Skip to main content

Advertisement

Log in

Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Renewable-electricity-powered electrochemical CO2 reduction reactions (CO2RR) to highly value-added multi-carbon (C2+) fuels or chemicals have been widely recognized as a promising approach for achieving carbon recycling and thus bringing about sustainable environmental and economic benefits. Cu-based catalysts have been demonstrated as the only candidate metal CO2RR electrocatalysts that catalyze the C–C coupling. Unfortunately, huge challenges still exist in the highly selective CO2RR to C2+ products due to the higher activation barrier of C–C coupling and complex multi-electron reaction. Key fundamental issues regarding both active species and product formation pathways have not been elucidated by now, but recent developments of advanced strategies and characterization tools allow one to comprehensively understand the Cu-based CO2RR mechanism. Herein, we review recent advance and perspective of Cu-based CO2RR catalysts, especially in terms of active phases and product formation pathways. Then, strategies in catalysts design for CO2RR toward C2+ products are also presented. Importantly, we systematically summarized the advanced tools for investigating the CO2RR mechanism, including in situ/operando spectroscopy techniques, isotope labeling, and theoretical calculations, aiming at unifying the knowledge of active species and product formation pathways. Finally, future challenges and constructive perspectives are discussed, facilitating the accelerated advancement of CO2RR mechanism research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2

Similar content being viewed by others

References

  1. Liu, H.L., Zhu, Y.T., Ma, J.M., et al.: Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 30, 1910534 (2020). https://doi.org/10.1002/adfm.202070107

    Article  CAS  Google Scholar 

  2. Fan, L., Xia, C., Yang, F.Q., et al.: Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6, eaay3111 (2020). https://doi.org/10.1126/sciadv.aay3111

    Article  CAS  Google Scholar 

  3. Daiyan, R., Lu, X.Y., Ng, Y.H., et al.: Liquid hydrocarbon production from CO2: recent development in metal-based electrocatalysis. ChemSusChem 10, 4342–4358 (2017). https://doi.org/10.1002/cssc.201701631

    Article  CAS  Google Scholar 

  4. Xie, H., Wang, T.Y., Liang, J.S., et al.: Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 21, 41–54 (2018). https://doi.org/10.1016/j.nantod.2018.05.001

    Article  CAS  Google Scholar 

  5. Zhu, S.Q., Delmo, E.P., Li, T.H., et al.: Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction. Adv. Mater. 33, 2005484 (2021). https://doi.org/10.1002/adma.202005484

    Article  CAS  Google Scholar 

  6. Zheng, Y., Chen, Z.W., Zhang, J.J.: Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels. Electrochem. Energy Rev. 4, 508–517 (2021). https://doi.org/10.1007/s41918-021-00097-4

    Article  CAS  Google Scholar 

  7. Li, W.P., Luo, J.L.: Correction to: High-temperature electrochemical devices based on dense ceramic membranes for CO2 conversion and utilization. Electrochem. Energy Rev. (2021). https://doi.org/10.1007/s41918-021-00123-5

    Article  Google Scholar 

  8. Zhu, Y.T., Cui, X.Y., Liu, H.L., et al.: Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 14, 4471–4486 (2021). https://doi.org/10.1007/s12274-021-3448-2

    Article  CAS  Google Scholar 

  9. Karapinar, D., Creissen, C.E., Rivera de la Cruz, J.G., et al.: Electrochemical CO2 reduction to ethanol with copper-based catalysts. ACS Energy Lett. 6, 694–706 (2021). https://doi.org/10.1021/acsenergylett.0c02610

    Article  CAS  Google Scholar 

  10. Xiao, C.L., Zhang, J.: Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review. ACS Nano 15, 7975–8000 (2021). https://doi.org/10.1021/acsnano.0c10697

    Article  CAS  Google Scholar 

  11. Wu, Z.Z., Gao, F.Y., Gao, M.R.: Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 14, 1121–1139 (2021). https://doi.org/10.1039/d0ee02747b

    Article  CAS  Google Scholar 

  12. He, J.F., Li, Y.L., Huang, A.X., et al.: Electrolyzer and catalysts design from carbon dioxide to carbon monoxide electrochemical reduction. Electrochem. Energy Rev. 4, 680–717 (2021). https://doi.org/10.1007/s41918-021-00100-y

    Article  CAS  Google Scholar 

  13. Hori, Y., Murata, A., Takahashi, R.: Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Trans. 1 85, 2309–2326 (1989). https://doi.org/10.1039/f19898502309

    Article  CAS  Google Scholar 

  14. Raciti, D., Wang, C.: Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 3, 1545–1556 (2018). https://doi.org/10.1021/acsenergylett.8b00553

    Article  CAS  Google Scholar 

  15. Guzmán, H., Russo, N., Hernández, S.: CO2 valorisation towards alcohols by Cu-based electrocatalysts: challenges and perspectives. Green Chem. 23, 1896–1920 (2021). https://doi.org/10.1039/d0gc03334k

    Article  CAS  Google Scholar 

  16. Wang, S., Kou, T., Baker, S.E., et al.: Recent progress in electrochemical reduction of CO2 by oxide-derived copper catalysts. Mater. Today Nano 12, 100096 (2020). https://doi.org/10.1016/j.mtnano.2020.100096

    Article  Google Scholar 

  17. Birhanu, M.K., Tsai, M.C., Kahsay, A.W., et al.: Copper and copper-based bimetallic catalysts for carbon dioxide electroreduction. Adv. Mater. Interfaces 5, 1800919 (2018). https://doi.org/10.1002/admi.201800919

    Article  CAS  Google Scholar 

  18. Niu, Z.Z., Chi, L.P., Liu, R., et al.: Rigorous assessment of CO2 electroreduction products in a flow cell. Energy Environ. Sci. 14, 4169–4176 (2021). https://doi.org/10.1039/d1ee01664d

    Article  CAS  Google Scholar 

  19. Garza, A.J., Bell, A.T., Head-Gordon, M.: Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018). https://doi.org/10.1021/acscatal.7b03477

    Article  CAS  Google Scholar 

  20. Lum, Y., Cheng, T., Goddard, W.A., III., et al.: Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018). https://doi.org/10.1021/jacs.8b03986

    Article  CAS  Google Scholar 

  21. Calle-Vallejo, F., Koper, M.T.M.: Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013). https://doi.org/10.1002/anie.201301470

    Article  CAS  Google Scholar 

  22. Zhuang, T.T., Liang, Z.Q., Seifitokaldani, A., et al.: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018). https://doi.org/10.1038/s41929-018-0084-7

    Article  CAS  Google Scholar 

  23. Li, Y.C., Wang, Z.Y., Yuan, T.G., et al.: Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019). https://doi.org/10.1021/jacs.9b02945

    Article  CAS  Google Scholar 

  24. Wang, J.L., Tan, H.Y., Zhu, Y.P., et al.: Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60, 17254–17267 (2021). https://doi.org/10.1002/anie.202017181

    Article  CAS  Google Scholar 

  25. Zhao, Y.R., Chang, X.X., Malkani, A.S., et al.: Speciation of Cu surfaces during the electrochemical CO reduction reaction. J. Am. Chem. Soc. (2020). https://doi.org/10.1021/jacs.0c02354

    Article  Google Scholar 

  26. Wang, Y.H., Liu, J.L., Zheng, G.F.: Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 33, 2005798 (2021). https://doi.org/10.1002/adma.202005798

    Article  CAS  Google Scholar 

  27. Tomboc, G.M., Choi, S., Kwon, T., et al.: Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs. Adv. Mater. 32, 1908398 (2020). https://doi.org/10.1002/adma.201908398

    Article  CAS  Google Scholar 

  28. Li, M.R., Garg, S., Chang, X.X., et al.: Toward excellence of transition metal-based catalysts for CO2 electrochemical reduction: an overview of strategies and rationales. Small Methods 4, 2000033 (2020). https://doi.org/10.1002/smtd.202000033

    Article  CAS  Google Scholar 

  29. Daiyan, R., Saputera, W.H., Masood, H., et al.: A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel. Adv. Energy Mater. 10, 1902106 (2020). https://doi.org/10.1002/aenm.201902106

    Article  CAS  Google Scholar 

  30. Feng, G.H., Chen, W., Wang, B.Y., et al.: Oxygenates from the electrochemical reduction of carbon dioxide. Chem. Asian J. 13, 1992–2008 (2018). https://doi.org/10.1002/asia.201800637

    Article  CAS  Google Scholar 

  31. Wang, L.M., Chen, W.L., Zhang, D.D., et al.: Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48, 5310–5349 (2019). https://doi.org/10.1039/c9cs00163h

    Article  CAS  Google Scholar 

  32. Fan, Q., Zhang, M.L., Jia, M.W., et al.: Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 10, 280–301 (2018). https://doi.org/10.1016/j.mtener.2018.10.003

    Article  Google Scholar 

  33. Pander, J.E.I., Ren, D., Huang, Y., et al.: Understanding the heterogeneous electrocatalytic reduction of carbon dioxide on oxide-derived catalysts. ChemElectroChem 5, 219–237 (2018). https://doi.org/10.1002/celc.201701100

    Article  CAS  Google Scholar 

  34. Zhao, J., Xue, S., Barber, J., et al.: An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J. Mater. Chem. A 8, 4700–4734 (2020). https://doi.org/10.1039/c9ta11778d

    Article  CAS  Google Scholar 

  35. Mistry, H., Varela, A.S., Bonifacio, C.S., et al.: Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016). https://doi.org/10.1038/ncomms12123

    Article  CAS  Google Scholar 

  36. Xiao, H., Goddard, W.A., III., Cheng, T., et al.: Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. USA 114, 6685–6688 (2017). https://doi.org/10.1073/pnas.1702405114

    Article  CAS  Google Scholar 

  37. Kim, J.Y., Kim, G., Won, H., et al.: Synergistic effect of Cu2O mesh pattern on high-facet Cu surface for selective CO2 electroreduction to ethanol. Adv. Mater. 34, 2106028 (2022). https://doi.org/10.1002/adma.202106028

    Article  CAS  Google Scholar 

  38. Capdevila-Cortada, M.: Probing the speciation. Nat. Catal. 3, 419–419 (2020). https://doi.org/10.1038/s41929-020-0464-7

    Article  Google Scholar 

  39. Chang, X.X., Zhao, Y.R., Xu, B.J.: pH dependence of Cu surface speciation in the electrochemical CO reduction reaction. ACS Catal. 10, 13737–13747 (2020). https://doi.org/10.1021/acscatal.0c03108

    Article  CAS  Google Scholar 

  40. Wang, X., Klingan, K., Klingenhof, M., et al.: Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021). https://doi.org/10.1038/s41467-021-20961-7

    Article  CAS  Google Scholar 

  41. Lei, Q., Zhu, H., Song, K.P., et al.: Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 142, 4213–4222 (2020). https://doi.org/10.1021/jacs.9b11790

    Article  CAS  Google Scholar 

  42. An, H.Y., Wu, L.F., Mandemaker, L.D.B., et al.: Sub-second time-resolved surface-enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60, 16576–16584 (2021). https://doi.org/10.1002/anie.202104114

    Article  CAS  Google Scholar 

  43. Ma, T., Fan, Q., Li, X., et al.: Graphene-based materials for electrochemical CO2 reduction. J. CO2 Util. 30, 168–182 (2019). https://doi.org/10.1016/j.jcou.2019.02.001

  44. Ou, L.H., Chen, Y.D., Jin, J.L.: The origin of CO2 electroreduction into C1 and C2 species: mechanistic understanding on the product selectivity of Cu single-crystal faces. Chem. Phys. Lett. 710, 175–179 (2018). https://doi.org/10.1016/j.cplett.2018.09.008

    Article  CAS  Google Scholar 

  45. Montoya, J.H., Shi, C., Chan, K.R., et al.: Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015). https://doi.org/10.1021/acs.jpclett.5b00722

    Article  CAS  Google Scholar 

  46. Li, J., Chang, K., Zhang, H.C., et al.: Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts. ACS Catal. 9, 4709–4718 (2019). https://doi.org/10.1021/acscatal.9b00099

    Article  CAS  Google Scholar 

  47. Zhang, H.C., Li, J., Cheng, M.J., et al.: CO electroreduction: current development and understanding of Cu-based catalysts. ACS Catal. 9, 49–65 (2019). https://doi.org/10.1021/acscatal.8b03780

    Article  CAS  Google Scholar 

  48. Schreier, M., Yoon, Y., Jackson, M.N., et al.: Competition between H and CO for active sites governs copper-mediated electrosynthesis of hydrocarbon fuels. Angew. Chem. Int. Ed. 57, 10221–10225 (2018). https://doi.org/10.1002/anie.201806051

    Article  CAS  Google Scholar 

  49. Zheng, Y., Vasileff, A., Zhou, X.L., et al.: Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124

    Article  CAS  Google Scholar 

  50. Kibria, M.G., Edwards, J.P., Gabardo, C.M., et al.: Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 1807166 (2019). https://doi.org/10.1002/adma.201807166

    Article  CAS  Google Scholar 

  51. Kou, Z.K., Li, X., Wang, T.T., et al.: Fundamentals, on-going advances and challenges of electrochemical carbon dioxide reduction. Electrochem. Energy Rev. 5, 82–111 (2022). https://doi.org/10.1007/s41918-021-00096-5

    Article  CAS  Google Scholar 

  52. Friebe, P., Bogdanoff, P., Alonso-Vante, N., et al.: A real-time mass spectroscopy study of the (electro)chemical factors affecting CO2 reduction at copper. J. Catal. 168, 374–385 (1997). https://doi.org/10.1006/jcat.1997.1606

    Article  CAS  Google Scholar 

  53. Zhou, Y., Che, F., Liu, M., et al.: Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x

    Article  CAS  Google Scholar 

  54. Schouten, K.J.P., Kwon, Y., van der Ham, C.J.M., et al.: A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902 (2011). https://doi.org/10.1039/c1sc00277e

    Article  CAS  Google Scholar 

  55. Schouten, K.J.P., Qin, Z.S., Pérez Gallent, E., et al.: Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012). https://doi.org/10.1021/ja302668n

    Article  CAS  Google Scholar 

  56. Pérez-Gallent, E., Figueiredo, M.C., Calle-Vallejo, F., et al.: Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017). https://doi.org/10.1002/anie.201700580

    Article  CAS  Google Scholar 

  57. Peterson, A.A., Abild-Pedersen, F., Studt, F., et al.: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j

    Article  CAS  Google Scholar 

  58. Hori, Y., Takahashi, R., Yoshinami, Y., et al.: Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997). https://doi.org/10.1021/jp970284i

    Article  CAS  Google Scholar 

  59. Ren, D., Ang, B.S.H., Yeo, B.S.: Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016). https://doi.org/10.1021/acscatal.6b02162

    Article  CAS  Google Scholar 

  60. Ma, S.C., Sadakiyo, M., Luo, R., et al.: One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.124

    Article  CAS  Google Scholar 

  61. Ting, L.R.L., Piqué, O., Lim, S.Y., et al.: Enhancing CO2 electroreduction to ethanol on copper-silver composites by opening an alternative catalytic pathway. ACS Catal. 10, 4059–4069 (2020). https://doi.org/10.1021/acscatal.9b05319

    Article  CAS  Google Scholar 

  62. Ma, W., Xie, S., Liu, T., et al.: Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020). https://doi.org/10.1038/s41929-020-0450-0

    Article  CAS  Google Scholar 

  63. Zhang, G.R., Straub, S.D., Shen, L.L., et al.: Probing CO2 reduction pathways for copper catalysis using an ionic liquid as a chemical trapping agent. Angew. Chem. Int. Ed. 59, 18095–18102 (2020). https://doi.org/10.1002/anie.202009498

    Article  CAS  Google Scholar 

  64. Ledezma-Yanez, I., Gallent, E.P., Koper, M.T.M., et al.: Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal. Today 262, 90–94 (2016). https://doi.org/10.1016/j.cattod.2015.09.029

    Article  CAS  Google Scholar 

  65. Ma, M., Djanashvili, K., Smith, W.A.: Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 55, 6680–6684 (2016). https://doi.org/10.1002/anie.201601282

    Article  CAS  Google Scholar 

  66. Handoko, A.D., Chan, K.W., Yeo, B.S.: –CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials. ACS Energy Lett. 2, 2103–2109 (2017). https://doi.org/10.1021/acsenergylett.7b00514

    Article  CAS  Google Scholar 

  67. Sen, S., Liu, D., Palmore, G.T.R.: Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014). https://doi.org/10.1021/cs500522g

    Article  CAS  Google Scholar 

  68. Li, C.W., Kanan, M.W.: CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). https://doi.org/10.1021/ja3010978

    Article  CAS  Google Scholar 

  69. Tang, W., Peterson, A.A., Varela, A.S., et al.: The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012). https://doi.org/10.1039/c1cp22700a

    Article  CAS  Google Scholar 

  70. Kas, R., Kortlever, R., Milbrat, A., et al.: Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16, 12194–12201 (2014). https://doi.org/10.1039/c4cp01520g

    Article  CAS  Google Scholar 

  71. Wang, H., Matios, E., Wang, C.L., et al.: Rapid and scalable synthesis of cuprous halide-derived copper nano-architectures for selective electrochemical reduction of carbon dioxide. Nano Lett. 19, 3925–3932 (2019). https://doi.org/10.1021/acs.nanolett.9b01197

    Article  CAS  Google Scholar 

  72. Chen, C.S., Wan, J.H., Yeo, B.S.: Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium(II) chloride. J. Phys. Chem. C 119, 26875–26882 (2015). https://doi.org/10.1021/acs.jpcc.5b09144

    Article  CAS  Google Scholar 

  73. Vasileff, A., Zhu, Y.P., Zhi, X., et al.: Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate. Angew. Chem. Int. Ed. 59, 19649–19653 (2020). https://doi.org/10.1002/anie.202004846

    Article  CAS  Google Scholar 

  74. Bertheussen, E., Verdaguer-Casadevall, A., Ravasio, D., et al.: Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 55, 1450–1454 (2016). https://doi.org/10.1002/anie.201508851

    Article  CAS  Google Scholar 

  75. Ren, D., Wong, N.T., Handoko, A.D., et al.: Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 7, 20–24 (2016). https://doi.org/10.1021/acs.jpclett.5b02554

    Article  CAS  Google Scholar 

  76. Kim, D., Kley, C.S., Li, Y.F., et al.: Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. PNAS 114, 10560–10565 (2017). https://doi.org/10.1073/pnas.1711493114

    Article  CAS  Google Scholar 

  77. Rahaman, M., Dutta, A., Zanetti, A., et al.: Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: an identical location (IL) study. ACS Catal. 7, 7946–7956 (2017). https://doi.org/10.1021/acscatal.7b02234

    Article  CAS  Google Scholar 

  78. Jiang, K., Sandberg, R.B., Akey, A.J., et al.: Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018). https://doi.org/10.1038/s41929-017-0009-x

    Article  CAS  Google Scholar 

  79. Zhuang, T.T., Pang, Y.J., Liang, Z.Q., et al.: Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018). https://doi.org/10.1038/s41929-018-0168-4

    Article  CAS  Google Scholar 

  80. Chen, C.J., Yan, X.P., Liu, S.J., et al.: Highly efficient electroreduction of CO2 to C2+ alcohols on heterogeneous dual active sites. Angew. Chem. Int. Ed. 59, 16459–16464 (2020). https://doi.org/10.1002/anie.202006847

    Article  CAS  Google Scholar 

  81. Chang, X.X., Malkani, A., Yang, X., et al.: Mechanistic insights into electroreductive C–C coupling between CO and acetaldehyde into multicarbon products. J. Am. Chem. Soc. 142, 2975–2983 (2020). https://doi.org/10.1021/jacs.9b11817

    Article  CAS  Google Scholar 

  82. Rosen, B.A., Salehi-Khojin, A., Thorson, M.R., et al.: Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011). https://doi.org/10.1126/science.1209786

    Article  CAS  Google Scholar 

  83. Sun, L.Y., Ramesha, G.K., Kamat, P.V., et al.: Switching the reaction course of electrochemical CO2 reduction with ionic liquids. Langmuir 30, 6302–6308 (2014). https://doi.org/10.1021/la5009076

    Article  CAS  Google Scholar 

  84. Li, J.W., Prentice, G.: Electrochemical synthesis of methanol from CO2 in high-pressure electrolyte. J. Electrochem. Soc. 144, 4284–4288 (1997). https://doi.org/10.1149/1.1838179

    Article  CAS  Google Scholar 

  85. Kaneco, S., Iiba, K., Katsumata, H., et al.: Electrochemical reduction of high pressure CO2 at a Cu electrode in cold methanol. Electrochim. Acta 51, 4880–4885 (2006). https://doi.org/10.1016/j.electacta.2006.01.032

    Article  CAS  Google Scholar 

  86. Wang, Y.H., Liu, J.L., Wang, Y.F., et al.: Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 13, 1701809 (2017). https://doi.org/10.1002/smll.201701809

    Article  CAS  Google Scholar 

  87. Varela, A.S.: The importance of pH in controlling the selectivity of the electrochemical CO2 reduction. Curr. Opin. Green Sustain. Chem. 26, 100371 (2020). https://doi.org/10.1016/j.cogsc.2020.100371

    Article  Google Scholar 

  88. Dinh, C.T., Burdyny, T., Kibria, M.G., et al.: CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018). https://doi.org/10.1126/science.aas9100

    Article  CAS  Google Scholar 

  89. Wang, L., Nitopi, S.A., Bertheussen, E., et al.: Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018). https://doi.org/10.1021/acscatal.8b01200

    Article  CAS  Google Scholar 

  90. Goodpaster, J.D., Bell, A.T., Head-Gordon, M.: Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471–1477 (2016). https://doi.org/10.1021/acs.jpclett.6b00358

    Article  CAS  Google Scholar 

  91. Hori, Y., Takahashi, I., Koga, O., et al.: Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002). https://doi.org/10.1021/jp013478d

    Article  CAS  Google Scholar 

  92. Schouten, K.J.P., Pérez Gallent, E., Koper, M.T.M.: The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 716, 53–57 (2014). https://doi.org/10.1016/j.jelechem.2013.08.033

    Article  CAS  Google Scholar 

  93. Dunwell, M., Yang, X., Setzler, B.P., et al.: Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy. ACS Catal. 8, 3999–4008 (2018). https://doi.org/10.1021/acscatal.8b01032

    Article  CAS  Google Scholar 

  94. Kas, R., Kortlever, R., Yılmaz, H., et al.: Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2, 354–358 (2015). https://doi.org/10.1002/celc.201402373

    Article  CAS  Google Scholar 

  95. Varela, A.S., Kroschel, M., Reier, T., et al.: Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016). https://doi.org/10.1016/j.cattod.2015.06.009

    Article  CAS  Google Scholar 

  96. Todorova, T.K., Schreiber, M.W., Fontecave, M.: Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 10, 1754–1768 (2020). https://doi.org/10.1021/acscatal.9b04746

    Article  CAS  Google Scholar 

  97. Xiao, H., Cheng, T., Goddard, W.A., III., et al.: Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138, 483–486 (2016). https://doi.org/10.1021/jacs.5b11390

    Article  CAS  Google Scholar 

  98. Garg, S., Li, M.R., Weber, A.Z., et al.: Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. J. Mater. Chem. A 8, 1511–1544 (2020). https://doi.org/10.1039/c9ta13298h

    Article  CAS  Google Scholar 

  99. Jouny, M., Luc, W., Jiao, F.: High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018). https://doi.org/10.1038/s41929-018-0133-2

    Article  CAS  Google Scholar 

  100. Li, J., Wu, D.H., Malkani, A.S., et al.: Hydroxide is not a promoter of C2+ product formation in the electrochemical reduction of CO on copper. Angew. Chem. Int. Ed. 59, 4464–4469 (2020). https://doi.org/10.1002/anie.201912412

    Article  CAS  Google Scholar 

  101. Nitopi, S., Bertheussen, E., Scott, S.B., et al.: Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705

    Article  CAS  Google Scholar 

  102. Murata, A., Hori, Y.: Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 64, 123–127 (1991). https://doi.org/10.1246/bcsj.64.123

    Article  CAS  Google Scholar 

  103. Thorson, M.R., Siil, K.I., Kenis, P.J.A.: Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2012). https://doi.org/10.1149/2.052301jes

    Article  CAS  Google Scholar 

  104. Kim, H., Park, H.S., Hwang, Y.J., et al.: Surface-morphology-dependent electrolyte effects on gold-catalyzed electrochemical CO2 reduction. J. Phys. Chem. C 121, 22637–22643 (2017). https://doi.org/10.1021/acs.jpcc.7b06286

    Article  CAS  Google Scholar 

  105. Liu, M., Pang, Y., Zhang, B., et al.: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). https://doi.org/10.1038/nature19060

    Article  CAS  Google Scholar 

  106. Chen, L.D., Urushihara, M., Chan, K.R., et al.: Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016). https://doi.org/10.1021/acscatal.6b02299

    Article  CAS  Google Scholar 

  107. Bagger, A., Arnarson, L., Hansen, M.H., et al.: Electrochemical CO reduction: a property of the electrochemical interface. J. Am. Chem. Soc. 141, 1506–1514 (2019). https://doi.org/10.1021/jacs.8b08839

    Article  CAS  Google Scholar 

  108. Ringe, S., Clark, E.L., Resasco, J., et al.: Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019). https://doi.org/10.1039/c9ee01341e

    Article  CAS  Google Scholar 

  109. Pérez-Gallent, E., Marcandalli, G., Figueiredo, M.C., et al.: Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017). https://doi.org/10.1021/jacs.7b10142

    Article  CAS  Google Scholar 

  110. Gao, D.F., McCrum, I.T., Deo, S., et al.: Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design. ACS Catal. 8, 10012–10020 (2018). https://doi.org/10.1021/acscatal.8b02587

    Article  CAS  Google Scholar 

  111. Lum, Y., Yue, B.B., Lobaccaro, P., et al.: Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C 121, 14191–14203 (2017). https://doi.org/10.1021/acs.jpcc.7b03673

    Article  CAS  Google Scholar 

  112. Bohra, D., Chaudhry, J.H., Burdyny, T., et al.: Modeling the electrical double layer to understand the reaction environment in a CO2 electrocatalytic system. Energy Environ. Sci. 12, 3380–3389 (2019). https://doi.org/10.1039/c9ee02485a

    Article  CAS  Google Scholar 

  113. Singh, M.R., Kwon, Y., Lum, Y., et al.: Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016). https://doi.org/10.1021/jacs.6b07612

    Article  CAS  Google Scholar 

  114. Roth, J.D., Weaver, M.J.: Role of double-layer cation on the potential-dependent stretching frequencies and binding geometries of carbon monoxide at platinum-nonaqueous interfaces. Langmuir 8, 1451–1458 (1992). https://doi.org/10.1021/la00041a034

    Article  CAS  Google Scholar 

  115. Li, J.Y., Li, X., Gunathunge, C.M., et al.: Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. PNAS 116, 9220–9229 (2019). https://doi.org/10.1073/pnas.1900761116

    Article  CAS  Google Scholar 

  116. Malkani, A.S., Li, J., Oliveira, N.J., et al.: Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 6, eabd2569 (2020). https://doi.org/10.1126/sciadv.abd2569

    Article  CAS  Google Scholar 

  117. Gu, Z.X., Shen, H., Shang, L.M., et al.: Nanostructured copper-based electrocatalysts for CO2 reduction. Small Methods 2, 1800121 (2018). https://doi.org/10.1002/smtd.201800121

    Article  CAS  Google Scholar 

  118. Ross, M.B., de Luna, P., Li, Y., et al.: Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019). https://doi.org/10.1038/s41929-019-0306-7

    Article  CAS  Google Scholar 

  119. Roberts, F.S., Kuhl, K.P., Nilsson, A.: High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015). https://doi.org/10.1002/anie.201412214

    Article  CAS  Google Scholar 

  120. Durand, W.J., Peterson, A.A., Studt, F., et al.: Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 605, 1354–1359 (2011). https://doi.org/10.1016/j.susc.2011.04.028

    Article  CAS  Google Scholar 

  121. Wang, Y.F., Han, P., Lv, X.M., et al.: Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2, 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021

    Article  CAS  Google Scholar 

  122. Baturina, O.A., Lu, Q., Padilla, M.A., et al.: CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal. 4, 3682–3695 (2014). https://doi.org/10.1021/cs500537y

    Article  CAS  Google Scholar 

  123. Choi, C., Kwon, S., Cheng, T., et al.: Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020). https://doi.org/10.1038/s41929-020-00504-x

    Article  CAS  Google Scholar 

  124. Hori, Y., Takahashi, I., Koga, O., et al.: Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 199, 39–47 (2003). https://doi.org/10.1016/S1381-1169(03)00016-5

    Article  CAS  Google Scholar 

  125. Schouten, K.J.P., Pérez Gallent, E., Koper, M.T.M.: Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 3, 1292–1295 (2013). https://doi.org/10.1021/cs4002404

    Article  CAS  Google Scholar 

  126. Hahn, C., Hatsukade, T., Kim, Y.G., et al.: Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. PNAS 114, 5918–5923 (2017). https://doi.org/10.1073/pnas.1618935114

    Article  CAS  Google Scholar 

  127. Arán-Ais, R.M., Scholten, F., Kunze, S., et al.: The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020). https://doi.org/10.1038/s41560-020-0594-9

    Article  CAS  Google Scholar 

  128. Chen, C.J., Sun, X.F., Yan, X.P., et al.: A strategy to control the grain boundary density and Cu+/Cu0 ratio of Cu-based catalysts for efficient electroreduction of CO2 to C2 products. Green Chem. 22, 1572–1576 (2020). https://doi.org/10.1039/d0gc00247j

    Article  CAS  Google Scholar 

  129. Yang, W.F., Dastafkan, K., Jia, C., et al.: Design of electrocatalysts and electrochemical cells for carbon dioxide reduction reactions. Adv. Mater. Technol. 3, 1700377 (2018). https://doi.org/10.1002/admt.201700377

    Article  CAS  Google Scholar 

  130. Chen, Z.Q., Wang, T., Liu, B., et al.: Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J. Am. Chem. Soc. 142, 6878–6883 (2020). https://doi.org/10.1021/jacs.0c00971

    Article  CAS  Google Scholar 

  131. Feng, H.F., Xu, X., Du, Y., et al.: Application of scanning tunneling microscopy in electrocatalysis and electrochemistry. Electrochem. Energy Rev. 4, 249–268 (2021). https://doi.org/10.1007/s41918-020-00074-3

    Article  CAS  Google Scholar 

  132. Lai, W.C., Ma, Z.S., Zhang, J.W., et al.: Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: fundamental understanding and recent progress. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202111193

    Article  Google Scholar 

  133. Kim, Y.G., Baricuatro, J.H., Javier, A., et al.: The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM. Langmuir 30, 15053–15056 (2014). https://doi.org/10.1021/la504445g

    Article  CAS  Google Scholar 

  134. Kwon, S., Kim, Y.G., Baricuatro, J.H., et al.: Dramatic change in the step edges of the Cu(100) electrocatalyst upon exposure to CO: operando observations by electrochemical STM and explanation using quantum mechanical calculations. ACS Catal. 11, 12068–12074 (2021). https://doi.org/10.1021/acscatal.1c02844

    Article  CAS  Google Scholar 

  135. Kim, Y.G., Baricuatro, J.H., Soriaga, M.P.: Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO3 electrolyte at potentials in the early stages of CO2 reduction. Electrocatalysis 9, 526–530 (2018). https://doi.org/10.1007/s12678-018-0469-z

    Article  CAS  Google Scholar 

  136. Grosse, P., Gao, D.F., Scholten, F., et al.: Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew. Chem. Int. Ed. 57, 6192–6197 (2018). https://doi.org/10.1002/anie.201802083

    Article  CAS  Google Scholar 

  137. Simon, G.H., Kley, C.S., Roldan Cuenya, B.: Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 60, 2561–2568 (2021). https://doi.org/10.1002/anie.202010449

    Article  CAS  Google Scholar 

  138. Zhu, C.Y., Zhang, Z.B., Zhong, L.X., et al.: Product-specific active site motifs of Cu for electrochemical CO2 reduction. Chem 7, 406–420 (2021). https://doi.org/10.1016/j.chempr.2020.10.018

    Article  CAS  Google Scholar 

  139. Vavra, J., Shen, T.H., Stoian, D., et al.: Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. Int. Ed. 60, 1347–1354 (2021). https://doi.org/10.1002/anie.202011137

    Article  CAS  Google Scholar 

  140. Scholten, F., Nguyen, K.L.C., Bruce, J.P., et al.: Identifying structure-selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically clean and chemically etched copper single-crystal surfaces. Angew. Chem. Int. Ed. 60, 19169–19175 (2021). https://doi.org/10.1002/anie.202103102

    Article  CAS  Google Scholar 

  141. Wu, Y.Z., Cao, S.Y., Hou, J.G., et al.: Rational design of nanocatalysts with nonmetal species modification for electrochemical CO2 reduction. Adv. Energy Mater. 10, 2070123 (2020). https://doi.org/10.1002/aenm.202070123

    Article  CAS  Google Scholar 

  142. Long, C., Li, X., Guo, J., et al.: Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: recent progress and perspectives. Small Methods (2018). https://doi.org/10.1002/smtd.201800369

    Article  Google Scholar 

  143. Guan, A.X., Chen, Z., Quan, Y.L., et al.: Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 5, 1044–1053 (2020). https://doi.org/10.1021/acsenergylett.0c00018

    Article  CAS  Google Scholar 

  144. Yang, H.P., Lin, Q., Zhang, C., et al.: Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 593 (2020). https://doi.org/10.1038/s41467-020-14402-0

    Article  CAS  Google Scholar 

  145. Karapinar, D., Huan, N.T., Ranjbar Sahraie, N., et al.: Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58, 15098–15103 (2019). https://doi.org/10.1002/anie.201907994

    Article  CAS  Google Scholar 

  146. Yang, H.P., Lin, Q., Wu, Y., et al.: Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy 70, 104454 (2020). https://doi.org/10.1016/j.nanoen.2020.104454

    Article  CAS  Google Scholar 

  147. Jiao, Y., Zheng, Y., Chen, P., et al.: Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 139, 18093–18100 (2017). https://doi.org/10.1021/jacs.7b10817

    Article  CAS  Google Scholar 

  148. Zhang, Z., Xiao, J.P., Chen, X.J., et al.: Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 16339–16342 (2018). https://doi.org/10.1002/anie.201808593

    Article  CAS  Google Scholar 

  149. Yang, H.P., Wu, Y., Li, G.D., et al.: Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141, 12717–12723 (2019). https://doi.org/10.1021/jacs.9b04907

    Article  CAS  Google Scholar 

  150. Zhao, K., Nie, X., Wang, H., et al.: Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11, 2455 (2020). https://doi.org/10.1038/s41467-020-16381-8

    Article  CAS  Google Scholar 

  151. Wang, J., Gan, L.Y., Zhang, Q.W., et al.: A water-soluble Cu complex as molecular catalyst for electrocatalytic CO2 reduction on graphene-based electrodes. Adv. Energy Mater. 9, 1803151 (2019). https://doi.org/10.1002/aenm.201803151

    Article  CAS  Google Scholar 

  152. Jiang, Z.L., Wang, T., Pei, J.J., et al.: Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 13, 2856–2863 (2020). https://doi.org/10.1039/d0ee01486a

    Article  CAS  Google Scholar 

  153. Zhang, J.C., Cai, W.Z., Hu, F.X., et al.: Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction. Chem. Sci. 12, 6800–6819 (2021). https://doi.org/10.1039/d1sc01375k

    Article  CAS  Google Scholar 

  154. Zhang, X., Liu, J.X., Zijlstra, B., et al.: Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy 43, 200–209 (2018). https://doi.org/10.1016/j.nanoen.2017.11.021

    Article  CAS  Google Scholar 

  155. Dong, H.L., Liu, C., Li, Y.Y., et al.: Computational screening of M/Cu core/shell nanoparticles and their applications for the electro-chemical reduction of CO2 and CO. Nanoscale 11, 11351–11359 (2019). https://doi.org/10.1039/c9nr01936g

    Article  CAS  Google Scholar 

  156. Hu, Q., Han, Z., Wang, X.D., et al.: Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew. Chem. Int. Ed. 59, 19054–19059 (2020). https://doi.org/10.1002/anie.202009277

    Article  CAS  Google Scholar 

  157. Reske, R., Mistry, H., Behafarid, F., et al.: Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014). https://doi.org/10.1021/ja500328k

    Article  CAS  Google Scholar 

  158. Choi, C., Cheng, T., Flores Espinosa, M., et al.: A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials. Adv. Mater. 31, e1805405 (2019). https://doi.org/10.1002/adma.201805405

    Article  CAS  Google Scholar 

  159. Loiudice, A., Lobaccaro, P., Kamali, E.A., et al.: Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016). https://doi.org/10.1002/anie.201601582

    Article  CAS  Google Scholar 

  160. Zhang, H.Y., Zhang, Y.J., Li, Y.Y., et al.: Cu nanowire-catalyzed electrochemical reduction of CO or CO2. Nanoscale 11, 12075–12079 (2019). https://doi.org/10.1039/c9nr03170g

    Article  CAS  Google Scholar 

  161. Zhang, Y.S., Cai, Z., Zhao, Y.X., et al.: Superaerophilic copper nanowires for efficient and switchable CO2 electroreduction. Nanoscale Horizons 4, 490–494 (2019). https://doi.org/10.1039/c8nh00259b

    Article  CAS  Google Scholar 

  162. Lyu, Z.H., Zhu, S.Q., Xie, M.H., et al.: Controlling the surface oxidation of cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angew. Chem. Int. Ed. 60, 1909–1915 (2021). https://doi.org/10.1002/anie.202011956

    Article  CAS  Google Scholar 

  163. Li, Y.F., Cui, F., Ross, M.B., et al.: Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 17, 1312–1317 (2017). https://doi.org/10.1021/acs.nanolett.6b05287

    Article  CAS  Google Scholar 

  164. Ke, F.S., Liu, X.C., Wu, J.J., et al.: Selective formation of C2 products from the electrochemical conversion of CO2 on CuO-derived copper electrodes comprised of nanoporous ribbon arrays. Catal. Today 288, 18–23 (2017). https://doi.org/10.1016/j.cattod.2016.10.001

    Article  CAS  Google Scholar 

  165. Guo, C.Y., He, P., Cui, R.R., et al.: Electrochemical CO2 reduction using electrons generated from photoelectrocatalytic phenol oxidation. Adv. Energy Mater. 9, 1900364 (2019). https://doi.org/10.1002/aenm.201900364

    Article  CAS  Google Scholar 

  166. Cai, Z., Zhang, Y.S., Zhao, Y.X., et al.: Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 12, 345–349 (2019). https://doi.org/10.1007/s12274-018-2221-7

    Article  CAS  Google Scholar 

  167. Yang, H.P., Wang, X.D., Hu, Q., et al.: Recent progress in self-supported catalysts for CO2 electrochemical reduction. Small Methods 4, 1900826 (2020). https://doi.org/10.1002/smtd.201900826

    Article  CAS  Google Scholar 

  168. Cheng, Z., Wang, X.D., Yang, H.P., et al.: Construction of cobalt-copper bimetallic oxide heterogeneous nanotubes for high-efficient and low-overpotential electrochemical CO2 reduction. J. Energy Chem. 54, 1–6 (2021). https://doi.org/10.1016/j.jechem.2020.04.018

    Article  CAS  Google Scholar 

  169. Ma, M., Djanashvili, K., Smith, W.A.: Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys. Chem. Chem. Phys. 17, 20861–20867 (2015). https://doi.org/10.1039/c5cp03559g

    Article  CAS  Google Scholar 

  170. Raciti, D., Livi, K.J., Wang, C.: Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 15, 6829–6835 (2015). https://doi.org/10.1021/acs.nanolett.5b03298

    Article  CAS  Google Scholar 

  171. Zhao, Y., Wang, C.Y., Wallace, G.G.: Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 4, 10710–10718 (2016). https://doi.org/10.1039/c6ta04155h

    Article  CAS  Google Scholar 

  172. Cao, L., Raciti, D., Li, C.Y., et al.: Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires. ACS Catal. 7, 8578–8587 (2017). https://doi.org/10.1021/acscatal.7b03107

    Article  CAS  Google Scholar 

  173. Azenha, C., Mateos-Pedrero, C., Alvarez-Guerra, M., et al.: Enhancement of the electrochemical reduction of CO2 to methanol and suppression of H2 evolution over CuO nanowires. Electrochim. Acta 363, 137207 (2020). https://doi.org/10.1016/j.electacta.2020.137207

    Article  CAS  Google Scholar 

  174. Liu, J., Guo, C., Vasileff, A., et al.: Nanostructured 2D materials: Prospective catalysts for electrochemical CO2 reduction. Small Methods 1, 2366–9608 (2017). https://doi.org/10.1002/smtd.201600006

    Article  CAS  Google Scholar 

  175. Pan, J., Sun, Y.M., Deng, P.L., et al.: Hierarchical and ultrathin copper nanosheets synthesized via galvanic replacement for selective electrocatalytic carbon dioxide conversion to carbon monoxide. Appl. Catal. B Environ. 255, 117736 (2019). https://doi.org/10.1016/j.apcatb.2019.05.038

    Article  CAS  Google Scholar 

  176. Zhang, B.X., Zhang, J.L., Hua, M.L., et al.: Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 142, 13606–13613 (2020). https://doi.org/10.1021/jacs.0c06420

    Article  CAS  Google Scholar 

  177. Luc, W., Fu, X., Shi, J., et al.: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019). https://doi.org/10.1038/s41929-019-0269-8

    Article  CAS  Google Scholar 

  178. Kas, R., Hummadi, K.K., Kortlever, R., et al.: Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nat. Commun. 7, 10748 (2016). https://doi.org/10.1038/ncomms10748

    Article  CAS  Google Scholar 

  179. Pang, Y.J., Burdyny, T., Dinh, C.T., et al.: Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4. Green Chem. 19, 4023–4030 (2017). https://doi.org/10.1039/c7gc01677h

    Article  CAS  Google Scholar 

  180. Dutta, A., Rahaman, M., Mohos, M., et al.: Electrochemical CO2 conversion using skeleton (sponge) type of Cu catalysts. ACS Catal. 7, 5431–5437 (2017). https://doi.org/10.1021/acscatal.7b01548

    Article  CAS  Google Scholar 

  181. Lv, J.J., Jouny, M., Luc, W., et al.: A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30, 1803111 (2018). https://doi.org/10.1002/adma.201803111

    Article  CAS  Google Scholar 

  182. Dutta, A., Rahaman, M., Luedi, N.C., et al.: Morphology matters: tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 6, 3804–3814 (2016). https://doi.org/10.1021/acscatal.6b00770

    Article  CAS  Google Scholar 

  183. Yang, K.D., Ko, W.R., Lee, J.H., et al.: Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed. 56, 796–800 (2017). https://doi.org/10.1002/anie.201610432

    Article  CAS  Google Scholar 

  184. Wu, M.F., Zhu, C., Wang, K., et al.: Promotion of CO2 electrochemical reduction via Cu nanodendrites. ACS Appl. Mater. Interfaces 12, 11562–11569 (2020). https://doi.org/10.1021/acsami.9b21153

    Article  CAS  Google Scholar 

  185. de Luna, P., Quintero-Bermudez, R., Dinh, C.T., et al.: Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9

    Article  CAS  Google Scholar 

  186. Niu, Z.-Z., Gao, F.-Y., Zhang, X.-L., et al.: Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 143, 8011–8021 (2021). https://doi.org/10.1021/jacs.1c01190

    Article  CAS  Google Scholar 

  187. Raciti, D., Cao, L., Livi, K.J.T., et al.: Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 7, 4467–4472 (2017). https://doi.org/10.1021/acscatal.7b01124

    Article  CAS  Google Scholar 

  188. Reller, C., Krause, R., Volkova, E., et al.: Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7, 1602114 (2017). https://doi.org/10.1002/aenm.201602114

    Article  CAS  Google Scholar 

  189. Eilert, A., Roberts, F.S., Friebel, D., et al.: Formation of copper catalysts for CO2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. J. Phys. Chem. Lett. 7, 1466–1470 (2016). https://doi.org/10.1021/acs.jpclett.6b00367

    Article  CAS  Google Scholar 

  190. Garza, A.J., Bell, A.T., Head-Gordon, M.: Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper? J. Phys. Chem. Lett. 9, 601–606 (2018). https://doi.org/10.1021/acs.jpclett.7b03180

    Article  CAS  Google Scholar 

  191. Jiao, J., Lin, R., Liu, S., et al.: Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019). https://doi.org/10.1038/s41557-018-0201-x

    Article  CAS  Google Scholar 

  192. Gao, D.F., Zegkinoglou, I., Divins, N.J., et al.: Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11, 4825–4831 (2017). https://doi.org/10.1021/acsnano.7b01257

    Article  CAS  Google Scholar 

  193. Kim, D., Lee, S., Ocon, J.D., et al.: Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Phys. Chem. Chem. Phys. 17, 824–830 (2015). https://doi.org/10.1039/c4cp03172e

    Article  CAS  Google Scholar 

  194. Li, C.W., Ciston, J., Kanan, M.W.: Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). https://doi.org/10.1038/nature13249

    Article  CAS  Google Scholar 

  195. Verdaguer-Casadevall, A., Li, C.W., Johansson, T.P., et al.: Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015). https://doi.org/10.1021/jacs.5b06227

    Article  CAS  Google Scholar 

  196. Feng, X.F., Jiang, K.L., Fan, S.S., et al.: A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Central Sci. 2, 169–174 (2016). https://doi.org/10.1021/acscentsci.6b00022

    Article  CAS  Google Scholar 

  197. Kwon, Y., Lum, Y., Clark, E.L., et al.: CO2 electroreduction with enhanced ethylene and ethanol selectivity by nanostructuring polycrystalline copper. ChemElectroChem 3, 1012–1019 (2016). https://doi.org/10.1002/celc.201600068

    Article  CAS  Google Scholar 

  198. Lum, Y., Ager, J.W.: Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem. Int. Ed. 57, 551–554 (2018). https://doi.org/10.1002/anie.201710590

    Article  CAS  Google Scholar 

  199. Favaro, M., Xiao, H., Cheng, T., et al.: Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. PNAS 114, 6706–6711 (2017). https://doi.org/10.1073/pnas.1701405114

    Article  CAS  Google Scholar 

  200. Eilert, A., Cavalca, F., Roberts, F.S., et al.: Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017). https://doi.org/10.1021/acs.jpclett.6b02273

    Article  CAS  Google Scholar 

  201. Lum, Y., Ager, J.W.: Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019). https://doi.org/10.1038/s41929-018-0201-7

    Article  CAS  Google Scholar 

  202. Feng, X.F., Jiang, K.L., Fan, S.S., et al.: Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 137, 4606–4609 (2015). https://doi.org/10.1021/ja5130513

    Article  CAS  Google Scholar 

  203. Ren, D., Deng, Y.L., Handoko, A.D., et al.: Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015). https://doi.org/10.1021/cs502128q

    Article  CAS  Google Scholar 

  204. Jeon, H.S., Timoshenko, J., Rettenmaier, C., et al.: Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction. J. Am. Chem. Soc. 143, 7578–7587 (2021). https://doi.org/10.1021/jacs.1c03443

    Article  CAS  Google Scholar 

  205. Lee, S.Y., Jung, H., Kim, N.K., et al.: Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 140, 8681–8689 (2018). https://doi.org/10.1021/jacs.8b02173

    Article  CAS  Google Scholar 

  206. Gao, D.F., Scholten, F., Roldan Cuenya, B.: Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect. ACS Catal. 7, 5112–5120 (2017). https://doi.org/10.1021/acscatal.7b01416

    Article  CAS  Google Scholar 

  207. Zhong, Y., Xu, Y., Ma, J., et al.: An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self-assembly. Angew. Chem. Int. Ed. 59, 19095–19101 (2020). https://doi.org/10.1002/anie.202005522

    Article  CAS  Google Scholar 

  208. Cheng, N.C., Zhang, L., Doyle-Davis, K., et al.: Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2, 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6

    Article  Google Scholar 

  209. Wang, J.G., Zhang, F.Q., Kang, X.W., et al.: Organic functionalization of metal catalysts: enhanced activity towards electroreduction of carbon dioxide. Curr. Opin. Electrochem. 13, 40–46 (2019). https://doi.org/10.1016/j.coelec.2018.10.010

    Article  CAS  Google Scholar 

  210. Hu, C.G., Xiao, Y., Zou, Y.Q., et al.: Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 1, 238 (2018). https://doi.org/10.1007/s41918-018-0005-0

    Article  Google Scholar 

  211. Xie, M.S., Xia, B.Y., Li, Y.W., et al.: Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9, 1687–1695 (2016). https://doi.org/10.1039/c5ee03694a

    Article  CAS  Google Scholar 

  212. Ahn, S., Klyukin, K., Wakeham, R.J., et al.: Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 8, 4132–4142 (2018). https://doi.org/10.1021/acscatal.7b04347

    Article  CAS  Google Scholar 

  213. Jia, S.Q., Zhu, Q.G., Chu, M.G., et al.: Hierarchical metal-polymer hybrids for enhanced CO2 electroreduction. Angew. Chem. Int. Ed. 60, 10977–10982 (2021). https://doi.org/10.1002/anie.202102193

    Article  CAS  Google Scholar 

  214. Chen, X., Chen, J., Alghoraibi, N.M., et al.: Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021). https://doi.org/10.1038/s41929-020-00547-0

    Article  CAS  Google Scholar 

  215. Wei, X., Yin, Z.L., Lyu, K.J., et al.: Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10, 4103–4111 (2020). https://doi.org/10.1021/acscatal.0c00049

    Article  CAS  Google Scholar 

  216. Zhong, S.H., Yang, X.L., Cao, Z., et al.: Efficient electrochemical transformation of CO2 to C2/C3 chemicals on benzimidazole-functionalized copper surfaces. Chem. Commun. 54, 11324–11327 (2018). https://doi.org/10.1039/c8cc04735a

    Article  CAS  Google Scholar 

  217. Han, Z.J., Kortlever, R., Chen, H.Y., et al.: CO2 reduction selective for \({\rm{C}}_{\geqslant\,2}\) products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017). https://doi.org/10.1021/acscentsci.7b00180

    Article  CAS  Google Scholar 

  218. Li, F., Thevenon, A., Rosas-Hernández, A., et al.: Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020). https://doi.org/10.1038/s41586-019-1782-2

    Article  CAS  Google Scholar 

  219. Li, F., Li, Y.C., Wang, Z., et al.: Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020). https://doi.org/10.1038/s41929-019-0383-7

    Article  CAS  Google Scholar 

  220. Gong, M., Cao, Z., Liu, W., et al.: Supramolecular porphyrin cages assembled at molecular-materials interfaces for electrocatalytic CO reduction. ACS Cent. Sci. 3, 1032–1040 (2017). https://doi.org/10.1021/acscentsci.7b00316

    Article  CAS  Google Scholar 

  221. Thevenon, A., Rosas-Hernández, A., Peters, J.C., et al.: In-situ nanostructuring and stabilization of polycrystalline copper by an organic salt additive promotes electrocatalytic CO2 reduction to ethylene. Angew. Chem. Int. Ed. 58, 16952–16958 (2019). https://doi.org/10.1002/anie.201907935

    Article  CAS  Google Scholar 

  222. Liu, J., Fu, J.J., Zhou, Y., et al.: Controlled synthesis of edta-modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multicarbon products. Nano Lett. 20, 4823–4828 (2020). https://doi.org/10.1021/acs.nanolett.0c00639

    Article  CAS  Google Scholar 

  223. Chen, C.S., Handoko, A.D., Wan, J.H., et al.: Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 5, 161–168 (2015). https://doi.org/10.1039/c4cy00906a

    Article  CAS  Google Scholar 

  224. Qin, T., Qian, Y., Zhang, F., et al.: Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. Chin. Chem. Lett. 30, 314–318 (2019). https://doi.org/10.1016/j.cclet.2018.07.003

    Article  CAS  Google Scholar 

  225. Kim, T., Palmore, G.T.R.: A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products. Nat. Commun. 11, 3622 (2020). https://doi.org/10.1038/s41467-020-16998-9

    Article  CAS  Google Scholar 

  226. Gao, D.F., Sinev, I., Scholten, F., et al.: Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. Angew. Chem. Int. Ed. 58, 17047–17053 (2019). https://doi.org/10.1002/anie.201910155

    Article  CAS  Google Scholar 

  227. Huang, Y., Ong, C.W., Yeo, B.S.: Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 11, 3299–3306 (2018). https://doi.org/10.1002/cssc.201801078

    Article  CAS  Google Scholar 

  228. Bai, H.P., Cheng, T., Li, S.Y., et al.: Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Sci. Bull. 66, 62–68 (2021). https://doi.org/10.1016/j.scib.2020.06.023

    Article  CAS  Google Scholar 

  229. He, J.F., Johnson, N.J.J., Huang, A.X., et al.: Electrocatalytic alloys for CO2 reduction. ChemSusChem 11, 48–57 (2018). https://doi.org/10.1002/cssc.201701825

    Article  CAS  Google Scholar 

  230. Gao, D., Arán-Ais, R.M., Jeon, H.S., et al.: Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5

    Article  CAS  Google Scholar 

  231. Vasileff, A., Xu, C.C., Jiao, Y., et al.: Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001

    Article  CAS  Google Scholar 

  232. Kim, C., Dionigi, F., Beermann, V., et al.: Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 31, 1805617 (2019). https://doi.org/10.1002/adma.201805617

    Article  CAS  Google Scholar 

  233. Clark, E.L., Hahn, C., Jaramillo, T.F., et al.: Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017). https://doi.org/10.1021/jacs.7b08607

    Article  CAS  Google Scholar 

  234. Chang, C.J., Hung, S.F., Hsu, C.S., et al.: Quantitatively unraveling the redox shuttle of spontaneous oxidation/electroreduction of CuOx on silver nanowires using in situ X-ray absorption spectroscopy. ACS Cent. Sci. 5, 1998–2009 (2019). https://doi.org/10.1021/acscentsci.9b01142

    Article  CAS  Google Scholar 

  235. Gao, J., Zhang, H., Guo, X.Y., et al.: Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141, 18704–18714 (2019). https://doi.org/10.1021/jacs.9b07415

    Article  CAS  Google Scholar 

  236. Huang, J.F., Mensi, M., Oveisi, E., et al.: Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019). https://doi.org/10.1021/jacs.8b12381

    Article  CAS  Google Scholar 

  237. Chen, C.B., Li, Y.F., Yu, S., et al.: Cu–Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 4, 1688–1699 (2020). https://doi.org/10.1016/j.joule.2020.07.009

    Article  CAS  Google Scholar 

  238. Dutta, A., Montiel, I.Z., Erni, R., et al.: Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy 68, 104331 (2020). https://doi.org/10.1016/j.nanoen.2019.104331

    Article  CAS  Google Scholar 

  239. Herzog, A., Bergmann, A., Jeon, H.S., et al.: Operando investigation of Ag-decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products. Angew. Chem. Int. Ed. 60, 7426–7435 (2021). https://doi.org/10.1002/anie.202017070

    Article  CAS  Google Scholar 

  240. Wang, X., Wang, Z., Zhuang, T.T., et al.: Efficient upgrading of CO to C3 fuel using asymmetric C–C coupling active sites. Nat. Commun. 10, 5186 (2019). https://doi.org/10.1038/s41467-019-13190-6

    Article  CAS  Google Scholar 

  241. Yang, Y., Ajmal, S., Feng, Y.Q., et al.: Insight into the formation and transfer process of the first intermediate of CO2 reduction over Ag-decorated dendritic Cu. Chem. A Eur. J. 26, 4080–4089 (2020). https://doi.org/10.1002/chem.201904063

    Article  CAS  Google Scholar 

  242. Lv, X.M., Shang, L.M., Zhou, S., et al.: Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols. Adv. Energy Mater. 10, 2001987 (2020). https://doi.org/10.1002/aenm.202001987

    Article  CAS  Google Scholar 

  243. Wang, J.Q., Li, Z., Dong, C.K., et al.: Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 11, 2763–2767 (2019). https://doi.org/10.1021/acsami.8b20545

    Article  CAS  Google Scholar 

  244. Feng, Y., Li, Z., Liu, H., et al.: Laser-prepared CuZn alloy catalyst for selective electrochemical reduction of CO2 to ethylene. Langmuir 34, 13544–13549 (2018). https://doi.org/10.1021/acs.langmuir.8b02837

    Article  CAS  Google Scholar 

  245. Moreno-García, P., Schlegel, N., Zanetti, A., et al.: Selective electrochemical reduction of CO2 to CO on Zn-based foams produced by Cu2+ and template-assisted electrodeposition. ACS Appl. Mater. Interfaces 10, 31355–31365 (2018). https://doi.org/10.1021/acsami.8b09894

    Article  CAS  Google Scholar 

  246. Song, Y.F., Junqueira, J.R.C., Sikdar, N., et al.: B–Cu–Zn gas diffusion electrodes for CO2 electroreduction to C2+ products at high current densities. Angew. Chem. Int. Ed. 60, 9135–9141 (2021). https://doi.org/10.1002/anie.202016898

    Article  CAS  Google Scholar 

  247. Ren, D., Gao, J., Pan, L.F., et al.: Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew. Chem. 131, 15178–15182 (2019). https://doi.org/10.1002/ange.201909610

    Article  Google Scholar 

  248. Wang, R.Z., Jiang, R., Dong, C.K., et al.: Engineering a Cu/ZnOx interface for high methane selectivity in CO2 electrochemical reduction. Ind. Eng. Chem. Res. 60, 273–280 (2021). https://doi.org/10.1021/acs.iecr.0c04718

    Article  CAS  Google Scholar 

  249. Jeon, H.S., Timoshenko, J., Scholten, F., et al.: Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J. Am. Chem. Soc. 141, 19879–19887 (2019). https://doi.org/10.1021/jacs.9b10709

    Article  CAS  Google Scholar 

  250. Hou, L., Han, J.Y., Wang, C., et al.: Ag nanoparticle embedded Cu nanoporous hybrid arrays for the selective electrocatalytic reduction of CO2 towards ethylene. Inorg. Chem. Front. 7, 2097–2106 (2020). https://doi.org/10.1039/d0qi00025f

    Article  CAS  Google Scholar 

  251. Kim, D., Resasco, J., Yu, Y., et al.: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014). https://doi.org/10.1038/ncomms5948

    Article  CAS  Google Scholar 

  252. Kim, D., Xie, C.L., Becknell, N., et al.: Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017). https://doi.org/10.1021/jacs.7b03516

    Article  CAS  Google Scholar 

  253. Chen, Y., Fan, Z.X., Wang, J., et al.: Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. J. Am. Chem. Soc. 142, 12760–12766 (2020). https://doi.org/10.1021/jacs.0c04981

    Article  CAS  Google Scholar 

  254. Shen, S.B., Peng, X.Y., Song, L.D., et al.: AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 15, 1902229 (2019). https://doi.org/10.1002/smll.201902229

    Article  CAS  Google Scholar 

  255. Zhu, W.W., Zhao, K.M., Liu, S.Q., et al.: Low-overpotential selective reduction of CO2 to ethanol on electrodeposited CuxAuy nanowire arrays. J. Energy Chem. 37, 176–182 (2019). https://doi.org/10.1016/j.jechem.2019.03.030

    Article  Google Scholar 

  256. Morales-Guio, C.G., Cave, E.R., Nitopi, S.A., et al.: Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018). https://doi.org/10.1038/s41929-018-0139-9

    Article  CAS  Google Scholar 

  257. Feng, R.T., Zhu, Q.G., Chu, M.G., et al.: Electrodeposited Cu–Pd bimetallic catalysts for the selective electroreduction of CO2 to ethylene. Green Chem. 22, 7560–7565 (2020). https://doi.org/10.1039/d0gc03051a

    Article  CAS  Google Scholar 

  258. Guo, X., Zhang, Y.X., Deng, C., et al.: Composition dependent activity of Cu–Pt nanocrystals for electrochemical reduction of CO2. Chem. Commun. 51, 1345–1348 (2015). https://doi.org/10.1039/c4cc08175g

    Article  CAS  Google Scholar 

  259. Yin, Z., Gao, D.F., Yao, S.Y., et al.: Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 27, 35–43 (2016). https://doi.org/10.1016/j.nanoen.2016.06.035

    Article  CAS  Google Scholar 

  260. Zhang, S., Kang, P., Bakir, M., et al.: Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. PNAS 112, 15809–15814 (2015). https://doi.org/10.1073/pnas.1522496112

    Article  CAS  Google Scholar 

  261. Zhang, X.L., Liu, C.W., Zhao, Y., et al.: Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction. Appl. Catal. B Environ. 291, 120030 (2021). https://doi.org/10.1016/j.apcatb.2021.120030

    Article  CAS  Google Scholar 

  262. Li, X.D., Wang, S.M., Li, L., et al.: Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. (2020). https://doi.org/10.1021/jacs.0c02973

    Article  Google Scholar 

  263. Li, X.X., Blinn, K., Chen, D.C., et al.: In situ and surface-enhanced Raman spectroscopy study of electrode materials in solid oxide fuel cells. Electrochem. Energy Rev. 1, 433–459 (2018). https://doi.org/10.1007/s41918-018-0017-9

    Article  CAS  Google Scholar 

  264. He, M., Li, C., Zhang, H., et al.: Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis. Nat. Commun. 11, 3844 (2020). https://doi.org/10.1038/s41467-020-17690-8

    Article  CAS  Google Scholar 

  265. Wang, Y.H., Wang, Z.Y., Dinh, C.-T., et al.: Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2019). https://doi.org/10.1038/s41929-019-0397-1

    Article  CAS  Google Scholar 

  266. Jiang, S., Klingan, K., Pasquini, C., et al.: New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams. J. Chem. Phys. 150, 041718 (2018). https://doi.org/10.1063/1.5054109

    Article  CAS  Google Scholar 

  267. Yang, Y., Ohnoutek, L., Ajmal, S., et al.: “Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ Raman characterization. J. Mater. Chem. A 7, 11836–11846 (2019). https://doi.org/10.1039/c9ta02288k

    Article  CAS  Google Scholar 

  268. Xu, Z.Z., Liang, Z.B., Guo, W.H., et al.: In situ/operando vibrational spectroscopy for the investigation of advanced nanostructured electrocatalysts. Coord. Chem. Rev. 436, 213824 (2021). https://doi.org/10.1016/j.ccr.2021.213824

    Article  CAS  Google Scholar 

  269. Yang, P.P., Zhang, X.L., Gao, F.Y., et al.: Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 142, 6400–6408 (2020). https://doi.org/10.1021/jacs.0c01699

    Article  CAS  Google Scholar 

  270. Zhong, D.Z., Zhao, Z.J., Zhao, Q., et al.: Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew. Chem. Int. Ed. 60, 4879–4885 (2021). https://doi.org/10.1002/anie.202015159

    Article  CAS  Google Scholar 

  271. Phan, T.H., Banjac, K., Cometto, F.P., et al.: Emergence of potential-controlled Cu-nanocuboids and graphene-covered Cu-nanocuboids under operando CO2 electroreduction. Nano Lett. 21, 2059–2065 (2021). https://doi.org/10.1021/acs.nanolett.0c04703

    Article  CAS  Google Scholar 

  272. Tao, Z.X., Wu, Z.S., Wu, Y.S., et al.: Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 10, 9271–9275 (2020). https://doi.org/10.1021/acscatal.0c02237

    Article  CAS  Google Scholar 

  273. Pan, Z.W.H., Wang, K., Ye, K.H., et al.: Intermediate adsorption states switch to selectively catalyze electrochemical CO2 reduction. ACS Catal. 10, 3871–3880 (2020). https://doi.org/10.1021/acscatal.9b05115

    Article  CAS  Google Scholar 

  274. Li, Y., Xu, A., Lum, Y., et al.: Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nat. Commun. 11, 6190 (2020). https://doi.org/10.1038/s41467-020-20004-7

    Article  CAS  Google Scholar 

  275. Fu, W.L., Liu, Z., Wang, T.Y., et al.: Promoting C2+ production from electrochemical CO2 reduction on shape-controlled cuprous oxide nanocrystals with high-index facets. ACS Sustain. Chem. Eng. 8, 15223–15229 (2020). https://doi.org/10.1021/acssuschemeng.0c04873

    Article  CAS  Google Scholar 

  276. Chen, X.Y., Henckel, D.A., Nwabara, U.O., et al.: Controlling speciation during CO2 reduction on Cu-alloy electrodes. ACS Catal. 10, 672–682 (2020). https://doi.org/10.1021/acscatal.9b04368

    Article  CAS  Google Scholar 

  277. Lee, C.W., Shin, S.J., Jung, H., et al.: Metal-oxide interfaces for selective electrochemical C–C coupling reactions. ACS Energy Lett. 4, 2241–2248 (2019). https://doi.org/10.1021/acsenergylett.9b01721

    Article  CAS  Google Scholar 

  278. Kottakkat, T., Klingan, K., Jiang, S., et al.: Electrodeposited AgCu foam catalysts for enhanced reduction of CO2 to CO. ACS Appl. Mater. Interfaces 11, 14734–14744 (2019). https://doi.org/10.1021/acsami.8b22071

    Article  CAS  Google Scholar 

  279. Jiang, X.X., Wang, X.K., Liu, Z.J., et al.: A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate. Appl. Catal. B Environ. 259, 118040 (2019). https://doi.org/10.1016/j.apcatb.2019.118040

    Article  CAS  Google Scholar 

  280. Deng, Y.L., Huang, Y., Ren, D., et al.: On the role of sulfur for the selective electrochemical reduction of CO2 to formate on CuSx catalysts. ACS Appl. Mater. Interfaces 10, 28572–28581 (2018). https://doi.org/10.1021/acsami.8b08428

    Article  CAS  Google Scholar 

  281. Mandal, L., Yang, K.R., Motapothula, M.R., et al.: Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl. Mater. Interfaces 10, 8574–8584 (2018). https://doi.org/10.1021/acsami.7b15418

    Article  CAS  Google Scholar 

  282. Wu, Z.-Z., Zhang, X.-L., Niu, Z.-Z., et al.: Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144, 259–269 (2022). https://doi.org/10.1021/jacs.1c09508

    Article  CAS  Google Scholar 

  283. Henckel, D.A., Counihan, M.J., Holmes, H.E., et al.: Potential dependence of the local pH in a CO2 reduction electrolyzer. ACS Catal. 11, 255–263 (2021). https://doi.org/10.1021/acscatal.0c04297

    Article  CAS  Google Scholar 

  284. Zhang, Z.S., Melo, L., Jansonius, R.P., et al.: pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 3101–3107 (2020). https://doi.org/10.1021/acsenergylett.0c01606

    Article  CAS  Google Scholar 

  285. Yang, H., Hu, Y.W., Chen, J.J., et al.: CO2 electroreduction: intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 9, 1970107 (2019). https://doi.org/10.1002/aenm.201970107

    Article  CAS  Google Scholar 

  286. Dutta, A., Rahaman, M., Hecker, B., et al.: CO2 electrolysis - complementary operando XRD, XAS and Raman spectroscopy study on the stability of CuxO foam catalysts. J. Catal. 389, 592–603 (2020). https://doi.org/10.1016/j.jcat.2020.06.024

    Article  CAS  Google Scholar 

  287. Handoko, A.D., Wei, F., Jenndy, et al.: Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018). https://doi.org/10.1038/s41929-018-0182-6

    Article  CAS  Google Scholar 

  288. Gunathunge, C.M., Ovalle, V.J., Li, Y.W., et al.: Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 8, 7507–7516 (2018). https://doi.org/10.1021/acscatal.8b01552

    Article  CAS  Google Scholar 

  289. Lee, S., Lee, J.: Ethylene selectivity in CO electroreduction when using Cu oxides: an in situ ATR-SEIRAS study. ChemElectroChem 5, 558–564 (2018). https://doi.org/10.1002/celc.201700892

    Article  CAS  Google Scholar 

  290. Kim, Y., Park, S., Shin, S.J., et al.: Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13, 4301–4311 (2020). https://doi.org/10.1039/d0ee01690j

    Article  CAS  Google Scholar 

  291. Xiong, L.K., Zhang, X., Yuan, H., et al.: Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu–Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem. Int. Ed. 60, 2508–2518 (2021). https://doi.org/10.1002/anie.202012631

    Article  CAS  Google Scholar 

  292. Malkani, A., Dunwell, M., Xu, B.J.: Operando spectroscopic investigations of copper and oxide-derived copper catalysts for electrochemical CO reduction. ACS Catal. 9, 474–478 (2019). https://doi.org/10.1021/acscatal.8b04269

    Article  CAS  Google Scholar 

  293. Hori, Y., Koga, O., Watanabe, Y., et al.: FTIR measurements of charge displacement adsorption of CO on poly- and single crystal (100) of Cu electrodes. Electrochim. Acta 44, 1389–1395 (1998). https://doi.org/10.1016/S0013-4686(98)00261-8

    Article  CAS  Google Scholar 

  294. Zhu, S.Q., Jiang, B., Cai, W.B., et al.: Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017). https://doi.org/10.1021/jacs.7b10462

    Article  CAS  Google Scholar 

  295. Katayama, Y., Nattino, F., Giordano, L., et al.: An In situ surface-enhanced infrared absorption spectroscopy study of electrochemical CO2 reduction: selectivity dependence on surface C-bound and O-bound reaction intermediates. J. Phys. Chem. C 123, 5951–5963 (2019). https://doi.org/10.1021/acs.jpcc.8b09598

    Article  CAS  Google Scholar 

  296. Li, J.K., Gong, J.L.: Operando characterization techniques for electrocatalysis. Energy Environ. Sci. 13, 3748–3779 (2020). https://doi.org/10.1039/d0ee01706j

    Article  CAS  Google Scholar 

  297. Zhang, W., Huang, C.Q., Xiao, Q., et al.: Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 142, 11417–11427 (2020). https://doi.org/10.1021/jacs.0c01562

    Article  CAS  Google Scholar 

  298. Yao, K.L., Xia, Y.J., Li, J., et al.: Metal-organic framework derived copper catalysts for CO2 to ethylene conversion. J. Mater. Chem. A 8, 11117–11123 (2020). https://doi.org/10.1039/d0ta02395g

    Article  CAS  Google Scholar 

  299. Wu, Y.H., Chen, C.J., Yan, X.P., et al.: Effect of the coordination environment of Cu in Cu2O on the electroreduction of CO2 to ethylene. Green Chem. 22, 6340–6344 (2020). https://doi.org/10.1039/d0gc02842h

    Article  CAS  Google Scholar 

  300. Tan, D.X., Zhang, J.L., Yao, L., et al.: Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 13, 768–774 (2020). https://doi.org/10.1007/s12274-020-2692-1

    Article  CAS  Google Scholar 

  301. Gu, Z.X., Yang, N., Han, P., et al.: Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods. 3, 1800449 (2018). https://doi.org/10.1002/smtd.201800449

    Article  CAS  Google Scholar 

  302. Scholten, F., Sinev, I., Bernal, M., et al.: Plasma-modified dendritic Cu catalyst for CO2 electroreduction. ACS Catal. 9, 5496–5502 (2019). https://doi.org/10.1021/acscatal.9b00483

    Article  CAS  Google Scholar 

  303. Li, J., Che, F., Pang, Y., et al.: Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018). https://doi.org/10.1038/s41467-018-07032-0

    Article  CAS  Google Scholar 

  304. Pang, Y., Li, J., Wang, Z., et al.: Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019). https://doi.org/10.1038/s41929-019-0225-7

    Article  CAS  Google Scholar 

  305. Bernal, M., Bagger, A., Scholten, F., et al.: CO2 electroreduction on copper-cobalt nanoparticles: size and composition effect. Nano Energy 53, 27–36 (2018). https://doi.org/10.1016/j.nanoen.2018.08.027

    Article  CAS  Google Scholar 

  306. Luo, M., Wang, Z., Li, Y.C., et al.: Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10, 5814 (2019). https://doi.org/10.1038/s41467-019-13833-8

    Article  CAS  Google Scholar 

  307. Weng, Z., Wu, Y., Wang, M., et al.: Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018). https://doi.org/10.1038/s41467-018-02819-7

    Article  CAS  Google Scholar 

  308. Karapinar, D., Zitolo, A., Huan, T.N., et al.: Carbon-nanotube-supported copper polyphthalocyanine for efficient and selective electrocatalytic CO2 reduction to CO. ChemSusChem 13, 173–179 (2020). https://doi.org/10.1002/cssc.201902859

    Article  CAS  Google Scholar 

  309. Ma, L.S., Hu, W.B., Mei, B.B., et al.: Covalent triazine framework confined copper catalysts for selective electrochemical CO2 reduction: operando diagnosis of active sites. ACS Catal. 10, 4534–4542 (2020). https://doi.org/10.1021/acscatal.0c00243

    Article  CAS  Google Scholar 

  310. Liang, Z.Q., Zhuang, T.T., Seifitokaldani, A., et al.: Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 9, 3828 (2018). https://doi.org/10.1038/s41467-018-06311-0

    Article  CAS  Google Scholar 

  311. Yin, Z.Y., Yu, C., Zhao, Z.L., et al.: Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 19, 8658–8663 (2019). https://doi.org/10.1021/acs.nanolett.9b03324

    Article  CAS  Google Scholar 

  312. Mi, Y.Y., Shen, S.B., Peng, X.Y., et al.: Selective electroreduction of CO2 to C2 products over Cu3N–derived Cu nanowires. ChemElectroChem 6, 2393–2397 (2019). https://doi.org/10.1002/celc.201801826

    Article  CAS  Google Scholar 

  313. He, C.H., Duan, D.L., Low, J., et al.: Cu2−xS derived copper nanoparticles: a platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3532-7

    Article  Google Scholar 

  314. Clark, E.L., Wong, J., Garza, A.J., et al.: Explaining the incorporation of oxygen derived from solvent water into the oxygenated products of CO reduction over Cu. J. Am. Chem. Soc. 141, 4191–4193 (2019). https://doi.org/10.1021/jacs.8b13201

    Article  CAS  Google Scholar 

  315. Jouny, M., Hutchings, G.S., Jiao, F.: Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019). https://doi.org/10.1038/s41929-019-0388-2

    Article  CAS  Google Scholar 

  316. Dunwell, M., Lu, Q., Heyes, J.M., et al.: The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017). https://doi.org/10.1021/jacs.6b13287

    Article  CAS  Google Scholar 

  317. Iijima, G., Inomata, T., Yamaguchi, H., et al.: Role of a hydroxide layer on Cu electrodes in electrochemical CO2 reduction. ACS Catal. 9, 6305–6319 (2019). https://doi.org/10.1021/acscatal.9b00896

    Article  CAS  Google Scholar 

  318. Lee, S.Y., Chae, S.Y., Jung, H., et al.: Controlling the C2+ product selectivity of electrochemical CO2 reduction on an electrosprayed Cu catalyst. J. Mater. Chem. A 8, 6210–6218 (2020). https://doi.org/10.1039/c9ta13173f

    Article  CAS  Google Scholar 

  319. Wang, X., de Araújo, J.F., Ju, W., et al.: Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnology 14, 1063–1070 (2019). https://doi.org/10.1038/s41565-019-0551-6

    Article  CAS  Google Scholar 

  320. Williams, K., Corbin, N., Zeng, J., et al.: Protecting effect of mass transport during electrochemical reduction of oxygenated carbon dioxide feedstocks. Sustain. Energy Fuels 3, 1225–1232 (2019). https://doi.org/10.1039/c9se00024k

    Article  CAS  Google Scholar 

  321. Ma, W., Xie, S., Zhang, X.G., et al.: Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 10, 892 (2019). https://doi.org/10.1038/s41467-019-08805-x

    Article  CAS  Google Scholar 

  322. Lin, L., Li, H.B., Yan, C.C., et al.: Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31, 1903470 (2019). https://doi.org/10.1002/adma.201903470

    Article  CAS  Google Scholar 

  323. Wang, J.J., Kattel, S., Hawxhurst, C.J., et al.: Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew. Chem. Int. Ed. 58, 6271–6275 (2019). https://doi.org/10.1002/anie.201900781

    Article  CAS  Google Scholar 

  324. Luo, W.J., Nie, X.W., Janik, M.J., et al.: Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016). https://doi.org/10.1021/acscatal.5b01967

    Article  CAS  Google Scholar 

  325. Nie, X.W., Luo, W.J., Janik, M.J., et al.: Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J. Catal. 312, 108–122 (2014). https://doi.org/10.1016/j.jcat.2014.01.013

    Article  CAS  Google Scholar 

  326. Liu, S.P., Zhao, M., Gao, W., et al.: Mechanistic insights into the unique role of copper in CO2 electroreduction reactions. ChemSusChem 10, 387–393 (2017). https://doi.org/10.1002/cssc.201601144

    Article  CAS  Google Scholar 

  327. Cheng, T., Fortunelli, A., Goddard, W.A., III.: Reaction intermediates during operando electrocatalysis identified from full solvent quantum mechanics molecular dynamics. PNAS 116, 7718–7722 (2019). https://doi.org/10.1073/pnas.1821709116

    Article  CAS  Google Scholar 

  328. Li, Y.W., Sun, Q.: Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6, 1600463 (2016). https://doi.org/10.1002/aenm.201600463

    Article  CAS  Google Scholar 

  329. Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C., et al.: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y

    Article  CAS  Google Scholar 

  330. Calle-Vallejo, F., Koper, M.T.M.: Accounting for bifurcating pathways in the screening for CO2 reduction catalysts. ACS Catal. 7, 7346–7351 (2017). https://doi.org/10.1021/acscatal.7b02917

    Article  CAS  Google Scholar 

  331. Cheng, T., Xiao, H., Goddard, W.A., III.: Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0. J. Phys. Chem. Lett. 6, 4767–4773 (2015). https://doi.org/10.1021/acs.jpclett.5b02247

    Article  CAS  Google Scholar 

  332. Nie, X.W., Esopi, M.R., Janik, M.J., et al.: Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52, 2459–2462 (2013). https://doi.org/10.1002/anie.201208320

    Article  CAS  Google Scholar 

  333. Hussain, J., Jónsson, H., Skúlason, E.: Calculations of product selectivity in electrochemical CO2 reduction. ACS Catal. 8, 5240–5249 (2018). https://doi.org/10.1021/acscatal.7b03308

    Article  CAS  Google Scholar 

  334. Lim, D.H., Jo, J.H., Shin, D.Y., et al.: Carbon dioxide conversion into hydrocarbon fuels on defective graphene-supported Cu nanoparticles from first principles. Nanoscale 6, 5087–5092 (2014). https://doi.org/10.1039/c3nr06539a

    Article  CAS  Google Scholar 

  335. Liu, S.G., Huang, S.P.: Size effects and active sites of Cu nanoparticle catalysts for CO2 electroreduction. Appl. Surf. Sci. 475, 20–27 (2019). https://doi.org/10.1016/j.apsusc.2018.12.251

    Article  CAS  Google Scholar 

  336. Bu, Y.F., Zhao, M., Zhang, G.X., et al.: Electroreduction of CO2 on Cu clusters: the effects of size, symmetry, and temperature. ChemElectroChem 6, 1831–1837 (2019). https://doi.org/10.1002/celc.201801830

    Article  CAS  Google Scholar 

  337. Cheng, T., Xiao, H., Goddard, W.A., III.: Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. U.S.A. 114, 1795–1800 (2017). https://doi.org/10.1073/pnas.1612106114

    Article  CAS  Google Scholar 

  338. Rawat, K.S., Mahata, A., Pathak, B.: Thermochemical and electrochemical CO2 reduction on octahedral Cu nanocluster: role of solvent towards product selectivity. J. Catal. 349, 118–127 (2017). https://doi.org/10.1016/j.jcat.2017.03.011

    Article  CAS  Google Scholar 

  339. Xiang, S.Q., Shi, J.L., Gao, S.T., et al.: Thermodynamic and kinetic competition between C–H and O–H bond formation pathways during electrochemical reduction of CO on copper electrodes. ACS Catal. 11, 2422–2434 (2021). https://doi.org/10.1021/acscatal.0c05472

    Article  CAS  Google Scholar 

  340. Sandberg, R.B., Montoya, J.H., Chan, K.R., et al.: CO–CO coupling on Cu facets: coverage, strain and field effects. Surface Sci. 654, 56–62 (2016). https://doi.org/10.1016/j.susc.2016.08.006

    Article  CAS  Google Scholar 

  341. Huang, Y., Handoko, A.D., Hirunsit, P., et al.: Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017). https://doi.org/10.1021/acscatal.6b03147

    Article  CAS  Google Scholar 

  342. Montoya, J.H., Peterson, A.A., Nørskov, J.K.: Insights into C–C coupling in CO2 electroreduction on copper electrodes. ChemCatChem 5, 737–742 (2013). https://doi.org/10.1002/cctc.201200564

    Article  CAS  Google Scholar 

  343. Li, J., Wang, Z., McCallum, C., et al.: Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019). https://doi.org/10.1038/s41929-019-0380-x

    Article  CAS  Google Scholar 

  344. Chang, X.X., Li, J., Xiong, H.C., et al.: C–C coupling is unlikely to be the rate-determining step in the formation of C2+ products in the copper-catalyzed electrochemical reduction of CO. Angew. Chem. Int. Ed. 61, e202111167 (2022). https://doi.org/10.1002/anie.202111167

    Article  CAS  Google Scholar 

  345. Cheng, D., Zhao, Z.J., Zhang, G., et al.: The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nat. Commun. 12, 395 (2021). https://doi.org/10.1038/s41467-020-20615-0

    Article  CAS  Google Scholar 

  346. Piqué, O., Low, Q.H., Handoko, A.D., et al.: Selectivity map for the late stages of CO and CO2 reduction to C2 species on copper electrodes. Angew. Chem. Int. Ed. 60, 10784–10790 (2021). https://doi.org/10.1002/anie.202014060

    Article  CAS  Google Scholar 

  347. Xiao, H., Cheng, T., Goddard, W.A., III.: Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017). https://doi.org/10.1021/jacs.6b06846

    Article  CAS  Google Scholar 

  348. Chen, R.X., Su, H.Y., Liu, D.Y., et al.: Highly selective production of ethylene by the electroreduction of carbon monoxide. Angew. Chem. Int. Ed. 59, 154–160 (2020). https://doi.org/10.1002/anie.201910662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation (NNSF) of China (U21A20312, 21975162, and 21574084), Shenzhen Science and Technology Program (JCYJ20200109105803806, RCYX20200714114535052, and JCYJ20190808142219049) and Science & Technology Research Program of Chongqing University of Arts and Sciences (R2021SDQ06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Hu or Chuanxin He.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethics Approval and Consent to Participate

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hu, Q., Li, G. et al. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. Electrochem. Energy Rev. 5 (Suppl 2), 28 (2022). https://doi.org/10.1007/s41918-022-00171-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00171-5

Keywords

Navigation