Skip to main content
Log in

A review on copper-based nanoparticles as a catalyst: synthesis and applications in coupling reactions

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ever-increasing demand for efficient and sustainable catalytic systems has prompted a surge in the exploration of transition metal nanoparticles as catalysts for various chemical reactions. Among these, copper-based nanoparticles have emerged as promising contenders, offering a viable alternative to the traditionally employed palladium catalysts. This review provides a comprehensive overview of the catalytic application of copper-based nanoparticles in coupling reactions, with a focus on their synthesis methods, structural characterization, and catalytic performance. The synthesis of copper-based nanoparticles is discussed in detail, encompassing a range of techniques including wet chemical technique, reverse micelle, biosynthesis, microwave and solgel methods. Emphasis is placed on tailoring the size, shape, and surface properties of these synthesized nanoparticles. Furthermore, the catalytic activity is detailed and summarized by focusing on the coupling reactions. The comprehensive insights provided herein serve as a valuable resource for researchers engaged in the development of efficient and eco-friendly catalytic processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Adapted with permission from ref [67] under CC-BY license Copyright Royal Society of Chemistry. 2023.

Figure 3
Figure 4
Figure 5

Adapted with permission from ref [50], Copyright 2023. Elsevier.

Figure 6
Figure 7

Adapted with permission from [116] Copyright @ 2019. Royal Society of Chemistry.

Figure 8
Figure 9

Adapted from Ref [118]. Copyright, 2022. Springer Nature

Figure 10
Figure 11

Adapted with permission from ref [129].

Figure 12

Adapted from ref [130].

Figure 13
Figure 14

Similar content being viewed by others

References

  1. Astruc D (2020) Introduction: nanoparticles in catalysis. Chem Rev 120:461–463. https://doi.org/10.1021/acs.chemrev.8b00696

    Article  CAS  PubMed  Google Scholar 

  2. Khan Y, Sadia H, Ali Shah SZ et al (2022) Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts 12:1386. https://doi.org/10.3390/catal12111386

    Article  CAS  Google Scholar 

  3. Alshammari BH, Lashin MMA, Mahmood MA et al (2023) Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Adv 13:13735–13785. https://doi.org/10.1039/d3ra01421e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Joseph TM, Kar Mahapatra D, Esmaeili A et al (2023) Nanoparticles: taking a unique position in medicine. Nanomaterials 13:574. https://doi.org/10.3390/nano13030574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pathak R, Punetha VD, Bhatt S, Punetha M (2023) Multifunctional role of carbon dot-based polymer nanocomposites in biomedical applications: a review. J Mater Sci 58:6419–6443. https://doi.org/10.1007/s10853-023-08408-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhatt S, Punetha VD, Pathak R, Punetha M (2023) Graphene in nanomedicine: a review on nano-bio factors and antibacterial activity. Colloids Surf B Biointerfaces 226:113323. https://doi.org/10.1016/j.colsurfb.2023.113323

    Article  CAS  PubMed  Google Scholar 

  7. Pathak R, Punetha VD, Bhatt S, Punetha M (2023) Carbon nanotube-based biocompatible polymer nanocomposites as an emerging tool for biomedical applications. Eur Polym J 196:112257. https://doi.org/10.1016/j.eurpolymj.2023.112257

    Article  CAS  Google Scholar 

  8. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  9. Yaqoob AA, Ahmad H, Parveen T et al (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341. https://doi.org/10.3389/fchem.2020.00341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gautam A, Komal P, Gautam P et al (2021) Recent trends in noble metal nanoparticles for colorimetric chemical sensing and micro-electronic packaging applications. Metals (Basel) 11:329. https://doi.org/10.3390/met11020329

    Article  CAS  Google Scholar 

  11. Ndolomingo MJ, Bingwa N, Meijboom R (2020) Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. J Mater Sci 55:6195–6241. https://doi.org/10.1007/s10853-020-04415-x

    Article  CAS  Google Scholar 

  12. Jaldurgam FF, Ahmad Z, Touati F (2021) Low-toxic, earth-abundant nanostructured materials for thermoelectric applications. Nanomaterials 11:895. https://doi.org/10.3390/nano11040895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhatt S, Pathak R, Punetha VD, Punetha M (2023) Recent advances and mechanism of antimicrobial efficacy of graphene-based materials: a review. J Mater Sci 58:7839–7867. https://doi.org/10.1007/s10853-023-08534-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crisan MC, Teodora M, Lucian M (2021) Copper nanoparticles: synthesis and characterization, physiology, toxicity and antimicrobial applications. Appl Sci 12:141. https://doi.org/10.3390/app12010141

    Article  CAS  Google Scholar 

  15. Chung K, Bang J, Thacharon A et al (2022) Non-oxidized bare copper nanoparticles with surface excess electrons in air. Nat Nanotechnol 17:285–291. https://doi.org/10.1038/s41565-021-01070-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gawande MB, Goswami A, Felpin F-X et al (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Xiong X (2018) Copper. pp 303–305.

  18. Bagherian G, Arab Chamjangali M, Shariati Evari H, Ashrafi M (2019) Determination of copper(II) by flame atomic absorption spectrometry after its perconcentration by a highly selective and environmentally friendly dispersive liquid–liquid microextraction technique. J Anal Sci Technol 10:3. https://doi.org/10.1186/s40543-019-0164-6

    Article  Google Scholar 

  19. Camats M, Pla D, Gómez M (2021) Copper nanocatalysts applied in coupling reactions: a mechanistic insight. Nanoscale 13:18817–18838. https://doi.org/10.1039/D1NR05894K

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Q, Crespo-Otero R, Di Tommaso D (2023) The role of copper in enhancing the performance of heteronuclear diatomic catalysts for the electrochemical CO2 conversion to C1 chemicals. J Energy Chem 85:490–500. https://doi.org/10.1016/j.jechem.2023.06.029

    Article  CAS  Google Scholar 

  21. Rosen BM, Jiang X, Wilson CJ et al (2009) The disproportionation of Cu(I)X mediated by ligand and solvent into Cu(0) and Cu(II)X2 and its implications for SET-LRP. J Polym Sci A Polym Chem 47:5606–5628. https://doi.org/10.1002/pola.23690

    Article  CAS  Google Scholar 

  22. Langerman M, van Langevelde PH, van de Vijver JJ et al (2023) Scaling relation between the reduction potential of copper catalysts and the turnover frequency for the oxygen and hydrogen peroxide reduction reactions. Inorg Chem 62:19593–19602. https://doi.org/10.1021/acs.inorgchem.3c02939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heravi MM, Heidari B, Zadsirjan V, Mohammadi L (2020) Applications of Cu(0) encapsulated nanocatalysts as superior catalytic systems in Cu-catalyzed organic transformations. RSC Adv 10:24893–24940. https://doi.org/10.1039/D0RA02341H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baghdasaryan A, Bürgi T (2021) Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. Nanoscale 13:6283–6340. https://doi.org/10.1039/D0NR08489A

    Article  CAS  PubMed  Google Scholar 

  25. Lu G, Liu RY, Yang Y et al (2017) Ligand-substrate dispersion facilitates the copper-catalyzed hydroamination of unactivated olefins. J Am Chem Soc 139:16548–16555. https://doi.org/10.1021/jacs.7b07373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. The Nobel Prize in Chemistry 2010 - NobelPrize.org. https://www.nobelprize.org/prizes/chemistry/2010/summary/. Accessed 8 Sep 2023

  27. Kielhorn J, Melber C, Keller D, Mangelsdorf I (2002) Palladium: a review of exposure and effects to human health. Int J Hyg Environ Health 205:417–432. https://doi.org/10.1078/1438-4639-00180

    Article  CAS  PubMed  Google Scholar 

  28. Fromell K, Johansson U, Abadgar S et al (2023) The effect of airborne Palladium nanoparticles on human lung cells, endothelium and blood: a combinatory approach using three in vitro models. Toxicol In Vitro 89:105586. https://doi.org/10.1016/j.tiv.2023.105586

    Article  CAS  PubMed  Google Scholar 

  29. Szymański P, Frączek T, Markowicz M, Mikiciuk-Olasik E (2012) Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 25:1089–1112. https://doi.org/10.1007/s10534-012-9578-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waris A, Din M, Ali A et al (2021) A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg Chem Commun 123:108369. https://doi.org/10.1016/j.inoche.2020.108369

    Article  CAS  Google Scholar 

  31. Bhagat M, Anand R, Sharma P et al (2021) Review—multifunctional copper nanoparticles: synthesis and applications. ECS J Solid State Sci Technol 10:063011. https://doi.org/10.1149/2162-8777/ac07f8

    Article  CAS  Google Scholar 

  32. Harishchandra BD, Pappuswamy M, Antony PU et al (2020) Copper nanoparticles: a review on synthesis, characterization and applications. Asian Pac J Cancer Biol 5:201–210. https://doi.org/10.31557/apjcb.2020.5.4.201-210

    Article  CAS  Google Scholar 

  33. Chakraborty N, Banerjee J, Chakraborty P et al (2022) Green synthesis of copper/copper oxide nanoparticles and their applications: a review. Green Chem Lett Rev 15:187–215. https://doi.org/10.1080/17518253.2022.2025916

    Article  CAS  Google Scholar 

  34. Alahdal FAM, Qashqoosh MTA, Manea YK et al (2023) Green synthesis and characterization of copper nanoparticles using phragmanthera austroarabica extract and their biological/environmental applications. Sustain Mater Technol 35:e00540. https://doi.org/10.1016/j.susmat.2022.e00540

    Article  CAS  Google Scholar 

  35. Luque-Jacobo CM, Cespedes-Loayza AL, Echegaray-Ugarte TS et al (2023) Biogenic synthesis of copper nanoparticles: a systematic review of their features and main applications. Molecules 28:4838. https://doi.org/10.3390/molecules28124838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chand Mali S, Dhaka A, Sharma S, Trivedi R (2023) Review on biogenic synthesis of copper nanoparticles and its potential applications. Inorg Chem Commun 149:110448. https://doi.org/10.1016/j.inoche.2023.110448

    Article  CAS  Google Scholar 

  37. Khan A, Rashid A, Younas R, Chong R (2016) A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett 6:21–26. https://doi.org/10.1007/s40089-015-0163-6

    Article  CAS  Google Scholar 

  38. Rehman H, Ali Z, Qadir A et al (2020) Synthesis of CuO-NPS by simple wet chemical method using various dicarboxylic acid salts as precursors: spectral characterization and in-vitro biological evaluation. Bull Chem Soc Ethiop 34:323–334. https://doi.org/10.4314/bcse.v34i2.10

    Article  CAS  Google Scholar 

  39. Kulkarni MB, Goel S (2020) Microfluidic devices for synthesizing nanomaterials—a review. Nano Express 1:032004. https://doi.org/10.1088/2632-959X/abcca6

    Article  Google Scholar 

  40. Han D, Yang H, Zhu C, Wang F (2008) Controlled synthesis of CuO nanoparticles using TritonX-100-based water-in-oil reverse micelles. Powder Technol 185:286–290. https://doi.org/10.1016/j.powtec.2007.10.018

    Article  CAS  Google Scholar 

  41. Aguilar MS, Esparza R, Rosas G (2019) Synthesis of Cu nanoparticles by chemical reduction method. Trans Nonferrous Met Soc China 29:1510–1515. https://doi.org/10.1016/S1003-6326(19)65058-2

    Article  CAS  Google Scholar 

  42. Silva N, Ramírez S, Díaz I et al (2019) Easy, quick, and reproducible sonochemical synthesis of CuO nanoparticles. Materials 12:804. https://doi.org/10.3390/ma12050804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dörner L, Cancellieri C, Rheingans B et al (2019) Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area. Sci Rep 9:11758. https://doi.org/10.1038/s41598-019-48020-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bokov D, Turki Jalil A, Chupradit S et al (2021) Nanomaterial by Sol-Gel method: synthesis and application. Adv Mater Sci Eng 2021:1–21. https://doi.org/10.1155/2021/5102014

    Article  CAS  Google Scholar 

  45. Ghorbani HR (2014) Chemical synthesis of copper nanoparticles. Orient J Chem 30:803–806. https://doi.org/10.13005/ojc/300254

    Article  CAS  Google Scholar 

  46. Giuffrida S, Costanzo LL, Ventimiglia G, Bongiorno C (2008) Photochemical synthesis of copper nanoparticles incorporated in poly(vinyl pyrrolidone). J Nanopart Res 10:1183–1192. https://doi.org/10.1007/s11051-007-9343-2

    Article  CAS  Google Scholar 

  47. Odularu AT (2018) Metal nanoparticles: thermal decomposition, biomedicinal applications to cancer treatment, and future perspectives. Bioinorg Chem Appl 2018:1–6. https://doi.org/10.1155/2018/9354708

    Article  CAS  Google Scholar 

  48. Ullrich A, Rahman MM, Azhar A et al (2022) Synthesis of iron oxide nanoparticles by decomposition of iron-oleate: influence of the heating rate on the particle size. J Nanopart Res 24:183. https://doi.org/10.1007/s11051-022-05554-9

    Article  CAS  Google Scholar 

  49. Khodashenas B, Ghorbani HR (2014) Synthesis of copper nanoparticles: an overview of the various methods. Korean J Chem Eng 31:1105–1109. https://doi.org/10.1007/s11814-014-0127-y

    Article  CAS  Google Scholar 

  50. Rajamohan R, Lee YR (2023) Microwave-assisted synthesis of copper oxide nanoparticles by apple peel extract and efficient catalytic reduction on methylene blue and crystal violet. J Mol Struct 1276:134803. https://doi.org/10.1016/j.molstruc.2022.134803

    Article  CAS  Google Scholar 

  51. Adewale Akintelu S, Kolawole Oyebamiji A, Charles Olugbeko S, Felix Latona D (2021) Green chemistry approach towards the synthesis of copper nanoparticles and its potential applications as therapeutic agents and environmental control. Curr Res Green Sustain Chem 4:100176. https://doi.org/10.1016/J.CRGSC.2021.100176

    Article  CAS  Google Scholar 

  52. Aghayan M, Hussainova I, Kirakosyan K, Rodríguez MA (2017) The template-assisted wet-combustion synthesis of copper oxide nanoparticles on mesoporous network of alumina nanofibers. Mater Chem Phys 192:138–146. https://doi.org/10.1016/j.matchemphys.2017.01.068

    Article  CAS  Google Scholar 

  53. Al-Hakkani MF (2020) Biogenic copper nanoparticles and their applications: a review. SN Appl Sci 2:505. https://doi.org/10.1007/s42452-020-2279-1

    Article  CAS  Google Scholar 

  54. Zhang D, Li Z, Sugioka K (2021) Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids. J Phys Photonics 3:042002. https://doi.org/10.1088/2515-7647/ac0bfd

    Article  CAS  Google Scholar 

  55. Kim M, Osone S, Kim T et al (2017) Synthesis of nanoparticles by laser ablation: a review. KONA Powder Part J 34:80–90. https://doi.org/10.14356/kona.2017009

    Article  CAS  Google Scholar 

  56. Alhalili Z (2022) Green synthesis of copper oxide nanoparticles CuO NPs from eucalyptus globoulus leaf extract: adsorption and design of experiments. Arab J Chem 15:103739. https://doi.org/10.1016/j.arabjc.2022.103739

    Article  CAS  Google Scholar 

  57. Antonio-Pérez A, Durán-Armenta LF, Pérez-Loredo MG, Torres-Huerta AL (2023) Biosynthesis of copper nanoparticles with medicinal plants extracts: from extraction methods to applications. Micromachines 14(10):1882. https://doi.org/10.3390/MI14101882

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sebastian A, Aarya PK, Sen Mojumdar S (2023) Role of a mild reducing agent in designing a copper nanocluster-based tunable dual-metal sensor for the selective and sensitive detection of Ag+ and Fe2+. Chem Phys Impact 6:100249. https://doi.org/10.1016/j.chphi.2023.100249

    Article  Google Scholar 

  59. Reverberi A, Salerno M, Lauciello S, Fabiano B (2016) Synthesis of copper nanoparticles in ethylene glycol by chemical reduction with vanadium (+2) salts. Materials 9:809. https://doi.org/10.3390/ma9100809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Longano D, Ditaranto N, Sabbatini L et al (2014) Synthesis and antimicrobial activity of copper nanomaterials. Nano-Antimicrobials 9783642244285:85. https://doi.org/10.1007/978-3-642-24428-5_3

    Article  Google Scholar 

  61. Pottathara YB, Grohens Y, Kokol V et al (2019) Synthesis and processing of emerging two-dimensional nanomaterials. Nanomaterials synthesis: design, fabrication and Applications. Elsevier, Amsterdam, pp 1–25. https://doi.org/10.1016/B978-0-12-815751-0.00001-8

    Chapter  Google Scholar 

  62. Khatoon UT, Velidandi A, Nageswara Rao GVS (2023) Copper oxide nanoparticles: synthesis via chemical reduction, characterization, antibacterial activity, and possible mechanism involved. Inorg Chem Commun 149:110372. https://doi.org/10.1016/J.INOCHE.2022.110372

    Article  CAS  Google Scholar 

  63. Guzman M, Arcos M, Dille J et al (2018) Effect of the concentration of NaBH4 and N2H4 as reductant agent on the synthesis of copper oxide nanoparticles and its potential antimicrobial applications. Nano Biomed Eng 10:392–405. https://doi.org/10.5101/nbe.v10i4.p392-405

    Article  CAS  Google Scholar 

  64. Javed R, Zia M, Naz S et al (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnology 18:172. https://doi.org/10.1186/s12951-020-00704-4

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tatar DK, Jha JM (2023) Wet chemical synthesis and characterization of CuO nanoparticles and their application in pool boiling heat transfer. J Cryst Growth 617:127305. https://doi.org/10.1016/j.jcrysgro.2023.127305

    Article  CAS  Google Scholar 

  66. Parekh ZR, Chaki SH, Hirpara AB et al (2021) CuO nanoparticles: synthesis by wet precipitation technique and its characterization. Phys B Condens Matter 610:412950. https://doi.org/10.1016/j.physb.2021.412950

    Article  CAS  Google Scholar 

  67. Zhu Y, Vigil-Hernandez C, Kalha C et al (2023) Temperature-modulated solution-based synthesis of copper oxide nanostructures for glucose sensing. Mater Adv 4:3572–3582. https://doi.org/10.1039/D3MA00149K

    Article  CAS  Google Scholar 

  68. Ścigała A, Szczęsny R, Kamedulski P et al (2023) Copper nitride/silver nanostructures synthesized via wet chemical reduction method for the oxygen reduction reaction. J Nanopart Res 25:28. https://doi.org/10.1007/s11051-023-05671-z

    Article  CAS  Google Scholar 

  69. Padre SM, Kiruthika S, Mundinamani S et al (2022) Mono- and bimetallic nanoparticles for catalytic degradation of hazardous organic dyes and antibacterial applications. ACS Omega 7:35023–35034. https://doi.org/10.1021/acsomega.2c03784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang S, Wu C, Zhou H et al (2013) An Ullmann C–O coupling reaction catalyzed by magnetic copper ferrite nanoparticles. Adv Synth Catal 355:53–58. https://doi.org/10.1002/ADSC.201200600

    Article  CAS  Google Scholar 

  71. Nandi D, Perla VK, Ghosh SK et al (2020) Copper-azide nanoparticle: a ‘catalyst-cum-reagent’ for the designing of 5-alkynyl 1,4-disubstituted triazoles. Sci Rep 10:16720. https://doi.org/10.1038/s41598-020-74018-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharma A, Dutta RK (2015) Studies on the drastic improvement of photocatalytic degradation of acid orange-74 dye by TPPO capped CuO nanoparticles in tandem with suitable electron capturing agents. RSC Adv 5:43815–43823. https://doi.org/10.1039/C5RA04179A

    Article  CAS  Google Scholar 

  73. Hokita Y, Kanzaki M, Sugiyama T et al (2015) High-concentration synthesis of sub-10-nm copper nanoparticles for application to conductive nanoinks. ACS Appl Mater Interfaces 7:19382–19389. https://doi.org/10.1021/acsami.5b05542

    Article  CAS  PubMed  Google Scholar 

  74. Chahdoura F, Pradel C, Gomez M (2015) ChemInform abstract: copper(I) oxide nanoparticles in glycerol: a convenient catalyst for cross-coupling and azide-alkyne cycloaddition processes. ChemInform. https://doi.org/10.1002/chin.201512026

    Article  Google Scholar 

  75. Vorobyev AM, Logutenko OA, Borisenko TA, Titkov AI (2023) Mechanochemically assisted synthesis of Cu–Ag microflakes. Powders 2:421–431. https://doi.org/10.3390/powders2020025

    Article  Google Scholar 

  76. Wu Y, Iwase K, Harada T et al (2021) Sn atoms on Cu nanoparticles for suppressing competitive H 2 evolution in CO2 electrolysis. ACS Appl Nano Mater 4:4994–5003. https://doi.org/10.1021/acsanm.1c00514

    Article  CAS  Google Scholar 

  77. Asamoah RB, Yaya A, Mensah B et al (2020) Synthesis and characterization of zinc and copper oxide nanoparticles and their antibacteria activity. Results Mater 7:100099. https://doi.org/10.1016/j.rinma.2020.100099

    Article  Google Scholar 

  78. Balkan T, Küçükkeçeci H, Zarenezhad H et al (2020) One-pot synthesis of monodisperse copper–silver alloy nanoparticles and their composition-dependent electrocatalytic activity for oxygen reduction reaction. J Alloys Compd 831:154787. https://doi.org/10.1016/j.jallcom.2020.154787

    Article  CAS  Google Scholar 

  79. Cui F, Yu Y, Dou L et al (2015) Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett 15:7610–7615. https://doi.org/10.1021/acs.nanolett.5b03422

    Article  CAS  PubMed  Google Scholar 

  80. Tang Z, Shahzad A, Kim W-S, Yu T (2015) Cost-effective aqueous-phase synthesis of long copper nanowires. RSC Adv 5:83880–83884. https://doi.org/10.1039/C5RA15751J

    Article  CAS  Google Scholar 

  81. Popovetskiy PS, Bulavchenko AI, Arymbaeva AT et al (2019) Synthesis and electrophoretic concentration of Ag–Cu nanoparticles of the core-shell type in an AOT microemulsion in n-decane. Russ J Phys Chem A 93:1572–1576. https://doi.org/10.1134/S0036024419080235

    Article  CAS  Google Scholar 

  82. Mandal S, De S (2016) Copper nanoparticles in AOT “revisited”-direct micelles versus reverse micelles. Mater Chem Phys 183:410–421. https://doi.org/10.1016/j.matchemphys.2016.08.046

    Article  CAS  Google Scholar 

  83. Wang A, Chen L, Xu F, Yan Z (2014) In situ synthesis of copper nanoparticles within ionic liquid-in-vegetable oil microemulsions and their direct use as high efficient nanolubricants. RSC Adv 4:45251–45257. https://doi.org/10.1039/C4RA06785A

    Article  CAS  Google Scholar 

  84. Pinheiro LD, Sentena NZ, Sangoi GG et al (2023) Copper nanoparticles from acid ascorbic: biosynthesis, characterization, in vitro safety profile and antimicrobial activity. Mater Chem Phys 307:128110. https://doi.org/10.1016/j.matchemphys.2023.128110

    Article  CAS  Google Scholar 

  85. Kashyap P, Shirkot P, Das R et al (2023) Biosynthesis and characterization of copper nanoparticles from Stenotrophomonas maltophilia and its effect on plant pathogens and pesticide degradation. J Agric Food Res 13:100654. https://doi.org/10.1016/j.jafr.2023.100654

    Article  CAS  Google Scholar 

  86. Sasarom M, Wanachantararak P, Chaijareenont P, Okonogi S (2023) Biosynthesis of copper oxide nanoparticles using caesalpinia sappan extract: in vitro evaluation of antifungal and antibiofilm activities against Candida albicans. Drug Discov Ther 17(4):238–247. https://doi.org/10.5582/ddt.2023.01032

    Article  CAS  PubMed  Google Scholar 

  87. Aseem BA, Ahsas MA, Danishyar AS (2023) Biosynthesis, characterization and antibacterial properties of CuO nanoparticles of psychrotrophic bacteria. Eur J Biol Biotechnol 4:29–34. https://doi.org/10.24018/ejbio.2023.4.3.481

    Article  Google Scholar 

  88. Kumar B, Smita K, Debut A, Cumbal L (2023) Rapid synthesis and antioxidant activity of copper nanoparticles using rambutan peel extract with ultrasound assistance. Emerg Mater. https://doi.org/10.1007/s42247-023-00537-5

    Article  Google Scholar 

  89. Rajamohan R, Raorane CJ, Kim S-C et al (2023) Novel microwave synthesis of copper oxide nanoparticles and appraisal of the antibacterial application. Micromachines (Basel) 14:456. https://doi.org/10.3390/mi14020456

    Article  PubMed  Google Scholar 

  90. Ansari N, Lodha A, Patel TL (2022) A Novel Microwave-Assisted Green Synthesis of Copper Nanoparticles Using Citrus limon and Its Application for Antibacterial and Antifungal Activity. Int J Nanosci 21(03):2250016. https://doi.org/10.1142/S0219581X22500168

    Article  CAS  Google Scholar 

  91. Torras M, Roig A (2021) Copper oxide nanocubes wrapping metals by microwave synthesis. Cryst Growth Des 21:5027–5035. https://doi.org/10.1021/acs.cgd.1c00462

    Article  CAS  Google Scholar 

  92. Arunkumar B, Johnson Jeyakumar S, Jothibas M (2019) A sol-gel approach to the synthesis of CuO nanoparticles using Lantana camara leaf extract and their photo catalytic activity. Optik (Stuttg) 183:698–705. https://doi.org/10.1016/j.ijleo.2019.02.046

    Article  CAS  Google Scholar 

  93. Patel M, Mishra S, Verma R, Shikha D (2022) Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique. Discov Mater 2:1. https://doi.org/10.1007/s43939-022-00022-6

    Article  Google Scholar 

  94. Yi S, Dai F, Zhao C, Si Y (2017) A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Sci Rep 7:9806. https://doi.org/10.1038/s41598-017-10453-4

    Article  PubMed  PubMed Central  Google Scholar 

  95. Arsene M-L, Răut I, Călin M et al (2021) Versatility of reverse micelles: from biomimetic models to nano (bio)sensor design. Processes 9:345. https://doi.org/10.3390/pr9020345

    Article  Google Scholar 

  96. Letchumanan D, Sok SPM, Ibrahim S et al (2021) Plant-based biosynthesis of copper/copper oxide nanoparticles: an update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules 11:564. https://doi.org/10.3390/biom11040564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Reddy GB, Mangatayaru KG, Reddy DM et al (2022) Biosynthesis and characterization methods of copper nanoparticles and their applications in the agricultural sector. Copper nanostructures: next-generation of agrochemicals for sustainable agroecosystems. Elsevier, Amsterdam, pp 45–80

    Chapter  Google Scholar 

  98. Ashraf H, Anjum T, Riaz S, Naseem S (2020) Microwave-assisted green synthesis and characterization of silver nanoparticles using melia azedarach for the management of fusarium wilt in tomato. Front Microbiol 11:476234. https://doi.org/10.3389/fmicb.2020.00238

    Article  Google Scholar 

  99. Saloga PEJ, Kästner C, Thünemann AF (2018) High-speed but not magic: microwave-assisted synthesis of ultra-small silver nanoparticles. Langmuir 34:147–153. https://doi.org/10.1021/acs.langmuir.7b01541

    Article  CAS  PubMed  Google Scholar 

  100. Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348. https://doi.org/10.1021/ar400309b

    Article  CAS  PubMed  Google Scholar 

  101. Parashar M, Shukla VK, Singh R (2020) Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J Mater Sci: Mater Electron 31:3729–3749. https://doi.org/10.1007/s10854-020-02994-8

    Article  CAS  Google Scholar 

  102. Fairoosa J, Neetha M, Anilkumar G (2021) Recent developments and perspectives in the copper-catalyzed multicomponent synthesis of heterocycles. RSC Adv 11:3452–3469. https://doi.org/10.1039/D0RA10472H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Averin AD, Panchenko SP, Murashkina AV et al (2023) Recent achievements in the copper-catalyzed arylation of adamantane-containing amines. Di- and Polyam Catalysts 13:831. https://doi.org/10.3390/catal13050831

    Article  CAS  Google Scholar 

  104. Valiey E, Dekamin MG (2022) Design and characterization of an urea-bridged PMO supporting Cu(II) nanoparticles as highly efficient heterogeneous catalyst for synthesis of tetrazole derivatives. Sci Rep 12:18139. https://doi.org/10.1038/s41598-022-22905-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim A, Muthuchamy N, Yoon C et al (2018) MOF-Derived Cu@Cu2O nanocatalyst for oxygen reduction reaction and cycloaddition reaction. Nanomaterials 8:138. https://doi.org/10.3390/nano8030138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hervé G, Len C (2015) Heck and Sonogashira couplings in aqueous media – application to unprotected nucleosides and nucleotides. Sustain Chem Process 3:3. https://doi.org/10.1186/s40508-015-0029-2

    Article  CAS  Google Scholar 

  107. Mondal S (2016) Recent advancement of Ullmann-type coupling reactions in the formation of C-C bond. ChemTexts 2:17. https://doi.org/10.1007/s40828-016-0036-2

    Article  CAS  Google Scholar 

  108. Campeau LC, Hazari N (2019) Cross-coupling and related reactions: connecting past success to the development of new reactions for the future. Organometallics 38:3–35. https://doi.org/10.1021/ACS.ORGANOMET.8B00720/ASSET/IMAGES/MEDIUM/OM-2018-00720U_0068.GIF

    Article  CAS  PubMed  Google Scholar 

  109. Ruiz-Castillo P, Buchwald SL (2016) Applications of palladium-catalyzed C–N cross-coupling reactions. Chem Rev 116:12564–12649. https://doi.org/10.1021/acs.chemrev.6b00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ghosh I, Shlapakov N, Karl TA et al (2023) General cross-coupling reactions with adaptive dynamic homogeneous catalysis. Nature 619:87–93. https://doi.org/10.1038/s41586-023-06087-4

    Article  CAS  PubMed  Google Scholar 

  111. Ojha NK, Zyryanov GV, Majee A et al (2017) Copper nanoparticles as inexpensive and efficient catalyst: a valuable contribution in organic synthesis. Coord Chem Rev 353:1–57. https://doi.org/10.1016/J.CCR.2017.10.004

    Article  CAS  Google Scholar 

  112. Yuan Y, Zhu H, Zhao D, Zhang L (2011) Ligand-free copper oxide nanoparticle-catalyzed sonogashira coupling reaction. Synthesis (Stuttg) 2011:1792–1798. https://doi.org/10.1055/S-0030-1260023

    Article  Google Scholar 

  113. Gholinejad M, Ahmadi J, Nájera C (2016) Silica microparticles supported gold and copper ferrite nanoparticles: a magnetically recyclable bimetallic catalyst for sonogashira reaction. ChemistrySelect 1:384–390. https://doi.org/10.1002/slct.201600049

    Article  CAS  Google Scholar 

  114. Oka H, Kitai K, Suzuki T, Obora Y (2017) N, N-Dimethylformamide-stabilized copper nanoparticles as a catalyst precursor for Sonogashira-Hagihara cross coupling. RSC Adv 7:22869–22874. https://doi.org/10.1039/C6RA27910D

    Article  CAS  Google Scholar 

  115. Wang K, Yang L, Zhao W et al (2017) A facile synthesis of copper nanoparticles supported on an ordered mesoporous polymer as an efficient and stable catalyst for solvent-free sonogashira coupling Reactions. Green Chem 19:1949–1957. https://doi.org/10.1039/C7GC00219J

    Article  CAS  Google Scholar 

  116. Nasseri MA, Alavi SA, Kazemnejadi M, Allahresani A (2019) The CuFe 2 O 4 @SiO 2 @ZrO 2 /SO 4 2− /Cu nanoparticles: an efficient magnetically recyclable multifunctional Lewis/Brønsted acid nanocatalyst for the ligand- and Pd-free Sonogashira cross-coupling reaction in water. RSC Adv 9:20749–20759. https://doi.org/10.1039/C9RA03406D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li Y, Feng X, Li Z (2019) Visible-light-initiated Sonogashira coupling reactions over CuO/TiO2 nanocomposites. Catal Sci Technol 9:377–383. https://doi.org/10.1039/C8CY02333F

    Article  CAS  Google Scholar 

  118. Sheikh S, Nasseri MA, Allahresani A, Varma RS (2022) Copper adorned magnetic nanoparticles as a heterogeneous catalyst for Sonogashira coupling reaction in aqueous media. Sci Rep 12:17986. https://doi.org/10.1038/s41598-022-22567-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bhattacherjee D, Rahman M, Ghosh S et al (2021) Advances in transition-metal catalyzed carbonylative Suzuki-Miyaura coupling reaction: an update. Adv Synth Catal 363:1597–1624. https://doi.org/10.1002/adsc.202001509

    Article  CAS  Google Scholar 

  120. Akbarzadeh P, Koukabi N, Kolvari E (2020) Polythiophene-functionalized magnetic carbon nanotube-supported copper(I) complex: a novel and retrievable heterogeneous catalyst for the “Phosphine- and Palladium-Free” Suzuki-Miyaura cross-coupling reaction. Mol Divers 24:1125–1137. https://doi.org/10.1007/s11030-019-10016-x

    Article  CAS  PubMed  Google Scholar 

  121. Sonei S, Taghavi F, Khojastehnezhad A, Gholizadeh M (2021) Copper-functionalized silica-coated magnetic nanoparticles for an efficient Suzuki cross-coupling reaction. ChemistrySelect 6:359–368. https://doi.org/10.1002/SLCT.202004148

    Article  CAS  Google Scholar 

  122. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Bagherzadeh M (2015) Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free heck coupling reaction under aerobic conditions. J Colloid Interface Sci 448:106–113. https://doi.org/10.1016/J.JCIS.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  123. Sambiagio C, Marsden SP, Blacker AJ, McGowan PC (2014) Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem Soc Rev 43:3525–3550. https://doi.org/10.1039/C3CS60289C

    Article  CAS  PubMed  Google Scholar 

  124. Andrada D, Soria-Castro S, Caminos D et al (2017) Understanding the Heteroatom effect on the Ullmann copper-catalyzed cross-coupling of X-arylation (X = NH, O, S) mechanism. Catalysts 7:388. https://doi.org/10.3390/catal7120388

    Article  CAS  Google Scholar 

  125. Fui CJ, Sarjadi MS, Sarkar SM, Rahman ML (2020) Recent advancement of ullmann condensation coupling reaction in the formation of aryl-oxygen (C–O) bonding by copper-mediated catalyst. Catalysts 10:1103. https://doi.org/10.3390/catal10101103

    Article  CAS  Google Scholar 

  126. Monnier F, Taillefer M (2009) Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions. Angew Chem Int Ed Engl 48:6954–6971. https://doi.org/10.1002/ANIE.200804497

    Article  CAS  PubMed  Google Scholar 

  127. Akhtar R, Zahoor AF, Irfan M et al (2022) Recent green synthetic approaches toward Ullmann reaction: a review. Chem Pap 76:7275–7293. https://doi.org/10.1007/S11696-022-02424-5/METRICS

    Article  CAS  Google Scholar 

  128. Bissember AC, Lundgren RJ, Creutz SE et al (2013) Transition-metal-catalyzed alkylations of amines with alkyl halides: photoinduced, copper-catalyzed couplings of carbazoles. Angew Chem Int Ed 52:5129–5133. https://doi.org/10.1002/ANIE.201301202

    Article  CAS  Google Scholar 

  129. Veisi H, Neyestani N, Pirhayati M et al (2021) Copper nanoparticle anchored biguanidine-modified Zr-UiO-66 MOFs: a competent heterogeneous and reusable nanocatalyst in Buchwald-Hartwig and Ullmann type coupling reactions. RSC Adv 11:22278–22286. https://doi.org/10.1039/D1RA02634H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gorginpour F, Zali-Boeini H (2021) Synergistic effect of copper nanocrystals-nanoparticles incorporated in a porous organic polymer for the Ullmann C–O coupling reaction. Molecular Catalysis 504:111460. https://doi.org/10.1016/J.MCAT.2021.111460

    Article  CAS  Google Scholar 

  131. Shelke SN, Bankar SR, Mhaske GR et al (2014) Iron oxide-supported copper oxide nanoparticles (nanocat-Fe-CuO): magnetically recyclable catalysts for the synthesis of pyrazole derivatives, 4-methoxyaniline, and ullmann-type condensation reactions. ACS Sustain Chem Eng 2:1699–1706. https://doi.org/10.1021/sc500160f

    Article  CAS  Google Scholar 

  132. Gorginpour F, Zali-Boeini H, Rudbari HA (2021) A quinoxaline-based porous organic polymer containing copper nanoparticles CuNPs@Q-POP as a robust nanocatalyst toward C–N coupling reaction. RSC Adv 11:3655–3665. https://doi.org/10.1039/D0RA10741G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maxwell T, Nogueira Campos MG, Smith S et al (2020) Quantum dots nanoparticles for biomedical applications: fundamental concepts biological interactions and clinical applications. Elsevier, Amsterdam, pp 243–265

    Book  Google Scholar 

  134. Gao A, Zhang H, Hu L et al (2017) Fabrication of silica nanoparticle-supported copper quantum dots and the efficient catalytic Ullmann coupling reaction. Catal Commun 102:118–122. https://doi.org/10.1016/J.CATCOM.2017.09.005

    Article  CAS  Google Scholar 

  135. Li G, Nieves-Quinones Y, Zhang H et al (2020) Transition-metal-free formal cross-coupling of aryl methyl sulfoxides and alcohols via nucleophilic activation of C–S bond. Nat Commun 11:2890. https://doi.org/10.1038/s41467-020-16713-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Reddy KHV, Reddy VP, Kumar AA et al (2011) Nano copper oxide catalyzed synthesis of symmetrical diaryl sulfides under ligand free conditions. Beilstein J Org Chem 7:886–891. https://doi.org/10.3762/bjoc.7.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Frindy S, El Kadib A, Lahcini M et al (2015) Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C−S cross-coupling. ChemCatChem 7:3307–3315. https://doi.org/10.1002/CCTC.201500565

    Article  CAS  Google Scholar 

  138. Tamoradi T, Masoumeh Mousavi S, Mohammadi M (2020) C−C and C−S coupling catalyzed by supported Cu(II) on nano CoFe 2 O 4. ChemistrySelect 5:5077–5081. https://doi.org/10.1002/slct.202000084

    Article  CAS  Google Scholar 

  139. Samanta PK, Biswas R, Bhaduri SN et al (2021) Copper(0) nanoparticles immobilized on SBA-15: a versatile recyclable heterogeneous catalyst for solvent and ligand free C–S coupling reaction from diverse substrates. Microporous Mesoporous Mater 323:111198. https://doi.org/10.1016/J.MICROMESO.2021.111198

    Article  CAS  Google Scholar 

  140. Zhou Y, Zhao J (2022) Glaser coupling- and Sonogashira coupling-control over CuxO nanoparticles/carbon nanotube by switching visible-light off and on. Appl Catal B 300:120721. https://doi.org/10.1016/j.apcatb.2021.120721

    Article  CAS  Google Scholar 

  141. Wang G, Hao P, Chang Y et al (2022) Copper and palladium bimetallic sub-nanoparticles were stabilized on modified polyaniline materials as an efficient catalyst to promote C-C coupling reactions in aqueous solution. Nanoscale 14:2256–2265. https://doi.org/10.1039/D1NR07640J

    Article  CAS  PubMed  Google Scholar 

  142. Ge X, Ge M, Chen X et al (2020) Facile synthesis of hydrochar supported copper nanocatalyst for Ullmann C N coupling reaction in water. Molecular Catalysis 484:110726. https://doi.org/10.1016/j.mcat.2019.110726

    Article  CAS  Google Scholar 

  143. Xu HJ, Liang YF, Zhou XF, Feng YS (2012) Efficient recyclable CuI-nanoparticle-catalyzed S-arylation of thiols with aryl halides on water under mild conditions. Org Biomol Chem 10:2562–2568. https://doi.org/10.1039/C2OB06795A

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Vice Chancellor, PP Savani University, for knowledge support, guidance and financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

RP and VP contributed to study conceptualization and review and editing; RP contributed to literature review and original draft writing and supervised the study; MP and RP contributed to graphical illustration and software; and RP, SB and VP contributed to final draft. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Rakshit Pathak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, R., Punetha, V.D., Bhatt, S. et al. A review on copper-based nanoparticles as a catalyst: synthesis and applications in coupling reactions. J Mater Sci 59, 6169–6205 (2024). https://doi.org/10.1007/s10853-024-09546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09546-z

Navigation