Skip to main content

Advertisement

Log in

Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The investigation of inexpensive, effective, environmentally friendly next-generation energy storage devices is an urgent task due to the discontinuities of new generation energy that hinder their further widely application. Among the multitudinous explored energy storage devices, supercapacitors have been regarded as the most potential energy storage systems thanks to their distinctive features of ultralong cycling lifespan, ultrafast charge/discharge process, and high power density compared with batteries and conventional capacitors. Nevertheless, the existing defect of low energy density has always been a bottleneck problem to their long-term development and widespread applications. Meanwhile, the electrodes are the core component in supercapacitors, determining the electrochemical performance directly. Consequently, transition metal oxides were chosen as the promoting materials to design and fabricate appropriately and rationally act as supercapacitor electrodes to harvest the outstanding electrochemical performance of both high energy and power density simultaneously. Here, we summarized the recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors, including zero-dimensional nanostructures (nanospheres, nanocrystals, nanoparticles), one-dimensional nanostructures (nanorods, nanowires and nanotubes), two-dimensional nanostructures (nanoflakes, nanoplatelets), three-dimensional nanostructures (spherical structure, hollow structure, flower-like structure, honeycomb structure, mesoporous structure), and the corresponding supercapacitors electrochemical performance, expecting to make a thorough inquiry of the relationship between structure and property for highlighting the route to design and synthesis high-performance transition metal oxide-based supercapacitor electrodes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hou CX, Wang B, Murugadoss V, Vupputuri S, Chao YF, Guo ZH, Wang CY, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30. https://doi.org/10.30919/es8d1128

    Article  CAS  Google Scholar 

  2. Boufas M, Guellati O, Harat A, Momodu D, Dangbegnon J, Manyala N, Guerioune M (2020) Optical and electrochemical properties of iron oxide and hydroxide nanofibers synthesized using new template-free hydrothermal method. J Nanostruct Chem 10(4):275–288

    Article  CAS  Google Scholar 

  3. Rita A, Sivakumar A, Dhas SSJ, Dhas SAMB (2020) Structural, optical and magnetic properties of silver oxide (AgO) nanoparticles at shocked conditions. J Nanostruct Chem 10(4):309–316

    Article  Google Scholar 

  4. Soleimani Alavijeh M, Kefayati H, Nozad Golikand A, Shariati S (2019) Synthesis and characterization of epoxy/graphite/nano-copper nanocomposite for the fabrication of bipolar plate for PEMFCs. J Nanostruct Chem 9(1):11–18

    Article  CAS  Google Scholar 

  5. Xiong CY, Yang Q, Dang WH, Li MR, Li BB, Su J, Liu Y, Zhao W, Duan C, Dai L, Xu YJ, Ni YH (2020) Fabrication of eco-friendly carbon microtubes @ nitrogen-doped reduced graphene oxide hybrid as an excellent carbonaceous scaffold to load MnO2 nanowall (PANI nanorod) as bifunctional material for high-performance supercapacitor and oxygen reduction reaction catalyst. J Power Sources 447:227387

  6. Patil SS, Bhat TS, Teli AM, Beknalkar SA, Dhavale SB, Faras MM, Karanjkar MM, Patil PS (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51. https://doi.org/10.30919/es8d1140

    Article  CAS  Google Scholar 

  7. Dong H, Li YY, Chai H, Cao Y, Chen X (2019) Hydrothermal synthesis of CuCoS nano-structure and n-doped graphene for high-24 performance aqueous asymmetric supercapacitors. ES Energy Environ 4:19–26. https://doi.org/10.30919/esee8c221

    Article  Google Scholar 

  8. Hou Y, Wang J, Liu JQ, Hou CX, Xiu ZH, Fan YQ, Zhao LL, Zhai YJ, Li HY, Zeng J, Gao X, Zhou S, Li DW, Li Y, Dang F, Liang K, Chen P, Li CM, Zhao DY, Kong B (2019) Interfacial super-assembled porous CeO2/C frameworks featuring efficient and sensitive decomposing Li2O2 for smart Li-O2 batteries. Adv Energy Mater 9(40):1901751

    Article  CAS  Google Scholar 

  9. Sun L, Shi ZC, He BL, Wang HL, Liu S, Huang MH, Shi J, Dastan D, Wang H (2021) Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting for advanced energy storage capacitors. Adv Funct Mater 31(35):2100280

    Article  CAS  Google Scholar 

  10. Acharya J, Ko TH, Seo MK, Khil MS, Kim HY, Kim BS (2020) Engineering the hierarchical heterostructures of Zn–Ni–Co nanoneedles arrays@Co–Ni-LDH nanosheets core–sheath electrodes for a hybrid asymmetric supercapacitor with high energy density and excellent cyclic stability. ACS Appl Energy Mater 3(8):7383–7396

    Article  CAS  Google Scholar 

  11. Du W, Wang XN, Zhan J, Sun XQ, Kang LT, Jiang FY, Zhang XY, Shao Q, Dong MY, Liu H, Murugadoss V, Guo ZH (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915

    Article  CAS  Google Scholar 

  12. Hou CX, Oaki Y, Hosono E, Lin H, Imai H, Fan YQ, Dang F (2016) Bio-inspired synthesis of xLi2MnO3-(1–x)LiNi0.33Co0.33Mn0.33O2 lithium-rich layered cathode materials. Mater Design 109:718–725

    Article  CAS  Google Scholar 

  13. Adole VA, Pawar TB, Koli PB, Jagdale BS (2019) Exploration of catalytic performance of nano-La2O3 as an efficient catalyst for dihydropyrimidinone/thione synthesis and gas sensing. J Nanostruct Chem 9(1):61–76

    Article  CAS  Google Scholar 

  14. Gao Y, Zhang J, Zhang Z, Li Z, Xiong Q, Deng L, Zhou Q, Meng L, Du Y, Zuo Y, Yu Y, Lan Z, Gao P (2021) Plasmon-enhanced perovskite solar cells with efficiency beyond 21%: the asynchronous synergistic effect of water and gold nanorods. ChemPlusChem 86(2):291–297

    Article  CAS  Google Scholar 

  15. Sayyed SG, Mahadik MA, Shaikh AV, Jang JS, Pathan HM (2019) Nano-metal oxide-based supercapacitor via electrochemical deposition. ES Energy Environ 3:25–44. https://doi.org/10.30919/esee8c211

    Article  Google Scholar 

  16. Lin CL, Qiao ZQ, Zhang JX, Tang JJ, Zhang ZZ, Guo ZH (2019) Highly efficient fluoride adsorption in domestic water with RGO/Ag nanomaterials. ES Energy Environ 4:27–33. https://doi.org/10.30919/esee8c217

    Article  Google Scholar 

  17. Luo ZH, Liu L, Yang XY, Luo X, Bi P, Fu ZJ, Pang AM, Li W, Yi Y (2020) Revealing the charge storage mechanism of nickel oxide electrochromic supercapacitors. ACS Appl Mater Interfaces 12(35):39098–39107

    Article  CAS  Google Scholar 

  18. Yan J, Wei T, Qiao WM, Shao B, Zhao QK, Zhang LJ, Fan ZJ (2010) Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim Acta 55(23):6973–6978

    Article  CAS  Google Scholar 

  19. Pan C, Gu HT, Dong L (2016) Synthesis and electrochemical performance of polyaniline @MnO2/graphene ternary composites for electrochemical supercapacitors. J Power Sources 303:175–181

    Article  CAS  Google Scholar 

  20. Raghavendra KVG, Vinoth R, Zeb K, Muralee Gopi CVV, Sambasivam S, Kummara MR, Obaidat IM, Kim HJ (2020) An intuitive review of supercapacitors with recent progress and novel device applications. J Energy Storage 31:101652

  21. Shi J, Jiang BL, Li C, Yan FY, Wang D, Yang C, Wan JJ (2020) Review of transition metal nitrides and transition metal nitrides/carbon nanocomposites for supercapacitor electrodes. Mater Chem Phys 245:122533

  22. Wu D, Yu HY, Hou CX, Du W, Song XH, Shi TS, Sun XQ, Wang B (2020) NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor. J Mater Sci 55(29):14431–14446

    Article  CAS  Google Scholar 

  23. Yu HT, Ge X, Bulin C, Xing RG, Li RH, Xin GX, Zhang BW (2017) Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application. Electrochim Acta 253:239–247

    Article  CAS  Google Scholar 

  24. Yan J, Wang Q, Wei T, Fan ZJ (2014) Recent Advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4(4):1300816

    Article  Google Scholar 

  25. Yang XX, Chen X, Cao HL, Li C, Wang LL, Wu YL, Wang CZ, Li Y (2020) Rational synthesis of Cu7Se4-CuxCo1-xSe2 double-shell hollow nanospheres for high performance supercapacitors. J Power Sources 480:228741

  26. Zhai SL, Wei L, Karahan HE, Chen XC, Wang CJ, Zhang XS, Chen JS, Wang X, Chen Y (2019) 2D materials for 1D electrochemical energy storage devices. Energy Storage Mater 19:102–123

    Article  Google Scholar 

  27. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29(21):1605336

    Article  Google Scholar 

  28. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4(7):1600539

    Article  Google Scholar 

  29. Wu NN, Bai X, Pan D, Dong BB, We RB, Naik N, Patil RR, Guo ZH (2020) Recent advances of asymmetric supercapacitors. Adv Mater Interfaces 8(1):2001710

    Article  Google Scholar 

  30. Zhang YP, Shen YH, Xie XB, Du W, Kang LT, Wang Y, Sun XQ, Li ZH, Wang B (2020) One-step synthesis of the reduced graphene oxide@NiO composites for supercapacitor electrodes by electrode-assisted plasma electrolysis. Mater Des 196:109111

  31. Chen J, Huang YK, Ma XY, Lei Y (2017) Functional self-healing materials and their potential applications in biomedical engineering. Adv Compos Hybrid Mater 1(1):94–113. https://doi.org/10.1007/s42114-017-0009-y

    Article  CAS  Google Scholar 

  32. Du W, Wang XN, Sun XQ, Zhan J, Zhang HD, Zhao XJ (2018) Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes. J Electroanal Chem 827:213–220

    Article  CAS  Google Scholar 

  33. Li YM, Han X, Yi TF, He YB, Li XF (2019) Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J Energy Chem 31:54–78

    Article  Google Scholar 

  34. Bi ZH, Kong QQ, Cao YF, Sun GH, Su FY, Wei XX, Li XM, Ahmad A, Xie LJ, Chen CM (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045

    Article  CAS  Google Scholar 

  35. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J 403:126352

  36. Jiang XJ, Yu W, Wang H, Xu HY, Liu XZ, Ding Y (2016) Enhancing the performance of MnO by double carbon modification for advanced lithium-ion battery anodes. J Mater Chem A 4(3):920–925

    Article  CAS  Google Scholar 

  37. Chen J, Li C, Shi G (2013) Graphene materials for electrochemical capacitors. J Phys Chem Lett 4(8):1244–1253

    Article  CAS  Google Scholar 

  38. Pan MH, Zeng WL, Quan HY, Cui JM, Guo Y, Wang YY, Chen DZ (2020) Low-crystalline Ni/Co-oxyhydroxides nanoarrays on carbon cloth with high mass loading and hierarchical structure as cathode for supercapacitors. Electrochim Acta 357:108018

  39. Tian HD, Cheng RR, Lin MH, Li P, Lv YH, Ran SL (2020) Oxygen-vacancy-rich ultrathin BiOBr nonosheets for high-performance supercapacitor electrodes. Inorg Chem Commun 118:228741

  40. Li QW, Chen Y, Zhang JB, Tian WF, Wang L, Ren ZG, Ren XC, Li XX, Gao B, Peng X, Chu PK, Huo KF (2018) Spatially confined synthesis of vanadium nitride nanodots intercalated carbon nanosheets with ultrahigh volumetric capacitance and long life for flexible supercapacitors. Nano Energy 51:128–136

    Article  CAS  Google Scholar 

  41. Park CM, Kim YM, Kim KH, Wang D, Su C, Yoon Y (2019) Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: a mini review. Chemosphere 221:392–402

    Article  CAS  Google Scholar 

  42. Tian YD, Hu X, Wang YH, Li C, Wu XL (2019) Fe2O3 Nanoparticles decorated on graphene-carbon nanotubes conductive networks for boosting the energy density of all-solid-state asymmetric supercapacitor. ACS Sustainable Chem Eng 7(10):9211–9219

    Article  CAS  Google Scholar 

  43. Chen JZ, Xu JL, Zhou S, Zhao N, Wong CP (2015) Template-grown graphene/porous Fe2O3 nanocomposite: a high-performance anode material for pseudocapacitors. Nano Energy 15:719–728

    Article  CAS  Google Scholar 

  44. Liu YX, Zhou ZX, Zhang SP, Luo WH, Zhang GF (2018) Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors. Appl Surf Sci 442:711–719

    Article  CAS  Google Scholar 

  45. Babakhani B, Ivey DG (2010) Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J Power Sources 195(7):2110–2117

    Article  CAS  Google Scholar 

  46. Gao XC, Bi JQ, Wang WL, Liu HZ, Chen YF, Hao XX, Sun XN, Liu R (2020) Morphology-controllable synthesis of NiFe2O4 growing on graphene nanosheets as advanced electrode material for high performance supercapacitors. J Alloys Compd 826:154088

  47. Chen X, Cheng M, Chen D, Wang R (2016) Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl Mater Interfaces 8(6):3892–3900

    Article  CAS  Google Scholar 

  48. Anitha T, Reddy AE, Vinodh R, Kim HJ, Cho YR (2020) Preparation and characterization of CoWO4/CoMn2O4 nanoflakes composites on Ni foam for electrochemical supercapacitor applications. J Energy Storage 30:101483

  49. Zhang P, He HW (2020) Rational rope-like CuCo2O4 nanosheets directly on Ni foam as multifunctional electrodes for supercapacitor and oxygen evolution reaction. J Alloys Compd 826:153993

  50. Patil SJ, Chodankar NR, Pujari RB, Han YK, Lee DW (2020) Core-shell hetero-nanostructured 1D transition metal polyphosphates decorated 2D bimetallic layered double hydroxide for sustainable hybrid supercapacitor. J Power Sources 466:228286

  51. Cui MJ, Meng XK (2020) Overview of transition metal-based composite materials for supercapacitor electrodes. Nanoscale Adv 2(12):5516–5528

    Article  CAS  Google Scholar 

  52. Liu JP, Zhang JX, Tang JJ, Pu LY, Xue YL, Lu MQ, Xu L, Guo ZH (2020) Polydimethylsiloxane resin nanocomposite coating with alternating multilayer structure for corrosion protection performance. ES Mater Manuf 10:29–38. https://doi.org/10.30919/esmm5f912

    Article  CAS  Google Scholar 

  53. Hou CX, Tai ZX, Zhao LL, Zhai YJ, Hou Y, Fan YQ, Dang F, Wang J, Liu HK (2018) High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A 6(20):9723–9736

    Article  CAS  Google Scholar 

  54. Hou CX, Wang J, Du W, Wang JC, Du Y, Liu CT, Zhang JX, Hou H, Dang F, Zhao LL, Guo ZH (2019) One-pot synthesized molybdenum dioxide–molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J Mater Chem A 7(22):13460–13472

    Article  CAS  Google Scholar 

  55. Hou C, Wang J, Zhang W, Li J, Zhang R, Zhou J, Fan Y, Li D, Dang F, Liu J, Li Y, Liang K, Kong B (2020) Interfacial superassembly of grape-Like MnO-Ni@C frameworks for superior lithium storage. ACS Appl Mater Interfaces 12(12):13770–13780

    Article  CAS  Google Scholar 

  56. Hou C, Yang W, Xie X, Sun X, Wang J, Naik N, Pan D, Mai X, Guo Z, Dang F, Du W (2021) Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J Colloid Interface Sci 596:396–407

    Article  CAS  Google Scholar 

  57. Akbarpour H, Rashidi A, Mirjalili M, Nazari A (2019) Comparison of the conductive properties of polyester/viscose fabric treated with Cu nanoparticle and MWCNTs. J Nanostruct Chem 9(4):335–348

    Article  CAS  Google Scholar 

  58. Alim SA, Rao TS, Miditana SR, Lakshmi KVD (2020) Efficient and recyclable visible light-active nickel–phosphorus co-doped TiO2 nanocatalysts for the abatement of methylene blue dye. J Nanostruct Chem 10(3):211–226

    Article  Google Scholar 

  59. Bhakta AK, Kumari S, Hussain S, Detriche S, Delhalle J, Mekhalif Z (2019) Differently substituted aniline functionalized MWCNTs to anchor oxides of Bi and Ni nanoparticles. J Nanostruct Chem 9(4):299–314

    Article  CAS  Google Scholar 

  60. Bharti P, Singh B, Dey RK (2019) Process optimization of biodiesel production catalyzed by CaO nanocatalyst using response surface methodology. J Nanostruct Chem 9(4):269–280

    Article  Google Scholar 

  61. Jamzad M, Kamari Bidkorpeh M (2020) Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J Nanostruct Chem 10(3):193–201

    Article  CAS  Google Scholar 

  62. Mowlika V, Sivakumar A, Martin Britto Dhas SA, Naveen CS, Phani AR, Robert R (2020) Shock wave-induced switchable magnetic phase transition behaviour of ZnFe2O4 ferrite nanoparticles. J Nanostruct Chem 10(3):203–209

    Article  CAS  Google Scholar 

  63. Patil BB, Pawar AD, Bhosale DB, Ghodake JS, Thorat JB, Shinde TJ (2019) Effect of La3+ substitution on structural and magnetic parameters of Ni–Cu–Zn nano-ferrites. J Nanostruct Chem 9(2):119–128

    Article  Google Scholar 

  64. Xie PT, Liu Y, Feng M, Niu M, Liu CZ, Wu NN, Sui KY, Patil RR, Pan D, Guo ZH, Fan RH (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4(1):173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  65. Xie XB, Wang BL, Wang YK, Ni C, Sun XQ, Du W (2022) Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: a review. Chem Eng J 428:131160

  66. Xie XB, Ni C, Lin ZH, Wu D, Sun XQ, Zhang YP, Wang B, Du W (2020) Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application. Chem Eng J 396:125205

  67. Cheng CB, Jiang YL, Sun X, Shen JX, Wang TL, Fan GH, Fan RH (2020) Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites. Compos Part A-Appl S 130:105753

  68. Hou CX, Fan GH, Xie XB, Zhang XY, Sun XQ, Zhang YP, Wang B, Du W, Fan RH (2021) TiN/Al2O3 binary ceramics for negative permittivity metacomposites at kHz frequencies. J Alloys Compd 855:157499

  69. Jain B, Hashmi A, Sanwaria S, Singh AK, Susan MABH, Singh A (2020) Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv Compos Hybrid Mater 3(2):231–242. https://doi.org/10.1007/s42114-020-00153-5

    Article  CAS  Google Scholar 

  70. Ahmad J, Majid K (2018) In-situ synthesis of visible-light responsive Ag2O/graphene oxide nanocomposites and effect of graphene oxide content on its photocatalytic activity. Adv Compos Hybrid Mater 1(2):374–388. https://doi.org/10.1007/s42114-018-0025-6

    Article  CAS  Google Scholar 

  71. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019:1021368

    Article  CAS  Google Scholar 

  72. Hou PK, Li R, Li QF, Lu N, Wang KJ, Liu ML, Cheng X, Shah S (2018) Novel superhydrophobic cement-based materials achieved by construction of hierarchical surface structure with FAS/SiO2 hybrid nanocomposites. ES Mater Manuf 1:57–66. https://doi.org/10.30919/esmm5f125

    Article  Google Scholar 

  73. Tian YR, Yang X, Nautiyal A, Zheng YY, Guo QP, Luo JJ, Zhang XY (2019) One-step microwave synthesis of MoS2/MoO3@graphite nanocomposite as an excellent electrode material for supercapacitors. Adv Compos Hybrid Mater 2(1):151–161. https://doi.org/10.1007/s42114-019-0075-4

    Article  CAS  Google Scholar 

  74. Hu MX, Lv Q, Lv RT (2019) Controllable synthesis of nitrogen-doped graphene oxide by tablet-sintering for efficient lithium/sodium-ion storage. ES Energy Environ 3:45–54. https://doi.org/10.30919/esee8c212

    Article  Google Scholar 

  75. Wang Y, Li N, Hou CX, He B, Li JJ, Dang F, Wang J, Fan YQ (2020) Nanowires embedded porous TiO2@C nanocomposite anodes for enhanced stable lithium and sodium ion battery performance. Ceram Int 46(7):9119–9128

    Article  CAS  Google Scholar 

  76. Ma RW, Cheng CB, Qu YP, Fan RH (2021) Tailorable negative permittivity of graphene-carbon nanotube/copper calcium titanate metacomposites. Ceram Int 47(7):9971–9978

    Article  CAS  Google Scholar 

  77. Ding B, Wu XL (2020) Transition metal oxides anchored on graphene/carbon nanotubes conductive network as both the negative and positive electrodes for asymmetric supercapacitor. J Alloys Compd 842:155838

  78. Nunes WG, Vicentini R,Freitas BGA, Oliveira FER, Marque AMP, Filho RM, Doubek G, Da Silva LM, Zanin H (2020) Pseudo-capacitive behavior of multi-walled carbon nanotubes decorated with nickel and manganese hydroxides nanoparticles. J Energy Storage 31:101583

  79. Barmi A, Aghazadeh M, Moosavian MA, Golikand AN (2020) Binder-free high-performance Fe3O4 fine particles in situ grown onto N-doped porous graphene layers co-embedded into porous substrate as supercapacitor electrode. J Mater Sci: Mater Electron 31(18):15198–15217

    CAS  Google Scholar 

  80. Suthakaran S, Dhanapandian S, Krishnakumar N, Ponpandian N (2020) Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance. J Phys Chem Solids 141:109407

  81. Asen P, Haghighi M, Shahrokhian S, Taghavinia N (2019) One step synthesis of SnS2-SnO2 nano-heterostructured as an electrode material for supercapacitor applications. J Alloys Compd 782:38–50

    Article  CAS  Google Scholar 

  82. Trindade TNS, Silva LA (2018) Cd-doped SnO2/CdS heterostructures for efficient application in photocatalytic reforming of glycerol to produce hydrogen under visible light irradiation. J Alloys Compd 735:400–408

    Article  CAS  Google Scholar 

  83. Lin CL, Liu BY, Pu LY, Sun Y, Xue YL, Chang ML, Li X, Lu XY, Chen R, Zhang JX (2021) Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light. Adv Compos Hybrid Mater 4(2):339–349. https://doi.org/10.1007/s42114-021-00228-x

    Article  CAS  Google Scholar 

  84. Asaithambi S, Sakthivel P, Karuppaiah M, Sankar GU, Balamurugan K, Yuvakkumar R, Thambidurai M, Ravi G (2020) Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J Energy Storage 31:101530

  85. Jayakumar A, Antony RP, Wang R, Lee JM (2017) MOF-derived hollow cage Nix Co3-x O4 and their synergy with graphene for outstanding supercapacitors. Small 13(11):1603012

    Article  Google Scholar 

  86. Chen SR, Xue M, Li YQ, Pan Y, Zhu LK, Qiu SL (2015) Rational design and synthesis of NixCo3−xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors. J Mater Chem A 3(40):20145–20152

    Article  CAS  Google Scholar 

  87. Gong LT, Xu M, Ma RP, Han YP, Xu HB, Shi G (2020) High-performance supercapacitor based on MOF derived porous NiCo2O4 nanoparticle. Sci China: Technol Sci 63(8):1470–1477

    Article  CAS  Google Scholar 

  88. Nie RR, Wang QL, Sun P, Wang RJ, Yuan Q, Wang XF (2018) Pulsed laser deposition of NiSe2 film on carbon nanotubes for high-performance supercapacitor. Eng Sci 6:22–29. https://doi.org/10.30919/es8d668

    Article  Google Scholar 

  89. Zhang X, Li X, Sun X, Zhang X, Kang L, Zhou Y, Yuan H, Jiang F, Yu Z, Hou C (2021) Straightforward preparation of Na2(TiO)SiO4 hollow nanotubes as anodes for ultralong cycle life lithium ion battery. Dalton Trans 50(7):2521–2529

    Article  CAS  Google Scholar 

  90. Sun K, Qin JY, Wang ZX, An Y, Li XF, Dong BB, Wu XF, Guo ZH, Fan RH (2020) Polyvinyl alcohol/carbon fibers composites with tunable negative permittivity behavior. Surf Interfaces 21:100735

  91. Hou CX, Liu GF, Dang F, Zhang ZD, Chen J (2017) Effect of strontium substitution on microstructure and magnetic properties of electrospinning BaFe12O19 nanofibers. J Wuhan Univ Technol Mater Sci Ed 32(4):871–874

    Article  CAS  Google Scholar 

  92. Zhang Q, Wang X, Pan Z, Sun J, Zhao J, Zhang J, Zhang C, Tang L, Luo J, Song B, Zhang Z, Lu W, Li Q, Zhang Y, Yao Y (2017) Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett 17(4):2719–2726

    Article  CAS  Google Scholar 

  93. Mao XQ, Wang Y, Xiang CL, Zhan D, Zhang HZ, Yan EH, Xu F, Hu XB, Zhang J, Sun LX, Zou YJ (2020) Core-shell structured CuCo2S4@CoMoO4 nanorods for advanced electrode materials. J Alloys Compd 844:156133

  94. Chen MY, Li WH, Ma WH, Qi PC, Yang WJ, Wang SY, Lu Y, Tang YW (2019) Remarkable enhancement of the electrochemical properties of Co3O4 nanowire arrays by in situ surface derivatization of an amorphous phosphate shell. J Mater Chem A 7(4):1678–1686

    Article  CAS  Google Scholar 

  95. Cheng Y, Zhang Y, Jiang H, Dong X, Zheng J, Meng C (2020) Synthesis of amorphous cobalt silicate nanobelts@manganese silicate core-shell structures as enhanced electrode for high-performance hybrid supercapacitors. J Colloid Interface Sci 561:762–771

    Article  CAS  Google Scholar 

  96. Wei HG, Li A, Kong DS, Li ZZ, CuiDP LT, Dong BB, Guo ZH (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4(1):86–95. https://doi.org/10.1007/s42114-020-00201-0

    Article  CAS  Google Scholar 

  97. James JD, Ludwick JM, Wheeler ML, Oyen ML (2020) Compressive failure of hydrogel spheres. J Mater Res 35(10):1227–1235

    Article  CAS  Google Scholar 

  98. Hao P, Tian J, Sang Y, Tuan CC, Cui G, Shi X, Wong CP, Tang B, Liu H (2016) 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability. Nanoscale 8(36):16292–16301

    Article  CAS  Google Scholar 

  99. Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H (2017) High-performance 2.6 v aqueous asymmetric supercapacitors based on in situ formed Na0.5 MnO2 nanosheet assembled nanowall arrays. Adv Mater 29(32):1700804

  100. Li ZH, Duan HH, Shao MF, Li JB, O’Hare D, Wei M, Wang ZL (2018) Ordered-vacancy-induced cation intercalation into layered double hydroxides: a general approach for high-performance supercapacitors. Chem 4(9):2168–2179

    Article  CAS  Google Scholar 

  101. Guo W, Yu C, Zhao CT, Wang Z, Li SF, Yu JH, Tan XY, Xie YY, Yang L, Huang HL, Fu R, Qiu JS (2020) Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications. Energy Storage Mater 31:172–180

    Article  Google Scholar 

  102. Khalid M, Honorato AMB, Varela H, Dai LM (2018) Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy 45:127–135

    Article  CAS  Google Scholar 

  103. Wang YZ, Liu YX, Wang C, Liu H, Zhang JX, Lin J, Fan JC, Ding T, Ryu JE, Guo ZH (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Eng Sci 9:50–59. https://doi.org/10.30919/es8d903

    Article  CAS  Google Scholar 

  104. Zhu ZH, Wang ZB, Yan ZB, Zhou RQ, Wang ZP, Chen CN (2018) Facile synthesis of MOF-derived porous spinel zinc manganese oxide/carbon nanorods hybrid materials for supercapacitor application. Ceram Int 44(16):20163–20169

    Article  CAS  Google Scholar 

  105. Hou CX, Liu T, Fan YQ, Imai H, Fan RH, Lin H, He QL, Wang N, Dang F, Guo ZH (2016) Selectively assembled 2D microarrays from binary nanocrystals. Cryst Eng Comm 18(17):3008–3014

    Article  CAS  Google Scholar 

  106. Zhang X, Li X, Jiang F, Du W, Hou C, Xu Z, Zhu L, Wang Z, Liu H, Zhou W, Yuan H (2020) Improved electrochemical performance of 2D accordion-like MnV2O6 nanosheets as anode materials for Li-ion batteries. Dalton Trans 49(6):1794–1802

    Article  CAS  Google Scholar 

  107. Wang JF, Liu YY, Fan ZM, Wang W, Wang B, Guo ZH (2019) Ink-based 3D printing technologies for graphene-based materials: a review. Adv Compos Hybrid Mater 2(1):1–33. https://doi.org/10.1007/s42114-018-0067-9

    Article  CAS  Google Scholar 

  108. Li GQ, Ji YS, Zuo DY, Xu J, Zhang HW (2019) Carbon electrodes with double conductive networks for high-performance electrical double-layer capacitors. Adv Compos Hybrid Mater 2(3):456–461. https://doi.org/10.1007/s42114-019-00109-4

    Article  CAS  Google Scholar 

  109. Xu MM, Huang YQ, Chen RW, Huang QB, Yang Y, Zhong LX, Ren JL, Wang XH (2021) Green conversion of ganoderma lucidum residues to electrode materials for supercapacitors. Adv Compos Hybrid Mater in press. https://doi.org/10.1007/s42114-021-00271-8

    Article  Google Scholar 

  110. Li T, Lv Y, Su J, Wang Y, Yang Q, Zhang Y, Zhou J, Xu L, Sun D, Tang Y (2017) Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofibers for high-performance oxygen evolution reaction. Adv Sci (Weinh) 4(11):1700226

    Article  Google Scholar 

  111. Yang QH, Li ZH, Zhang RK, Zhou L, Shao MF, Wei M (2017) Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy 41:408–416

    Article  CAS  Google Scholar 

  112. Ran FT, Yang XB, Shao L (2018) Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv Compos Hybrid Mater 1(1):32–55. https://doi.org/10.1007/s42114-017-0021-2

    Article  CAS  Google Scholar 

  113. Zhang JX, Zhang WR, Wei LP, Pu LY, Liu JP, Liu H, Li YC, Fan JC, Ding T, Guo ZH (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol Mater Eng 304(12):1900374

    Article  CAS  Google Scholar 

  114. Zhang ZZ, Zhang JX, Li SY, Liu JP, Dong MY, Li YC, Lu N, Lei SY, Tang JJ, Fan JC, Guo ZH (2019) Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos Part B Eng 176:107338

  115. Gong YJ, An JN, Dai HH, Chen RY, Yu CY, Chen Q, Zhou JY, Sun GZ, Huang W (2020) Hierarchically tubular architectures composed of vertical carbon nanosheets embedded with oxygen-vacancy enriched hollow Co3O4 nanoparticles for improved energy storage. Electrochim Acta 356:136843

  116. Kumar R, Youssry SM, Soe, HM, Abdel-Galeil MM, Kawamura G, Matsuda A (2020) Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. J Energy Storage 30:101539

  117. Guo Y, Wang DD, Bai TT, Liu H, Zheng YJ, Liu CT, Shen CY (2021) Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv Compos Hybrid Mater in press. https://doi.org/10.1007/s42114-021-00279-0

    Article  Google Scholar 

  118. Askari MB, Salarizadeh P (2020) Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. Int J Hydrogen Energy 45(51):27482–27491

    Article  CAS  Google Scholar 

  119. Tong H, Meng Q, Liu J, Li TT, Gong DX, Xiao JP, Shen LF, Zhang TF, Bing D, Zhang XG (2020) Cross-linked NiCo2O4 nanosheets with low crystallinity and rich oxygen vacancies for asymmetric supercapacitors. J Alloys Compd 822:153689

  120. Li YL, Wang SC, Wu JK, Ma JF, Cui LH, Lu H, Sheng ZL (2020) One-step hydrothermal synthesis of hybrid core-shell Co3O4@SnO2–SnO for supercapacitor electrodes. Ceram Int 46(10):15793–15800

    Article  CAS  Google Scholar 

  121. Du W, Bai YL, Xu JQ, Zhao HB, Zhang L, Li XF, Zhang JJ (2018) Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J Power Sources 402:281–295

    Article  CAS  Google Scholar 

  122. Xia H, Zhang J, Yang Z, Guo S, Guo S, Xu Q (2017) 2D MOF Nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nanomicro Lett 9(4):43

    Google Scholar 

  123. Deng T, Shi X, Zhang W, Wang Z, Zheng W (2020) In-plane assembly of distinctive 2D MOFs with optimum supercapacitive performance. Iscience 23(6):101220

  124. Beka LG, Bu XR, Li X, Wang XL, Han CY, Liu WH (2019) A 2D metal–organic framework/reduced graphene oxide heterostructure for supercapacitor application. RSC Adv 9(62):36123–36135

    Article  CAS  Google Scholar 

  125. Hou Y, Hou CX, Zhai YJ, Li HY, Chen TT, Fan YQ, Wang HC, Wang WL (2019) Enhancing the electrocatalytic activity of 2D micro-assembly Co3O4 nanosheets for Li-O2 batteries by tuning oxygen vacancies and Co3+/Co2+ ratio. Electrochim Acta 324:134884

  126. Hou CX, Hou Y, Fan YQ, Zhai YJ, Wang Y, Sun ZY, Fan RH, Dang F, Wang J (2018) Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries. J Mater Chem A 6(16):6967–6976

    Article  CAS  Google Scholar 

  127. Wang XZ, Zeng XF, Cao DP (2018) Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/ polyaniline composites as high performance supercapacitor materials. Eng Sci 1:55–63. https://doi.org/10.30919/es.180325

    Article  Google Scholar 

  128. Li XM, Zhao W, Yin R, Huang XS, Qian L (2018) A highly porous polyaniline-graphene composite used for electrochemical supercapacitors. Eng Sci 3:89–95. https://doi.org/10.30919/es8d743

    Article  Google Scholar 

  129. Xie X, Zhang B, Wang Q, Zhao X, Wu D, Wu H, Sun X, Hou C, Yang X, Yu R, Zhang S, Murugadoss V, Du W (2021) Efficient microwave absorber and supercapacitors derived from puffed-rice-based biomass carbon: effects of activating temperature. J Colloid Interface Sci 594:290–303

    Article  CAS  Google Scholar 

  130. Khirade PP (2019) Structural, microstructural and magnetic properties of sol–gel-synthesized novel BaZrO3–CoFe2O4 nanocomposite. J Nanostruct Chem 9(3):163–173

    Article  CAS  Google Scholar 

  131. Rajendran K, Karuppasamy G (2020) Composites of π-stacking materials with low-dimensional metal oxide nanoblends for photocatalytic hydrogen production. J Nanostruct Chem 10(2):169–177

    Article  CAS  Google Scholar 

  132. Rita A, Sivakumar A, Martin Britto Dhas SA (2019) Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. J Nanostruct Chem 9(3):225–230

    Article  CAS  Google Scholar 

  133. Yu L, Hu H, Wu HB, Lou XW (2017) Complex hollow nanostructures: synthesis and energy-related applications. Adv Mater 29(15):160453

  134. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects. ACS Nano 11(6):5293–5308

    Article  CAS  Google Scholar 

  135. Yu L, Wu HB, Lou XW (2017) Self-templated formation of hollow structures for electrochemical energy applications. Acc Chem Res 50(2):293–301

    Article  CAS  Google Scholar 

  136. Fan LQ, Liu GJ, Zhang CY, Wu JH, Wei YL (2015) Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. Int J Hydrogen Energy 40(32):10150–10157

    Article  CAS  Google Scholar 

  137. Wei HL, Wang XN, Zhang DM, Du W, Sun XQ, Jiang FY, Shi TS (2019) Facile synthesis of lotus seedpod-based 3D hollow porous activated carbon/manganese dioxide composite for supercapacitor electrode. J Electroanal Chem 853:113561

  138. Amiri M, Davarani SSH, Kaverlavani SM, Moosavifard S, Shamsipur M (2020) Construction of hierarchical nanoporous CuCo2V2O8 hollow spheres as a novel electrode material for high-performance asymmetric supercapacitors. Appl Surf Sci 527:146855

  139. Lu Y, Liu YB, Mo JM, Deng BL, Wang JX, Zhu YQ, Xiao XD, Xu D (2021) Construction of hierarchical structure of Co3O4 electrode based on electrospinning technique for supercapacitor. J Alloys Compd 853:157271

  140. Zou YJ, Zhang X, Liang J, Xiang CL, Chu HL, Zhang HZ, Xu F, Sun LX (2020) Encapsulation of hollow Cu2O nanocubes with Co3O4 on porous carbon for energy-storage devices. J Mater Sci Technol 55:182–189

    Article  Google Scholar 

  141. Pan JM, Sun HY, Yan XH, Zhong WQ, Shen W, Zhang YH, Cheng XN (2020) Cube Fe3O4 nanoparticles embedded in three-dimensional net porous carbon from silicon oxycarbide for high performance supercapacitor. Ceram Int 46(16):24805–24815

    Article  CAS  Google Scholar 

  142. Deng X, Zhang H, Zhang JW, Lei DS, Peng Y (2020) Synergistic effect of hierarchical nanopores in Co-doped cobalt oxide 3D flowers for electrochemical energy storage. RSC Adv 10(71):43825–43833

    Article  CAS  Google Scholar 

  143. Xiao LD, Qi HJ, Qu KQ, Shi C, Cheng Y, Sun Z, Yuan BN, Huang ZH, Pan D, Guo ZH (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4(2):306–316. https://doi.org/10.1007/s42114-021-00223-2

    Article  CAS  Google Scholar 

  144. Xiong SS, Lin XM, Liu S, Weng ST, Jiang SY, Jiao Y, Xu YC, Cheng JR (2020) Metal-organic framework derived α-Fe2O3 nano-octahedron with oxygen vacancies for realizing outstanding energy storage performance. Vacuum 182:109692

  145. Das SK, Kamila S, Satpati B, Kandasamy M, Chakraborty B, Basu S, Jena BK (2020) Hollow Mn3O4 nanospheres on graphene matrix for oxygen reduction reaction and supercapacitance applications: experimental and theoretical insight. J Power Sources 471:228465

  146. Yang XY, Xiang CL, Zou YJ, Liang J, Zhang HZ, Yan EH, Xu F, Hu XB, Cheng Q, Sun LX (2020) Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes. J Mater Sci Technol 55:223–230

    Article  Google Scholar 

  147. Zheng X, Yan X, Sun Y, Yu Y, Zhang G, Shen Y, Liang Q, Liao Q, Zhang Y (2016) Temperature-dependent electrochemical capacitive performance of the alpha-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. J Colloid Interface Sci 466:291–296

    Article  CAS  Google Scholar 

  148. Saraf M, Rajak R, Mobin SM (2019) MOF derived high surface area enabled porous Co3O4 nanoparticles for supercapacitors. ChemistrySelect 4(27):8142–8149

    Article  CAS  Google Scholar 

  149. Yu F, Pang L, Wang HX (2020) Preparation of mulberry-like RuO2 electrode material for supercapacitors. Rare Met 40(2):440–447

    Article  Google Scholar 

  150. Liao QY, Li N, Jin SX, Yang GW, Wang CX (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9(5):9310–9317

    Article  Google Scholar 

  151. Annamalai KP, Zheng XS, Gao JP, Chen TL, Tao YS (2019) Nanoporous ruthenium and manganese oxide nanoparticles/reduced graphene oxide for high-energy symmetric supercapacitors. Carbon 144:185–192

    Article  CAS  Google Scholar 

  152. Li ML, Xu WW, Wang WR, Liu YP, Cui B, Guo XH (2014) Facile synthesis of specific FeMnO3 hollow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J Power Sources 248:465–473

    Article  CAS  Google Scholar 

  153. Chen H, Hu H, Han F, Liu J, Zhang Y, Zheng Y (2020) CoMoO4/bamboo charcoal hybrid material for high-energy-density and high cycling stability supercapacitors. Dalton Trans 49(31):10799–10807

    Article  CAS  Google Scholar 

  154. Arunpandiyan S, Bharathi S, Pandikumar A, Ezhil Arasi S, Arivarasan A (2020) Structural analysis and redox additive electrolyte based supercapacitor performance of ZnO/CeO2 nanocomposite. Mater Sci Semicond Process 106:104765

  155. Liu Q, Hong XD, Zhang X, Wang W, Guo WX, Liu XY, Ye MD (2019) Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chem Eng J 356:985–993

    Article  CAS  Google Scholar 

  156. Adhikari S, Selvaraj S, Ji SH, Kim DH (2020) Encapsulation of Co3O4 nanocone arrays via ultrathin NiO for superior performance asymmetric supercapacitors. Small 16(48):2005414

    Article  CAS  Google Scholar 

  157. Zhu DH, Zhou QJ, Liang AQ, Zhou WQ, Chang YN, Li DQ, Wu J, Ye G, Xu JK, Ren Y (2020) Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors. Front Mater Sci 14(2):109–119

    Article  Google Scholar 

  158. Shen HJ, Kong XD, Zhang P, Song XL, Wang H, Zhang Y (2021) In-situ hydrothermal synthesis of δ-MnO2/soybean pod carbon and its high performance application on supercapacitor. J Alloys Compd 853:157357

  159. Yao MM, Hu ZH, Xu ZJ, Liu YF (2015) Template synthesis of 1D hierarchical hollow Co3O4 nanotubes as high performance supercapacitor materials. J Alloys Compd 644:721–728

    Article  CAS  Google Scholar 

  160. Di S, Gong LG, Zhou BB (2020) Precipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitors. Mater Chem Phys 253:123289

  161. Shao Z, Li HJ, Li MJ, Li CP, Qu CQ, Yang BH (2015) Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors. Energy 87:578–585

    Article  CAS  Google Scholar 

  162. Liu G, Ma L, Liu QM (2020) The preparation of Co3O4@MnO2 hierarchical nano-sheets for high-output potential supercapacitors. Electrochim Acta 364:137265

  163. Chen HY, Du XM, Sun JL, Wu RZ, Wang Y, Xu CJ (2021) Template-free synthesis of novel Co3O4 micro-bundles assembled with flakes for high-performance hybrid supercapacitors. Ceram Int 47(1):716–724

    Article  CAS  Google Scholar 

  164. Kumbhar VS, Kim DH (2018) Hierarchical coating of MnO2 nanosheets on ZnCo2O4 nanoflakes for enhanced electrochemical performance of asymmetric supercapacitors. Electrochim Acta 271:284–296

    Article  CAS  Google Scholar 

  165. Sun BN, He XP, Leng XJ, Jiang Y, Zhao YD, Suo H, Zhao C (2016) Flower-like polyaniline–NiO structures: a high specific capacity supercapacitor electrode material with remarkable cycling stability. RSC Adv 6(50):43959–43963

    Article  CAS  Google Scholar 

  166. Yan D, Wang W, Luo X, Chen C, Zeng Y, Zhu ZH (2018) NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem Eng J 334:864–872

    Article  CAS  Google Scholar 

  167. Aadil M, Zulfiqar S, Shahid M, Haider S, Shakir I, Warsi MF (2020) Binder free mesoporous Ag-doped Co3O4 nanosheets with outstanding cyclic stability and rate capability for advanced supercapacitor applications. J Alloys Compd 844:156062

  168. Naeem F, Naeem S, Zhao Z, Shu GQ, Zhang J, Mei YF, Huang GS (2020) Atomic layer deposition synthesized ZnO nanomembranes: a facile route towards stable supercapacitor electrode for high capacitance. J Power Sources 451:227740

  169. Wang X, Xu L, Song K, Yang R, Jia LH, Guo XF, Jing XY, Wang J (2019) Synthesis of MnCo2O4@MnCo2S4 core/shell micro-nanostructures on Ni foam for high performance asymmetric supercapacitors. Colloids Surf A 570:73–80

    Article  CAS  Google Scholar 

  170. Xuan HC, Li HS, Yang J, Liang XH, Xie ZG, Han PD, Wu YC (2020) Rational design of hierarchical core-shell structured CoMoO4@CoS composites on reduced graphene oxide for supercapacitors with enhanced electrochemical performance. Int J Hydrogen Energy 45(11):6024–6035

    Article  CAS  Google Scholar 

  171. Kumar R, Rai P, Sharma A (2016) 3D urchin-shaped Ni3(VO4)2 hollow nanospheres for high-performance asymmetric supercapacitor applications. J Mater Chem A 4(25):9822–9831

    Article  CAS  Google Scholar 

  172. Xu XW, Liu Y, Dong P, Ajayan PM, Shen JF, Ye MX (2018) Mesostructured CuCo2S4/CuCo2O4 nanoflowers as advanced electrodes for asymmetric supercapacitors. J Power Sources 400:96–103

    Article  CAS  Google Scholar 

  173. Zhang XY, Li Z, Yu ZY, Wei L, Guo X (2020) Mesoporous NiMoO4 microspheres decorated by Ag quantum dots as cathode material for asymmetric supercapacitors: enhanced interfacial conductivity and capacitive storage. Appl Surf Sci 505:144513

  174. Zhu YR, Wu ZB, Jing MJ, Hou HS, Yang YC, Zhang Y, Yang XM, Song WX, Jia XN, Ji XB (2015) Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J Mater Chem A 3(2):866–877

    Article  CAS  Google Scholar 

  175. Idrees F, Hou JH, Cao CB, Butt FK, Shakir I, Tahir M, Idrees F (2016) Template-free synthesis of highly ordered 3D-hollow hierarchical Nb2O5 superstructures as an asymmetric supercapacitor by using inorganic electrolyte. Electrochim Acta 216:332–338

    Article  CAS  Google Scholar 

  176. Li SM, Yang K, Ye PW, Ma KR, Zhang Z, Huang Q (2020) Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl Surf Sci 503:144090

Download references

Funding

This work was supported by the research program of Top Talent Project of Yantai University (1115/2220001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanxin Hou, Zhanhu Guo or Wei Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Xie, X., Yang, W. et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4, 906–924 (2021). https://doi.org/10.1007/s42114-021-00358-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00358-2

Keywords

Navigation