Skip to main content
Log in

Effect of strontium substitution on microstructure and magnetic properties of electrospinning BaFe12O19 nanofibers

  • Cementitious materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Barium ferrite micro/nano fibers were successfully prepared via the electrostatic spinning by using dimethyl formamide (DMF) as the solvent, and poly vinyl pyrrolidone (PVP) as the spinning auxiliaries. Effects of strontium substitution on the structure, morphology, and magnetic properties were investigated by scanning electron microscope (SEM), X-ray diffraction analysis (XRD), and vibration sample magnetometer (VSM). XRD patterns of the samples confirm that pure barium ferrite fibers form, and the Sr substitution makes the main peaks (110), (107), and (114) move to right slightly. Also, the FE-SEM images show that the Sr substituted fibers can keep complete fibrous morphology. Moreover, the VSM results demonstrate that the saturation magnetization can reach 56.7 emu/g when the fibers are calcined at 800°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang ZK, Cui ZL. Nanomaterials and Nanotechnology[M]. 2000, 1–126

    Google Scholar 

  2. Dai JF, Dai YL, Wang ZX, et al. Preparation and Magnetic Properties of Lanthanum-and Cobalt-codoped M-type Strontium Ferrite Nanofibres[J]. Journal of Experimental Nanoscience, 2013 (ahead-of-print): 1–9

    Google Scholar 

  3. Shi ZC, Fan RH, Yan KL, et al. Preparation of Iron Networks Hosted in Porous Alumina with Tunable Negative Permittivity and Permeability[J]. Advanced Functional Materials, 2013, 23(23): 4123–4132

    Article  Google Scholar 

  4. Shi ZC, Chen SG, Sun K, et al. Tunable Radio-frequency Negative Permittivity in Nickel-alumina “Natural” Meta-composites[J]. Applied Physics Letters, 2014, 104(25): 252908–252908-5

    Article  Google Scholar 

  5. Yan KL, Fan RH, Shi ZC, et al. Negative Permittivity Behavior and Magnetic Performance of Perovskite La1-xSrxMnO3 at High-frequency[J]. Journal of Materials Chemistry C, 2014, 2(6): 1028–1033

    Article  Google Scholar 

  6. Wang XA, Shi ZC, Chen M, et al. Tunable Electromagnetic Properties in Co/Al2O3 Cermets Prepared by Wet Chemical Method[J]. Journal of the American Ceramic Society, 2014, 97(10): 3223–3229

    Article  Google Scholar 

  7. Qian L, Lu L, Fan RH. Tunable Negative Permittivity Based on Phenolic Resin and Multi-walled Carbon Nanotubes[J]. Rsc Advances, 2015, 5(22): 16618–16621

    Article  Google Scholar 

  8. Kosanda DE. Electromagnetic Signal Interference Shielding Gasket Apparatus[P]. US Patent 4, 762, 966: 1988, 8–9

    Google Scholar 

  9. Radwan M, Rashad M, Hessien M. Synthesis and Characterization of Barium Hexaferrite Nanoparticles[J]. Journal of Materials Processing Technology, 2007, 181(1): 106–109

    Article  Google Scholar 

  10. Pullar RC. Hexagonal Ferrites: Are View of the Synthesis, Properties and Applications of Hexaferrite Ceramics[J]. Progress in Materials Science, 2012, 57(7): 1191–1334

    Article  Google Scholar 

  11. Mosleh Z, Kamelin P, Ranjbar M, et al. Effect of Annealing Temperature on Structural and Magnetic Properties of BaFe12O19 Hexaferrite Nanoparticles[J]. Ceramics International, 2014, 40: 7279–7284

    Article  Google Scholar 

  12. Dai J, Dai Y, Wang Z. Preparation and Magnetic Properties of Lanthanum-and Cobalt-codoped M-type Strontium Ferrite Nanofibres[J]. Journal of Experimental Nanoscience (ahead-of-print), 2013: 1–9

    Google Scholar 

  13. Chen D, Qiao X, Qiu X, et al. Convenient Synthesis of Silver Nanowires with Adjustable Diameters via a Solvothermal Method[J]. Journal of Colloid and Interface Science, 2010; 344: 286–291

    Article  Google Scholar 

  14. Shen X, Liu M, Song F, et al. Structural Evolution and Magnetic Properties of SrFe12O19 Nanofibers by Electrospinning[J]. Journal of Sol-gel Science and Technology, 2010, 53: 448–453

    Article  Google Scholar 

  15. Xu P, Han X, Jiang J, et al. Synthesis and Characterization of Novel Coralloid Polyaniline/BaFe12O19 Nanocomposites[J]. Journal of Physical Chemistry C, 2007, 111(34): 12603–12608

    Article  Google Scholar 

  16. Li Z W, Wu Y P, Lin G Q, et al. Static and Dynamic Magnetic Properties of CoZn Substituted Z-type Barium Ferrite Ba3CoxZn2-x Fe24O41 Composites[J]. Journal of Magnetism & Magnetic Materials, 2007, 310: 145–151

    Article  Google Scholar 

  17. Temuujin J, Aoyama M, Senna M, et al. Preparation and Properties of Ferromagnetic Z-type Hexaferrite from Wet Milled Mixtures of Intermediates[J]. Journal of Magnetism & Magnetic Materials, 2007, 311(2): 724–731

    Article  Google Scholar 

  18. Li CJ, Huang BN, Wang JN. Effect of Aluminum Substitution on Microstructure and Magnetic Properties of Electrospun BaFe12O19 Nanofibers[J]. Journal of Materials Science, 2013, 48(4): 1702–1710

    Article  Google Scholar 

  19. Joo J, Park KT, Kim BH, et al. Conducting Polymer Nanotube and Nanowire Synthesized by Using Nanoporous Template: Synthesis, Characteristics, and Applications[J]. Synthetic Metals, 2003, 135(135): 7–9

    Article  Google Scholar 

  20. Yu HQ, Song HW, Pan GH. Preparation and Luminescent Properties of YVO4: Eu3+ Nanofibers by Electrospinning[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(3): 1432–1436

    Article  Google Scholar 

  21. Zhang SH, Dong XT, Xu SZ. Preparation and Characteristic of TiO2@ SiO2 Submicron Coaxial Cable[J]. Journal of Materials Chemistry, 2007, 65(23): 2675–2679

    Google Scholar 

  22. Dong XT, Wang JX, Cui QZ. Preparation of LaFeO3 Porous Hollow Nanofibers by Electrospinning[J]. International Journal of Chemistry, 2009, 1(1): 13–17

    Article  Google Scholar 

  23. Yan KL, Fan RH, Chen M, et al. Perovskite (La,Sr)MnO3 with Tunable Electrical Properties by the Sr-doping Effect[J]. Journal of Alloys & Compounds, 2015, 628: 429–432

    Article  Google Scholar 

  24. Fan LJ, Dong XT, Gao XB, et al. Synthesis and Characterization of BaFe12O19 Nanofibres Via an Electrospinning Technique[J]. Acta Armamentarii, 2011, 32(1): 112–117

    Google Scholar 

  25. Huang BN, Li CJ, Wang JN. Template Synthesis and Magnetic Properties of Highly Aligned Barium Hex a Ferrite (BaFe12O19) Nanofibers[J]. Journal of Magnetism & Magnetic Materials, 2013, 335:28–31

    Article  Google Scholar 

  26. Wang ZJ, Li ZY, Sun JH, et al. Improved Hydrogen Monitoring Properties Based on P-NiO/n-SnO2 Heterojunction Composite Nanofibers[J]. The Journal of Physical Chemistry C, 2010, 114: 6100–6105

    Article  Google Scholar 

  27. Song FZ, Shen XQ, Xiang J, et al. Characterization and Magnetic Properties of BaxSr1-x Fe12O19 (x=0-1) Ferrite Hollow Fibers via Gel-precursor Transformation Process[J]. Journal of Alloys & Compounds, 2010, 507: 297–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Dang  (党锋).

Additional information

Funded by the Qilu Program in Shandong University and the Natural Science Foundation of Shandong Province (ZR2014EMM001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Liu, G., Dang, F. et al. Effect of strontium substitution on microstructure and magnetic properties of electrospinning BaFe12O19 nanofibers. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 871–874 (2017). https://doi.org/10.1007/s11595-017-1682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1682-y

Key words

Navigation