt NP, Rothe R, Schloegl R, Willinger M-G, Chmelka BF, Antonietti M (2016) Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content. Adv Mater 28:1287–1294

    Article  CAS  Google Scholar 

  47. Akpa BS, D’Agostino C, Gladden LF, Hindle K, Manyar H, McGregor J, Li R, Neurock M, Sinha N, Stitt EH, Weber D, Zeitler JA, Rooney DW (2012) Solvent effects in the hydrogenation of 2-butanone. J Catal 289:30–41

    Article  CAS  Google Scholar 

  48. Leyva-Pérez A, Oliver-Meseguer J, Rubio-Marqués P, Corma A (2013) Water-Stabilized Three- and Four-Atom Palladium Clusters as Highly Active Catalytic Species in Ligand-Free C-C Cross-Coupling Reactions. Angew Chem Int Ed 52:11554–11559

    Article  CAS  Google Scholar 

  49. MacQuarrie S, Nohair B, Horton JH, Kaliaguine S, Crudden CM (2010) Functionalized Mesostructured Silicas As Supports for Palladium Catalysts: Effect of Pore Structure and Collapse on Catalytic Activity in the Suzuki−Miyaura Reaction. J Phys Chem C 114:57–64

    Article  CAS  Google Scholar 

  50. Xiao Q, Sarina S, Jaatinen E, Jia J, Arnold DP, Liu H, Zhu H (2014) Efficient photocatalytic Suzuki cross-coupling reactions on Au–Pd alloy nanoparticles under visible light irradiation. Green Chem 16:4272–4285

    Article  CAS  Google Scholar 

  51. Guo J, Zhang Y, Shi L, Zhu Y, Mideksa MF, Hou K, Zhao W, Wang D, Zhao M, Zhang X, Lv J, Zhang J, Wang X, Tang Z (2017) Boosting Hot Electrons in Hetero-superstructures for Plasmon-Enhanced Catalysis. J Am Chem Soc 139:17964–17972

    Article  CAS  Google Scholar 

  52. Fu GC (2008) The Development of Versatile Methods for Palladium-Catalyzed Coupling Reactions of Aryl Electrophiles through the Use of P(t-Bu)3 and PCy3 as Ligands. Acc Chem Res 41:1555–1564

    Article  CAS  Google Scholar 

  53. Kim YT, Mitani T (2006) Surface thiolation of carbon nanotubes as supports: A promising route for the high dispersion of Pt nanoparticles for electrocatalysts. J Catal 238:394–401

    Article  CAS  Google Scholar 

  54. Li Z, Yang X, Tsumori N, Liu Z, Himeda Y, Autrey T, Xu Q (2017) Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid. ACS Catal 7:2720–2724

    Article  CAS  Google Scholar 

  55. Kim YT, Ohshima K, Higashimine K, Uruga T, Takata M, Suematsu H, Mitani T (2006) Fine size control of platinum on carbon nanotubes: From single atoms to clusters. Angew Chem Int Ed 45:407–411

    Article  CAS  Google Scholar 

  56. Rong H, Ji S, Zhang J, Wang D, Li Y (2020) Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat Commun 11:5884

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Hainan Province (no. 420RC524, 2019RC141, 520MS015), the Key Research and Development Project of Hainan Province (no. ZDYF2021GXJS209, ZDYF2022SHFZ053), the China Postdoctoral Science Foundation (no. 2020M682764), the National Natural Science Foundation of China (no. 51902074, 52162012) and Foundation of State Key Laboratory of Marine Resource Utilization in South China Sea (Hainan University) (no. MRUKF2021030). We also thank Dr. Shuyuan Lyu for producing and organizing the Figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Huang or Zhongxin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10399 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lyu, S., Zhang, P. et al. Nitrogen-bonded ultrasmall palladium clusters over the nitrogen-doped carbon for promoting Suzuki cross-coupling reactions. Adv Compos Hybrid Mater 5, 1396–1403 (2022). https://doi.org/10.1007/s42114-022-00468-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00468-5

Keywords

Navigation