Skip to main content
Log in

Generalized Mori–Tanaka Approach in Micromechanics of Peristatic Random Structure Composites

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

A statistically homogeneous random matrix medium with the bond-based peridynamic properties (see Silling, J Mech Phys Solids 48:175–209, 2000) of constituents is considered. For the media subjected to remote homogeneous volumetric boundary loading, one proved that the effective behavior of this media is described by conventional effective constitutive equation which is intrinsic to the local elasticity theory. It was made by the most exploitation of the popular tools and concepts used in conventional elasticity of CMs and adapted to peristatics. This is extraction from the material properties a constituent of the matrix properties. Effective properties moduli are expressed through the introduced local stress polarization tensor averaged over the extended inclusion phase rather than in an entire space. One proposes a generalization of a dilute approximation method to their peristatic counterpart in the sense that the volume fraction of the particles is small and their mutual interaction can be neglected. As in a classical approach, the essential assumption in the generalized Mori–Tanaka method (MTM) states that each extended inclusion behaves as an isolated one in the infinite matrix and subject to some effective strain field coinciding with the average strain in the truncated matrix. Comparative numerical analyses of both the dilute approximation and MTM method are performed for 1D case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguiar AR, Fosdick R (2014) A constitutive model for a linearly elastic peridynamic body. Math Mech Solids 19:502–523

    Article  MathSciNet  MATH  Google Scholar 

  2. Alali B, Gunzburger M (2015) Peridynamics and material interfaces. J Elast 120:225–248

    Article  MathSciNet  MATH  Google Scholar 

  3. Alali B, Lipton R (2012) Multiscale dynamics of heterogeneous media in the peridynamic formulation. J Elast 106:71–103

    Article  MathSciNet  MATH  Google Scholar 

  4. Askari E, Bobaru F, Lehoucq RB, Parks ML, Silling SA, Weckner O (2009) Peridynamics for multiscale materials modeling. J Phys Conf Ser 125:012078

    Article  Google Scholar 

  5. Askari E, Xu J, Silling SA (2006) Peridynamic analysis of damage and failure in composites. 44th AIAA Aerospace Sciences Meeting and Exhibition, AIAA 2006–88, Reno, NV, 1–12

  6. Askari E, Azdoud Y, Han F, Lubineau G, Silling SA (2015) Peridynamics for analysis of failure in advanced composite materials. Numerical Modelling of Failure in Advanced Composite Materials, Woodhead Publishing Series in Composites Science and Engineering, 331–350

  7. Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mechanics of Materials 6:147–157

    Article  Google Scholar 

  8. Bobaru F, Foster J, Geubelle P, Silling S (eds) (2016) Handbook of peridynamic modeling. CRC Press, Boca Raton

    MATH  Google Scholar 

  9. Bobaru F, Ha YD (2011) Multiscale modeling in 2D peridynamics. Int J Multiscale Comput Adaptive refinement Eng 9:635–659

    Article  Google Scholar 

  10. Bobaru F, Yang M, Alves LF, Silling SA, Askari A, Xu J (2009) Convergence adaptive refinement, scaling in 1d peridynamics. Int J Numerical Methods Engng 77:852–877

    Article  MATH  Google Scholar 

  11. Buryachenko VA (2007) Micromechanics of heterogeneous materials. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Buryachenko VA (2011) On thermoelastostatics of composites with nonlocal properties of constituents. II. Estimation of effective material and field parameters. Int J Solids and Structures 48:1829–1845

    Article  Google Scholar 

  13. Buryachenko V (2014) Effective elastic modulus of heterogeneous peristatic bar of random structure. Int J Solids and Structures 51:2940–2948

    Article  Google Scholar 

  14. Buryachenko VA (2014) Some general representations in thermoperistatics of random structure composites. Int J Multiscale Comput Enging 12:331–350

    Article  Google Scholar 

  15. Buryachenko V (2015) General integral equations of micromechanics of heterogeneous materials. J Multiscale Comput Enging 13:11–53

    Article  Google Scholar 

  16. Buryachenko VA (2015) Effective thermoelastic properties of heterogeneous thermoperistatic bar of random structure. Int J Multiscale Comput Enging 13:55–71

    Article  Google Scholar 

  17. Buryachenko VA (2017) Effective properties of thermoperistatic random structure composites: some background principles. Math Mech Solids 22:366–1386

    Article  MathSciNet  MATH  Google Scholar 

  18. Buryachenko VA (2019) Modeling of one inclusion in the infinite peristatic matrix. J Peridynamics and Nonlocal Modeling 1:75–87

    Article  Google Scholar 

  19. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J Elast 113:193–217

    Article  MathSciNet  MATH  Google Scholar 

  20. Emmrich E, Weckner O, et al. (2006) The peridynamic equation of motion in non-local elasticity theory. In: Mota Soares CA (ed) III European conference on computational mechanics. Solids, Structures and Coupled Problems in Engineering. Springer, Dordrecht

  21. Emmrich E, Weckner O (2007) Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity. Math Mech Solids 12:363–384

    Article  MathSciNet  MATH  Google Scholar 

  22. Emmrich E, Weckner O (2007) On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun Math Sci 5:851–864

    Article  MathSciNet  MATH  Google Scholar 

  23. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  24. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Roy Soc Lond A 241:376–396

    Article  MathSciNet  MATH  Google Scholar 

  25. Hansen PC (1998) Rank-deficient and discrete Ill-posed problems numemcal aspects of linear inversin, SIAM, Philadelphia, PA

  26. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  27. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:212–222

    Google Scholar 

  28. Hu W, Ha YD, Bobaru F (2010) Numerical integration in peridynamics, Tech. rep., University of Nebraska-Lincoln

  29. Hu W, Ha YD, Bobaru F (2012) Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput Methods Appl Mech Engrg 217–220:247–261

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu W, Ha YD, Bobaru F, Silling SA (2012) The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int J Fract 176:195–206

    Article  Google Scholar 

  31. Kilic B (2008) Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. PhD Thesis, Dep. Mechan. Engng, The University of Arisona 1–262

  32. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanstanten des Einkristalls. Z Physik 151:504–518

    Article  Google Scholar 

  33. Kröner E (1967) Elasticity theory of materials with long range cohesive forces. Int J Solids Struct 3:731–742

    Article  MATH  Google Scholar 

  34. Lax M (1952) Multiple scattering of waves II. The effective fields dense systems. Phys Rev 85:621–629

    Article  MATH  Google Scholar 

  35. Lehoucq RB, Silling SA (2008) Force flux and the peridynamic stress tensor. J Mech Phys Solids 56:1566–1577

    Article  MathSciNet  MATH  Google Scholar 

  36. Li S, Wang G (2008) Introduction to micromechanics and nanomechanics. World Scientific Publishing Co. Pte. Ltd, Singapore

  37. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elements in Analysis and Design 43:1169–1178

    Article  MathSciNet  Google Scholar 

  38. Madenci E, Barut A, Futch M (2016) Peridynamic differential operator and its applications. Comput Methods Appl Engrg 304:408–451

    Article  MathSciNet  MATH  Google Scholar 

  39. Madenci E, Barut A, Phan ND (2017) Peridynamic unit cell homogenization, 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, (AIAA 2017–1138)

  40. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, Berlin

    Book  MATH  Google Scholar 

  41. Markov KZ (1999) Elementary micromechanics of heterogeneous media. In: Markov K, Preziosi L (eds) Heterogeneous media. Micromechanics, modelling, methods, and simulations, Birkhäuser, Boston, pp 1–162

  42. Mengesha T, Du Q (2014) The bond-based peridynamic system with Dirichlet-type volume constraint. Proc R Soc Edinburgh A 144:161–186

    Article  MathSciNet  MATH  Google Scholar 

  43. Mikata Y (2012) Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod. Int J Solids Structures 49:2887–2897

    Article  Google Scholar 

  44. Milton GW (2002) The theory of composites. Applied and Computational Mathematics, vol 6. Cambridge University Press, Cambridge

    Google Scholar 

  45. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  46. Mossotti OF (1850) Discussione analitica sul’influenza che l’azione di un mezzo dielettrico ha sulla distribuzione dell’electricitá alla superficie di piú corpi elettrici disseminati in eso. Mem Mat Fis della Soc Ital di Sci in Modena 24:49–74

    Google Scholar 

  47. Mura T (1987) Micromechanics of Defects in Solids. Martinus Nijhoff, Dordrecht

  48. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. Elsevier, North-Holland

    MATH  Google Scholar 

  49. Parks ML, Seleson P, Plimpton SJ, Silling SA, Lehoucq RB (2011) Peridynamics with LAMMPS: a user guide v0.3 beta, SAND Report 2011–8523, Sandia National Laboratories, Albuquerque, NM and Livermore, CA

  50. Parnell WJ (2016) The Eshelby, Hill, moment and concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostatics. J Elast 125:231–294

    Article  MathSciNet  MATH  Google Scholar 

  51. Seleson P, Gunzburger M, Parks ML (2013) Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains. Comput Methods Appl Mech Engrg 266:185–204

    Article  MathSciNet  MATH  Google Scholar 

  52. Seleson P, Littlewood DJ (2016) Convergence studies in meshfree peridynamic simulations. Comput Mathematics with Applications, 2432—2448

  53. Seleson P, Parks ML (2011) On the role of the influence function in the peridynamic theory. Int J Multiscale Comput Eng 9:689—706

    Article  Google Scholar 

  54. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  MathSciNet  MATH  Google Scholar 

  55. Silling SA, Askari EA (2005) Meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Article  Google Scholar 

  56. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elasticity 88:151–184

    Article  MathSciNet  MATH  Google Scholar 

  57. Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elasticity 93:13–37

    Article  MathSciNet  MATH  Google Scholar 

  58. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  59. Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a peridynamic bar. J Elasticity 73:173–190

    Article  MathSciNet  MATH  Google Scholar 

  60. Tikhonov AN, Arsenin VY (1986) Methods for solving Ill-posed problems, Nauka, Moscow

  61. Torquato S (2002) Random heterogeneous materials microstructure and macroscopic properties. Springer, New York, Berlin

    Book  MATH  Google Scholar 

  62. Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53:705–728

    Article  MathSciNet  MATH  Google Scholar 

  63. Weng GJ (1990) The theoretical connection between Mori–Tanakas theory and the Hashin–Shtrikman–Walpole bounds. Int J Engng Sci 28:1111–1120

    Article  MathSciNet  MATH  Google Scholar 

  64. Willis JR (1981) Variational and related methods for the overall properties of composites. Adv Appl Mech 21:1–78

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhou K, Hoh HJ, Wang X, Keer LM, Pang JHL, Song B, Wang QJ (2013) A review of recent works on inclusions. Mechanics of Materials 60:144–158

    Article  Google Scholar 

Download references

Acknowledgements

Both the helpful comments of reviewers and their encouraging recommendations are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy A. Buryachenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buryachenko, V.A. Generalized Mori–Tanaka Approach in Micromechanics of Peristatic Random Structure Composites. J Peridyn Nonlocal Model 2, 26–49 (2020). https://doi.org/10.1007/s42102-019-00023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-019-00023-9

Keywords

Navigation