Skip to main content
Log in

Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts

铜基单原子催化剂电催化还原二氧化碳的研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Electrochemical CO2 reduction reaction (CO2RR) is a critical route to reduce the concentration of CO2 in the atmosphere and solve the energy crisis by converting CO2 into high-value chemicals and fuels. It is therefore crucial to rationally design efficient and cost-effective electrochemical catalysts. Copper (Cu) is found to be an excellent metal catalyst that can reduce CO2 to hydrocarbons and alcohols, especially C2+ products. However, there exist some problems (such as high overpotential and poor selectivity in CO2RR) that limit the application of Cu-based catalysts. In recent years, single-atom catalysts (SACs) have become an emerging research frontier in the field of heterogeneous catalysis due to their potential high activity, selectivity, and stability. Herein, the recent progress of various Cu-based SACs for CO2RR has been reviewed, especially on the regulatory strategies for the interaction of the active site with key reaction intermediates. This interaction is important for designing the active site to optimize the multi-electron reduction step and improve the catalytic performance. Meanwhile, different design strategies, including the regulation of metal centers, Cu-based single-atom alloy catalysts (SAAs), non-metal SACs, tandem catalysts, and composite catalysts, have also been discussed. Finally, the current research challenges and future developments of SACs in CO2RR have been summarized.

摘要

电化学二氧化碳还原反应(CO2RR)通过将CO2转化为高价值化学品和燃料来降低其在大气中的浓度, 是解决能源危机的重要途径. 因此, 合理设计高效、 经济的电化学催化剂至关重要. 研究发现, 铜(Cu)是一种性能优越的金属催化剂, 可将CO2还原成碳氢化合物和醇类, 尤其是C2+产物. 然而, Cu催化剂也存在一定问题(如过电位高和CO2RR选择性差等), 从而限制了其应用. 近年来, 单原子催化剂(SACs)因其具有高活性、高选择性和高稳定性, 已成为异相催化剂领域的新兴研究前沿. 本文总结了CO2RR的各种铜基SACs的最新研究进展, 尤其是活性位点与关键反应中间产物相互作用的调控策略. 这种相互作用对于设计活性位点以及优化多电子还原步骤和提高催化性能非常重要. 同时, 本文还讨论了金属中心调控、 铜基单原子合金催化剂、非金属SACs、 串联催化剂和复合催化剂等研究前沿. 最后, 总结了SACs应用于CO2RR的挑战与展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hepburn C, Adlen E, Beddington J, et al. The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575: 87–97

    CAS  Google Scholar 

  2. Zhu P, Wang H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat Catal, 2021, 4: 943–951

    CAS  Google Scholar 

  3. Garba MD, Usman M, Khan S, et al. CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons. J Environ Chem Eng, 2021, 9: 104756

    CAS  Google Scholar 

  4. Ni Z, Liang H, Yi Z, et al. Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products. Coord Chem Rev, 2021, 441: 213983

    CAS  Google Scholar 

  5. Ye W, Guo X, Ma T. A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products. Chem Eng J, 2021, 414: 128825–128841

    CAS  Google Scholar 

  6. De Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science, 2019, 364: eaav3506

    CAS  Google Scholar 

  7. Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal, 2019, 2: 648–658

    CAS  Google Scholar 

  8. Wang X, Niu H, Liu Y, et al. Theoretical investigation on graphene-supported single-atom catalysts for electrochemical CO2 reduction. Catal Sci Technol, 2020, 10: 8465–8472

    CAS  Google Scholar 

  9. Zhang T, Verma S, Kim S, et al. Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane. J Electroanal Chem, 2020, 875: 113862–113868

    CAS  Google Scholar 

  10. Zhou JH, Zhang YW. Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: Mechanisms, recent advances and perspective. React Chem Eng, 2018, 3: 591–625

    CAS  Google Scholar 

  11. Yue Z, Ou C, Ding N, et al. Advances in metal phthalocyanine based carbon composites for electrocatalytic CO2 reduction. ChemCatChem, 2020, 12: 6103–6130

    CAS  Google Scholar 

  12. Xie H, Wang T, Liang J, et al. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 2018, 21: 41–54

    Google Scholar 

  13. Zhang B, Zhang J. Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. J Energy Chem, 2017, 26: 1050–1066

    Google Scholar 

  14. Yang Q, Jiang Y, Zhuo H, et al. Recent progress of metal single-atom catalysts for energy applications. Nano Energy, 2023, 111: 108404

    CAS  Google Scholar 

  15. Rong P, Jiang YF, Wang Q, et al. Photocatalytic degradation of methylene blue (MB) with Cu1-ZnO single atom catalysts on graphenecoated flexible substrates. J Mater Chem A, 2022, 10: 6231–6241

    CAS  Google Scholar 

  16. Knezevic M, Hoang TH, Rashid N, et al. Recent development in metal halide perovskites synthesis to improve their charge-carrier mobility and photocatalytic efficiency. Sci China Mater, 2023, 66: 2545–2572

    CAS  Google Scholar 

  17. Yang D, Ni B, Wang X. Heterogeneous catalysts with well-defined active metal sites toward CO2 electrocatalytic reduction. Adv Energy Mater, 2020, 10: 2001142

    CAS  Google Scholar 

  18. Yuan JJ, Li HD, Wang QL, et al. Fabrication, characterization, and photocatalytic activity of double-layer TiO2 nanosheet films. Mater Lett, 2012, 81: 123–126

    CAS  Google Scholar 

  19. Yu Q, Lin R, Jiang L, et al. Fabrication and photocatalysis of ZnO nanotubes on transparent conductive graphene-based flexible substrates. Sci China Mater, 2018, 61: 1007–1011

    CAS  Google Scholar 

  20. Li LA, Cheng SH, Li HD, et al. Effect of nitrogen on deposition and field emission properties of boron-doped micro- and nano-crystalline diamond films. Nano-Micro Lett, 2010, 2: 154–159

    CAS  Google Scholar 

  21. Yu Q, Jiang L, Gao S, et al. The highly efficient photocatalysts of B-doped ZnO microspheres synthesized on PET-ITO flexible substrate. Ceramics Int, 2017, 43: 2864–2866

    CAS  Google Scholar 

  22. Yu Q, Ai T, Jiang L, et al. Efficient energy transfer in Eu-doped ZnO on diamond film. RSC Adv, 2014, 4: 53946–53949

    CAS  Google Scholar 

  23. Hülsey MJ, Baskaran S, Ding S, et al. Identifying key descriptors for the single-atom catalyzed CO oxidation. CCS Chem, 2022, 4: 3296–3308

    Google Scholar 

  24. Zhou Y, Shen X, Wang M, et al. The understanding, rational design, and application of high-entropy alloys as excellent electrocatalysts: A review. Sci China Mater, 2023, 66: 2527–2544

    Google Scholar 

  25. Meng Y, Kuang S, Liu H, et al. Recent advances in electrochemical CO2 reduction using copperbased catalysts. Acta Physico Chim Sin, 2020, 0: 2006034–0

    Google Scholar 

  26. Wang JJ, Li XP, Cui BF, et al. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met, 2021, 40: 3019–3037

    CAS  Google Scholar 

  27. Kim C, Bui JC, Luo X, et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat Energy, 2021, 6: 1026–1034

    CAS  Google Scholar 

  28. Liu X, Zhu L, Wang H, et al. Catalysis performance comparison for electrochemical reduction of CO2 on Pd-Cu/graphene catalyst. RSC Adv, 2016, 6: 38380–38387

    CAS  Google Scholar 

  29. Al-Saydeh SA, Zaidi SJ, El-Naas MH. Conversion of carbon dioxide: Opportunities and fundamental challenges. Am J Eng Appl Sci, 2018, 11: 138–153

    Google Scholar 

  30. Chen Y, Chen K, Fu J, et al. Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. Nano Mater Sci, 2020, 2: 235–247

    Google Scholar 

  31. Yu Q, Jiang J, Jiang L, et al. Advances in green synthesis and applications of graphene. Nano Res, 2021, 14: 3724–3743

    CAS  Google Scholar 

  32. Yu Q, Li H, Wang Q, et al. Hydrothermal synthesis, characterization and properties of boron-doped ZnO sheets grown on p-diamond film. Mater Lett, 2014, 128: 284–286

    CAS  Google Scholar 

  33. Zhang W, Jiang M, Yang S, et al. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Res Energy, 2022, 1: e9120033

    Google Scholar 

  34. Li L, Hasan IM, Qiao J, et al. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res Energy, 2022, 1: e9120015

    Google Scholar 

  35. Sun K, Ji Y, Liu Y, et al. Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO2 electrochemical reduction. J Mater Chem A, 2020, 8: 12291–12295

    CAS  Google Scholar 

  36. Goyal A, Marcandalli G, Mints VA, et al. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J Am Chem Soc, 2020, 142: 4154–4161

    CAS  Google Scholar 

  37. Liu G, Ariyarathna IR, Zhu Z, et al. Molecular-level electrocatalytic CO2 reduction reaction mediated by single platinum atoms. Phys Chem Chem Phys, 2022, 24: 4226–4231

    CAS  Google Scholar 

  38. He Q, Lee JH, Liu D, et al. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv Funct Mater, 2020, 30: 2000407

    CAS  Google Scholar 

  39. Hori Y, Wakebe H, Tsukamoto T, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta, 1994, 39: 1833–1839

    CAS  Google Scholar 

  40. Yu Q. Theoretical studies of non-noble metal single-atom catalyst Ni1//MoS2: Electronic structure and electrocatalytic CO2 reduction. Sci China Mater, 2023, 66: 1079–1088

    CAS  Google Scholar 

  41. Kuhl KP, Hatsukade T, Cave ER, et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc, 2014, 136: 14107–14113

    CAS  Google Scholar 

  42. Zoubir O, Atourki L, Ait Ahsaine H, et al. Current state of copper-based bimetallic materials for electrochemical CO2 reduction: A review. RSC Adv, 2022, 12: 30056–30075

    CAS  Google Scholar 

  43. Ma W, He X, Wang W, et al. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem Soc Rev, 2021, 50: 12897–12914

    CAS  Google Scholar 

  44. Zhao Z, Lu G. Cu-based single-atom catalysts boost electroreduction of CO2 to CH3OH: First-principles predictions. J Phys Chem C, 2019, 123: 4380–4387

    CAS  Google Scholar 

  45. Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev, 2019, 119: 7610–7672

    CAS  Google Scholar 

  46. Liu J, Duan S, Xu J, et al. Catalysis by supported single metal atoms. Microsc Microanal, 2016, 22: 860–861

    Google Scholar 

  47. Wang Y, Chen Z, Han P, et al. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal, 2018, 8: 7113–7119

    CAS  Google Scholar 

  48. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641

    CAS  Google Scholar 

  49. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem, 2018, 2: 65–81

    CAS  Google Scholar 

  50. Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, et al. Single-atom alloy catalysis. Chem Rev, 2020, 120: 12044–12088

    CAS  Google Scholar 

  51. Back S, Lim J, Kim NY, et al. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem Sci, 2017, 8: 1090–1096

    CAS  Google Scholar 

  52. Pei G, Liu X, Chai M, et al. Isolation of Pd atoms by Cu for semihydrogenation of acetylene: Effects of Cu loading. Chin J Catal, 2017, 38: 1540–1548

    CAS  Google Scholar 

  53. Huang F, Deng Y, Chen Y, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J Am Chem Soc, 2018, 140: 13142–13146

    CAS  Google Scholar 

  54. Liu W, Zhang L, Liu X, et al. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C–H bond. J Am Chem Soc, 2017, 139: 10790–10798

    CAS  Google Scholar 

  55. Sun Q, Wang X, Wang H, et al. Crystal facet effects of platinum single-atom catalysts in hydrolytic dehydrogenation of ammonia borane. J Mater Chem A, 2022, 10: 10837–10843

    CAS  Google Scholar 

  56. Lin L, Zhou W, Gao R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature, 2017, 544: 80–83

    CAS  Google Scholar 

  57. Guo X, Fang G, Li G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science, 2014, 344: 616–619

    CAS  Google Scholar 

  58. Cao S, Yang M, Elnabawy AO, et al. Single-atom gold oxo-clusters prepared in alkaline solutions catalyse the heterogeneous methanol self-coupling reactions. Nat Chem, 2019, 11: 1098–1105

    CAS  Google Scholar 

  59. Lv M, Guo H, Shen H, et al. Fe3C cluster-promoted single-atom Fe, N doped carbon for oxygen-reduction reaction. Phys Chem Chem Phys, 2020, 22: 7218–7223

    CAS  Google Scholar 

  60. Chen S, Zhang N, Narváez Villarrubia CW, et al. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy, 2019, 66: 104164

    CAS  Google Scholar 

  61. Zhou HY, Li JC, Wen Z, et al. Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping. Phys Chem Chem Phys, 2019, 21: 14583–14588

    CAS  Google Scholar 

  62. Yang Y, Xue XX, Chen Q, et al. Doping single transition metal atom into PtTe sheet for catalyzing nitrogen reduction and hydrogen evolution reactions. J Chem Phys, 2019, 151: 144710

    Google Scholar 

  63. Ye S, Luo F, Zhang Q, et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ Sci, 2019, 12: 1000–1007

    CAS  Google Scholar 

  64. Wu J, Han N, Ning S, et al. Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustain Chem Eng, 2020, 8: 14825–14832

    CAS  Google Scholar 

  65. Yang HB, Hung SF, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy, 2018, 3: 140–147

    CAS  Google Scholar 

  66. Xiong Y, Dong J, Huang ZQ, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol, 2020, 15: 390–397

    CAS  Google Scholar 

  67. Gu H, Wu J, Zhang L. Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Res, 2022, 15: 9747–9763

    CAS  Google Scholar 

  68. Ren S, Yu Q, Yu X, et al. Graphene-supported metal single-atom catalysts: A concise review. Sci China Mater, 2020, 63: 903–920

    CAS  Google Scholar 

  69. Feng S, Yu Q, Ma X, et al. Hydroformylation over polyoxometalates supported single-atom Rh catalysts. NSO, 2023, 2: 20220064

    Google Scholar 

  70. Mitchell S, Vorobyeva E, Pérez-Ramírez J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew Chem Int Ed, 2018, 57: 15316–15329

    CAS  Google Scholar 

  71. Zhang B, Zhang J, Zhang F, et al. Selenium-doped hierarchically porous carbon nanosheets as an efficient metal-free electrocatalyst for CO2 reduction. Adv Funct Mater, 2020, 30: 1906194

    CAS  Google Scholar 

  72. Bai X, Zhao X, Zhang Y, et al. Dynamic stability of copper single-atom catalysts under working conditions. J Am Chem Soc, 2022, 144: 17140–17148

    CAS  Google Scholar 

  73. Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc Chem Res, 2013, 46: 1740–1748

    CAS  Google Scholar 

  74. Xue D, Xia H, Yan W, et al. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett, 2021, 13: 5

    Google Scholar 

  75. Liu H, Zhu Y, Ma J, et al. Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv Funct Mater, 2020, 30: 1910534

    CAS  Google Scholar 

  76. Kortlever R, Shen J, Schouten KJP, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett, 2015, 6: 4073–4082

    CAS  Google Scholar 

  77. Yang C, Chai J, Wang Z, et al. Recent progress on bismuth-based nanomaterials for electrocatalytic carbon dioxide reduction. Chem Res Chin Univ, 2020, 36: 410–419

    CAS  Google Scholar 

  78. Zhang YJ, Sethuraman V, Michalsky R, et al. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal, 2014, 4: 3742–3748

    CAS  Google Scholar 

  79. Zong X, Jin Y, Liu C, et al. Electrospun nanofibers for electrochemical reduction of CO2: A mini review. Electrochem Commun, 2021, 124: 106968

    CAS  Google Scholar 

  80. Xiao C, Zhang J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A review. ACS Nano, 2021, 15: 7975–8000

    CAS  Google Scholar 

  81. Zhang X, Huang H, Jin H, et al. Progress of the electrochemical reduction of CO2 in aqueous electrolyte. Chem Ind Eng Pro, 2015, 34: 4139–4144

    CAS  Google Scholar 

  82. Han N, Ding P, He L, et al. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater, 2019, 10: 1902338

    Google Scholar 

  83. Zhang B, Zhang B, Jiang Y, et al. Single-atom electrocatalysts for multi-electron reduction of CO2. Small, 2021, 17: 2101443

    CAS  Google Scholar 

  84. Wang F, Zhang W, Wan H, et al. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. Chin Chem Lett, 2022, 33: 2259–2269

    Google Scholar 

  85. Wang Y, Liu J, Wang Y, et al. Tuning of CO2 reduction selectivity on metal electrocatalysts. Small, 2017, 13: 1701809

    Google Scholar 

  86. Tan X, Yu C, Ren Y, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ Sci, 2021, 14: 765–780

    CAS  Google Scholar 

  87. Wang G, Chen J, Ding Y, et al. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem Soc Rev, 2021, 50: 4993–5061

    CAS  Google Scholar 

  88. Umegaki T, Kojima Y, Omata K. Influence of pore structure of silica coated on copper-zinc oxide-based catalyst for carbon dioxide into methanol. Top Catal, 2021, 64: 576–581

    CAS  Google Scholar 

  89. Sun D, Xu X, Qin Y, et al. Rational design of Ag-based catalysts for the electrochemical CO2 reduction to CO: A review. ChemSusChem, 2020, 13: 39–58

    CAS  Google Scholar 

  90. Malik K, Singh S, Basu S, et al. Electrochemical reduction of CO2 for synthesis of green fuel. WIREs Energy Environ, 2017, 6: e244

    Google Scholar 

  91. Chen Q, Tsiakaras P, Shen P. Electrochemical reduction of carbon dioxide: Recent advances on Au-based nanocatalysts. Catalysts, 2022, 12: 1348

    CAS  Google Scholar 

  92. Li P, Bi J, Liu J, et al. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat Commun, 2022, 13: 1965

    CAS  Google Scholar 

  93. Wang Y, Han P, Lv X, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule, 2018, 2: 2551–2582

    CAS  Google Scholar 

  94. Sun Z, Ma T, Tao H, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 2017, 3: 560–587

    CAS  Google Scholar 

  95. Zhao Z, Zhang J, Lei M, et al. Reviewing the impact of halides on electrochemical CO2 reduction. Nano Res Energy, 2023, 2: e9120044

    Google Scholar 

  96. Jiang L, Yang Q, Xia Z, et al. Recent progress of theoretical studies on electro- and photo-chemical conversion of CO2 with single-atom catalysts. RSC Adv, 2023, 13: 5833–5850

    CAS  Google Scholar 

  97. Weng Z, Jiang J, Wu Y, et al. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J Am Chem Soc, 2016, 138: 8076–8079

    CAS  Google Scholar 

  98. Cai Y, Fu J, Zhou Y, et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat Commun, 2021, 12: 586

    CAS  Google Scholar 

  99. Guan A, Chen Z, Quan Y, et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett, 2020, 5: 1044–1053

    CAS  Google Scholar 

  100. Karapinar D, Huan NT, Ranjbar Sahraie N, et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew Chem Int Ed, 2019, 58: 15098–15103

    CAS  Google Scholar 

  101. Ye K, Cao A, Shao J, et al. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Sci Bull, 2020, 65: 711–719

    CAS  Google Scholar 

  102. Zheng T, Liu C, Guo C, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat Nanotechnol, 2021, 16: 1386–1393

    CAS  Google Scholar 

  103. Li J, Zeng H, Dong X, et al. Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nat Commun, 2023, 14: 340

    CAS  Google Scholar 

  104. Li YC, Wang Z, Yuan T, et al. Binding site diversity promotes CO2 electroreduction to ethanol. J Am Chem Soc, 2019, 141: 8584–8591

    CAS  Google Scholar 

  105. Ren D, Gao J, Pan L, et al. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew Chem Int Ed, 2019, 58: 15036–15040

    CAS  Google Scholar 

  106. Vasileff A, Zhu Y, Zhi X, et al. Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate. Angew Chem Int Ed, 2020, 59: 19362

    CAS  Google Scholar 

  107. Zhou Y, Che F, Liu M, et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat Chem, 2018, 10: 974–980

    CAS  Google Scholar 

  108. Ma W, Xie S, Liu T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat Catal, 2020, 3: 478–487

    CAS  Google Scholar 

  109. Meng DL, Zhang MD, Si DH, et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew Chem Int Ed, 2021, 60: 25485–25492

    CAS  Google Scholar 

  110. Xu C, Zhi X, Vasileff A, et al. Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts. Small Struct, 2020, 2: 2000058

    Google Scholar 

  111. Chen D, Zhang LH, Du J, et al. A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu-S1N3 catalysts via integration with Cu nanoclusters. Angew Chem Int Ed, 2021, 60: 24022–24027

    CAS  Google Scholar 

  112. Yang H, Wu Y, Li G, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J Am Chem Soc, 2019, 141: 12717–12723

    CAS  Google Scholar 

  113. Shi G, Xie Y, Du L, et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4. Angew Chem Int Ed, 2022, 61: e202203569

    CAS  Google Scholar 

  114. Jung E, Shin H, Lee BH, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat Mater, 2020, 19: 436–442

    CAS  Google Scholar 

  115. Gu J, Peng Y, Zhou T, et al. Porphyrin-based framework materials for energy conversion. Nano Res Energy, 2022, 1: e9120009

    Google Scholar 

  116. Jeon HS, Kunze S, Scholten F, et al. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal, 2018, 8: 531–535

    CAS  Google Scholar 

  117. Gao D, Sinev I, Scholten F, et al. Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. Angew Chem Int Ed, 2019, 58: 17047–17053

    CAS  Google Scholar 

  118. Zhao Y, Yang KR, Wang Z, et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc Natl Acad Sci USA, 2018, 115: 2902–2907

    CAS  Google Scholar 

  119. Chen ZW, Chen LX, Yang CC, et al. Atomic (single, double, and triple atoms) catalysis: Frontiers, opportunities, and challenges. J Mater Chem A, 2019, 7: 3492–3515

    CAS  Google Scholar 

  120. Cao L, Luo Q, Liu W, et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat Catal, 2018, 2: 134–141

    Google Scholar 

  121. Bergmann A, Jones TE, Martinez Moreno E, et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat Catal, 2018, 1: 711–719

    CAS  Google Scholar 

  122. Jirkovský JS, Panas I, Ahlberg E, et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J Am Chem Soc, 2011, 133: 19432–19441

    Google Scholar 

  123. Qin R, Liu P, Fu G, et al. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods, 2018, 2: 1700286

    Google Scholar 

  124. Zhang T, Walsh AG, Yu J, et al. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem Soc Rev, 2021, 50: 569–588

    CAS  Google Scholar 

  125. Zhou L, Martirez JMP, Finzel J, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat Energy, 2020, 5: 61–70

    CAS  Google Scholar 

  126. Jiang JC, Chen JC, Zhao M, et al. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Res, 2022, 15: 7116–7123

    CAS  Google Scholar 

  127. Jiang Z, Sun W, Shang H, et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ Sci, 2019, 12: 3508–3514

    CAS  Google Scholar 

  128. Qin F, Chen W. Copper-based single-atom alloys for heterogeneous catalysis. Chem Commun, 2021, 57: 2710–2723

    CAS  Google Scholar 

  129. Zheng X, Ji Y, Tang J, et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat Catal, 2018, 2: 55–61

    Google Scholar 

  130. Morimoto M, Takatsuji Y, Yamasaki R, et al. Electrodeposited Cu-Sn alloy for electrochemical CO2 reduction to CO/HCOO. Electrocatalysis, 2017, 9: 323–332

    Google Scholar 

  131. Nie X, Esopi MR, Janik MJ, et al. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew Chem Int Ed, 2013, 52: 2459–2462

    CAS  Google Scholar 

  132. Nie X, Luo W, Janik MJ, et al. Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal, 2014, 312: 108–122

    CAS  Google Scholar 

  133. Ahmad T, Liu S, Sajid M, et al. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res Energy, 2022, 1: e9120021

    Google Scholar 

  134. Aizawa H, Tsuneyuki S. First-principles study of CO bonding to Pt (111): Validity of the Blyholder model. Surf Sci, 1998, 399: L364–L370

    CAS  Google Scholar 

  135. Blyholder G. Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem, 1964, 68: 2772–2777

    CAS  Google Scholar 

  136. Greiner MT, Jones TE, Beeg S, et al. Free-atom-like d states in single-atom alloy catalysts. Nat Chem, 2018, 10: 1008–1015

    CAS  Google Scholar 

  137. Hannagan RT, Giannakakis G, Réocreux R, et al. First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science, 2021, 372: 1444–1447

    CAS  Google Scholar 

  138. Gao Q, Yao B, Pillai HS, et al. Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. Nat Synth, 2023, 2: 624–634

    Google Scholar 

  139. Li H, Liu T, Wei P, et al. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew Chem Int Ed, 2021, 60: 14329–14333

    CAS  Google Scholar 

  140. Yu J, Wang J, Ma Y, et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv Funct Mater, 2021, 31: 2102151

    CAS  Google Scholar 

  141. Peterson AA, Abild-Pedersen F, Studt F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci, 2010, 3: 1311

    CAS  Google Scholar 

  142. Woldu AR, Huang Z, Zhao P, et al. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord Chem Rev, 2022, 454: 214340

    CAS  Google Scholar 

  143. Liu S, Zhang B, Zhang L, et al. Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products. J Energy Chem, 2022, 71: 63–82

    CAS  Google Scholar 

  144. Fu W, Wang Y, Tian W, et al. Non-metal single-phosphorus-atom catalysis of hydrogen evolution. Angew Chem Int Ed, 2020, 59: 23791–23799

    CAS  Google Scholar 

  145. Kuhl KP, Cave ER, Abram DN, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci, 2012, 5: 7050

    CAS  Google Scholar 

  146. Zheng Y, Vasileff A, Zhou X, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J Am Chem Soc, 2019, 141: 7646–7659

    CAS  Google Scholar 

  147. Zhu Y, Cui X, Liu H, et al. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res, 2021, 14: 4471–4486

    CAS  Google Scholar 

  148. Li Q, Chen W, Xiao H, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv Mater, 2018, 30: 1800588

    Google Scholar 

  149. Albo J, Irabien A. Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J Catal, 2016, 343: 232–239

    CAS  Google Scholar 

  150. Albo J, Alvarez-Guerra M, Castaño P, et al. Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem, 2015, 17: 2304–2324

    CAS  Google Scholar 

  151. Jia Y, Hsu HS, Huang WC, et al. Probing the roles of indium oxides on copper catalysts for enhanced selectivity during CO2-to-CO electrochemical reduction. Nano Lett, 2023, 23: 2262–2268

    CAS  Google Scholar 

  152. Han L, Song S, Liu M, et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J Am Chem Soc, 2020, 142: 12563–12567

    CAS  Google Scholar 

  153. Zhao J, Chen Z, Zhao J. Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4. J Mater Chem A, 2019, 7: 4026–4035

    CAS  Google Scholar 

  154. Liu X, Wang Z, Tian Y, et al. Graphdiyne-supported single iron atom: A promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol. J Phys Chem C, 2020, 124: 3722–3730

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (92061109) and the Natural Science Basic Research Program of Shaanxi (2021JCW-20 and 2022KJXX-18).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yu Q supervised the project and organized the collaboration. Li X wrote the manuscript and Yu X and Yu Q revised the manuscript. All authors discussed the review, edited and commented on the manuscript.

Corresponding author

Correspondence to Qi Yu  (于琦).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Xiaojiao Li is pursuing a Master degree at the School of Materials Science and Engineering, Shaanxi University of Technology, under the supervision of Prof. Qi Yu. Her research focuses on theoretical calculations of single-atom catalysts.

Qi Yu is a professor at Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology. She obtained her BSc, MSc and PhD degrees from Jilin University, followed by visiting scholar at Tsinghua University and the National University of Singapore for several years. Now she is the deputy director of Shaanxi Laboratory of Catalysis and director of Institute of Graphene at Shaanxi University of Technology. Her current research interests focus on theoretical calculations of single-atom catalysts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yu, X. & Yu, Q. Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts. Sci. China Mater. 66, 3765–3781 (2023). https://doi.org/10.1007/s40843-023-2597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2597-8

Keywords

Navigation