Skip to main content

Advertisement

Log in

Recent Progress in All-Solid-State Lithium−Sulfur Batteries Using High Li-Ion Conductive Solid Electrolytes

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Rechargeable lithium−sulfur (Li−S) batteries are one of the most promising next-generation energy storage systems due to their extremely high energy densities and low cost compared with state-of-the-art lithium-ion batteries. However, the main obstacles of conventional Li−S batteries arise from the dissolution of lithium polysulfides in organic liquid electrolytes and corresponding safety issues. To address these issues, an effective approach is to replace conventional liquid electrolytes with solid-state electrolytes. In this review, recent progress in the development of solid electrolytes, including solid polymer electrolytes and inorganic glass/ceramic solid electrolytes, along with corresponding all-solid-state Li−S batteries (ASSLSBs) and related interfacial issues at the electrode/electrolyte interface, will be systematically summarized. In addition, the importance of various solid-state lithium ion conductors in ASSLSBs will be discussed followed by detailed presentations on the development of various forms of sulfur-based positive electrode materials (e.g., elemental sulfur, lithium sulfide, metal sulfides, lithium thiophosphates, and lithium polysulfidophosphates) along with key interfacial challenges at the electrode/solid electrolyte interface (cathode/SE and anode/SE). Finally, this review will provide a brief outlook on the future research of ASSLSBs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Herbert, D.,Ulam, J.: Electric dry cells and storage batteries. US Patent 3043896A, filed November 24, 1954, and issued July 10, 1962

  2. Manthiram, A., Fu, Y., Chung, S.H., et al.: Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)

    Article  CAS  Google Scholar 

  3. Pang, Q., Liang, X., Kwok, C.Y., et al.: Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)

    Article  CAS  Google Scholar 

  4. Mikhaylik, Y.V., Kovalev, I., Schock, R., et al.: High energy rechargeable Li–S cells for EV application. Status, remaining problems and solutions. ECS Trans. 25, 23–34 (2010)

    Article  CAS  Google Scholar 

  5. Pan, H., Yang, Y.: Effects of radio-frequency sputtering powers on the microstructures and electrochemical properties of LiCoO2 thin film electrodes. J. Power Sources 189, 633–637 (2009)

    Article  CAS  Google Scholar 

  6. Lin, M., Wang, S.H., Gong, Z.L., et al.: A strategy to improve cyclic performance of LiNi0.5Mn1.5O4 in a wide voltage region by Ti-doping. J. Electrochem. Soc. 160, A3036–A3040 (2013)

    Article  CAS  Google Scholar 

  7. Fu, Y., Su, Y.S., Manthiram, A.: Sulfur–carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium–sulfur batteries. ACS Appl. Mater. Interfaces 4, 6046–6052 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. Ji, X.L., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. Wang, G., Lai, Y., Zhang, Z., et al.: Enhanced rate capability and cycle stability of lithium–sulfur batteries with a bifunctional MCNT@PEG-modified separator. J. Mater. Chem. A 3, 7139–7144 (2015)

    Article  CAS  Google Scholar 

  10. Ji, X., Nazar, L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010)

    Article  CAS  Google Scholar 

  11. Oschatz, M., Thieme, S., Borchardt, L., et al.: A new route for the preparation of mesoporous carbon materials with high performance in lithium–sulphur battery cathodes. Chem. Commun. 49, 5832–5834 (2013)

    Article  CAS  Google Scholar 

  12. Wang, Y., Zhang, Z., Haibara, M., et al.: Reduced polysulfide shuttle effect by using polyimide separators with ionic liquid-based electrolytes in lithium–sulfur battery. Electrochim. Acta 255, 109–117 (2017)

    Article  CAS  Google Scholar 

  13. Li, G.C., Hu, J.J., Li, G.R., et al.: Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery. J. Power Sources 240, 598–605 (2013)

    Article  CAS  Google Scholar 

  14. Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium–sulphur batteries. J. Power Sources 255, 204–218 (2014)

    Article  CAS  Google Scholar 

  15. Liang, X., Garsuch, A., Nazar, L.F.: Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 127, 3979–3983 (2015)

    Article  Google Scholar 

  16. Zhang, J., Li, H.Q., Tang, Q., et al.: Improved-performance lithium–sulfur batteries modified by magnetron sputtering. RSC Adv. 6, 114447–114452 (2016)

    Article  CAS  Google Scholar 

  17. Pang, Q., Kundu, D., Cuisinier, M., et al.: Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat. Commun. 5, 4759 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, S., Ueno, K., Dokko, K., et al.: Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015)

    Article  CAS  Google Scholar 

  19. Ely, T.O., Kamzabek, D., Chakraborty, D., et al.: Lithium–sulfur batteries: state of the art and future directions. ACS Appl. Energy Mater. 1, 1783–1814 (2018)

    Article  CAS  Google Scholar 

  20. Yue, L., Maa, J., Zhang, J., et al.: All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139–164 (2016)

    Article  Google Scholar 

  21. Meesala, Y., Jena, A., Chang, H., et al.: Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2, 2734–2751 (2017)

    Article  CAS  Google Scholar 

  22. Gao, Z., Sun, H., Fu, L., et al.: Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018)

    Article  CAS  Google Scholar 

  23. Varzi, A., Raccichini, R., Passerini, S., et al.: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A 4, 17251–17259 (2016)

    Article  CAS  Google Scholar 

  24. Bachman, J.C., Muy, S., Grimaud, A., et al.: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. Yu, X., Manthiram, A.: Electrode-electrolyte interfaces in lithium–sulfur batteries with liquid or inorganic solid electrolytes. Acc. Chem. Res. 50, 2653–2660 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. Manthiram, A., Yu, X., Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017)

    Article  CAS  Google Scholar 

  27. Janek, J., Zeier, W.G.: A solid future for battery development. Nat. Energy 1, 16141 (2016)

    Article  Google Scholar 

  28. Sun, C., Liu, J., Gong, Y., et al.: Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017)

    Article  CAS  Google Scholar 

  29. Tatsumisago, M., Nagao, M., Hayashi, A.: Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian Ceram. Soc. 1, 17–25 (2013)

    Article  Google Scholar 

  30. Chen, S., Xie, D., Liu, G., et al.: Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Mater. 14, 58–74 (2018)

    Article  Google Scholar 

  31. Judez, X., Zhang, H., Li, C., et al.: Solid electrolytes for safe and high energy density lithium–sulfur batteries: promises and challenges. J. Electrochem. Soc. 165, A6008–A6016 (2018)

    Article  CAS  Google Scholar 

  32. Sun, Y.Z., Huang, J.Q., Zhao, C.Z., et al.: A review of solid electrolytes for safe lithium–sulfur batteries. Sci. China Chem. 60, 1508–1526 (2017)

    Article  CAS  Google Scholar 

  33. Liu, Y., He, P., Zhou, H.: Rechargeable solid-state Li-Air and Li–S batteries: materials, construction, and challenges. Adv. Energy Mater. 8, 1701602 (2017)

    Article  CAS  Google Scholar 

  34. Lei, D., Shi, K., Ye, H., et al.: Progress and perspective of solid-state lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707570 (2018)

    Article  CAS  Google Scholar 

  35. Xu, R., Zhang, S., Wang, X., et al.: Recent developments of all-solid-state lithium secondary batteries with sulfide inorganic electrolytes. Chem. Eur. J. 24, 6007–6018 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. Agostini, M., Aihara, Y., Yamada, T., et al.: A lithium–sulfur battery using a solid, glass-type P2S5–Li2S electrolyte. Solid State Ionics 244, 48–51 (2013)

    Article  CAS  Google Scholar 

  37. Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. Xiang, Y.X., Zheng, G., Zhong, G., et al.: Toward understanding of ion dynamics in highly conductive lithium ion conductors: some perspectives by solid state NMR techniques. Solid State Ionics 318, 19–26 (2018)

    Article  CAS  Google Scholar 

  39. Fu, K.K., Gong, Y., Xu, S., et al.: Stabilizing the garnet solid-electrolyte/polysulfide interface in Li–S batteries. Chem. Mater. 29, 8037–8041 (2017)

    Article  CAS  Google Scholar 

  40. Lin, Y., Wang, X., Liu, J., et al.: Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium sulfur batteries. Nano Energy 31, 478–485 (2017)

    Article  CAS  Google Scholar 

  41. Chen, L., Fan, Z.: Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater. 15, 37–45 (2018)

    Article  Google Scholar 

  42. Judez, X., Zhang, H., Li, C., et al.: Polymer-rich composite electrolytes for all-solid-state Li–S cells. J. Phys. Chem. Lett. 8, 3473–3477 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. Fenton, D.E., Parker, J.M., Wright, P.V.: Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973)

    Article  CAS  Google Scholar 

  44. Jeon, B.H., Yeon, J.H., Chung, I.J.: Preparation and electrical properties of lithium–sulfur-composite polymer batteries. J. Mater. Proc. Tech. 143, 93–97 (2003)

    Article  CAS  Google Scholar 

  45. Armand, M.B.: Polymer solid electrolytes—an overview. Solid State Ionics 9, 745–754 (1983)

    Article  Google Scholar 

  46. Takeda, Y., Yamamoto, O., Imanishi, N.: Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes. Electrochemistry 84, 210–218 (2016)

    Article  CAS  Google Scholar 

  47. Jeong, S.S., Lim, Y.T., Choi, Y.J., et al.: Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. J. Power Sources 174, 745–750 (2007)

    Article  CAS  Google Scholar 

  48. Hassoun, J., Scrosati, B.: Moving to a solid-state configuration: a valid approach to making lithium–sulfur batteries viable for practical applications. Adv. Mater. 22, 5198–5201 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, C., Lin, Y., Liu, J.: Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium–sulfur batteries. J. Mater. Chem. A 3, 10760–10766 (2015)

    Article  CAS  Google Scholar 

  50. Marceau, H., Kim, C.S., Paolella, A., et al.: In operando scanning electron microscopy and ultraviolet visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte. J. Power Sources 319, 247–254 (2016)

    Article  CAS  Google Scholar 

  51. Huang, B., Yao, X., Huang, Z., et al.: Li3PO4-doped Li7P3S11 glass–ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries.J. Power Sources 284, 206–211 (2015)

    Article  CAS  Google Scholar 

  52. Liu, D., Zhu, W., Feng, Z., et al.: Recent progress in sulfide-based solid electrolytes for Li-ion batteries. Mater. Sci. Eng. B 213, 169–176 (2016)

    Article  CAS  Google Scholar 

  53. Kanno, R., Murayama, M.: Lithium Ionic Conductor Thio-LISICON the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001)

    Article  CAS  Google Scholar 

  54. Bron, P., Johansson, S., Zick, K., et al.: Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016)

    Article  CAS  Google Scholar 

  56. Deiseroth, H.J., Kong, S.T., Eckert, H., et al.: Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li + mobility. Angew.Chem Int. Ed. 47, 755–758 (2008)

    Article  CAS  Google Scholar 

  57. Chen, M., Adams, S.: High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J. Solid State Electrochem. 19, 697–702 (2015)

    Article  CAS  Google Scholar 

  58. Wang, D., Zhong, G., Pang, W.K., et al.: Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites. Chem. Mater. 27, 6650–6659 (2015)

    Article  CAS  Google Scholar 

  59. Wang, S., Ding, Y., Zhou, G., et al.: Durability of the Li1+xTi2-xAlx(PO4)3 solid electrolyte in lithium–sulfur batteries. ACS Energy Lett. 1, 1080–1085 (2016)

    Article  CAS  Google Scholar 

  60. Whiteley, J.M., Woo, J.H., Hu, E., et al.: Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014)

    Article  CAS  Google Scholar 

  61. Bonanos, N., Knight, K.S., Ellis, B.: Perovskite solid electrolytes: structure, transport properties and fuel cell applications. Solid State Ionics 79, 161–170 (1995)

    Article  CAS  Google Scholar 

  62. Xu, R.C., Xia, X.H., Zhang, S.Z., et al.: Interfacial challenges and progress for inorganic all-solid-state lithium batteries. Electrochim. Acta 284, 177–187 (2018)

    Article  CAS  Google Scholar 

  63. Seino, Y., Ota, T., Takada, K., et al.: A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014)

    Article  CAS  Google Scholar 

  64. Wang, C., Yang, Y., Liu, X., et al.: Suppression of lithium dendrite formation by using LAGP–PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 13694–13702 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. Blanga, R., Goor, M., Burstein, L., et al.: The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J. Solid State Electrochem. 20, 3393–3404 (2016)

    Article  CAS  Google Scholar 

  66. Nagao, M., Hayashi, A., Tatsumisago, M.: Sulfur–carbon composite electrode for all-solid state Li/S battery with Li2S–P2S5 solid electrolyte. Electrochim. Acta 56, 6055–6059 (2011)

    Article  CAS  Google Scholar 

  67. Nagata, H., Chikusa, Y.: Transformation of P2S5 into a solid electrolyte with ionic conductivity at the positive composite electrode of all-solid-state lithium–sulfur batteries. Energy Technol. 2, 753–756 (2014)

    Article  CAS  Google Scholar 

  68. Yao, X., Huang, N., Han, F., et al.: High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017)

    Article  CAS  Google Scholar 

  69. Nagata, H., Chikusa, Y.: An all-solid-state lithium sulfur battery using two solid electrolytes having different functions. J. Power Sources 329, 268–272 (2016)

    Article  CAS  Google Scholar 

  70. Nagao, M., Hayashi, A., Tatsumisago, M.: High-capacity Li2S-nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J. Mater. Chem. 22, 10015–10020 (2012)

    Article  CAS  Google Scholar 

  71. Suzuki, K., Mashimo, N., Ikeda, Y., et al.: High cycle capability of all-solid-state lithium–sulfur batteries using composite electrodes by liquid-phase and mechanical mixing. ACS Appl. Energy Mater. 1, 2373–2377 (2018)

    Article  CAS  Google Scholar 

  72. Nagao, M., Hayashi, A., Tatsumisago, M.: Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol. 1, 186 (2013)

    Article  CAS  Google Scholar 

  73. Nagao, M., Imade, Y., Narisawa, H., et al.: All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J. Power Sources 222, 237–242 (2013)

    Article  CAS  Google Scholar 

  74. Kobayashi, T., Imade, Y., Shishihara, D., et al.: All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621–625 (2008)

    Article  CAS  Google Scholar 

  75. Roggenbuck, J., Koch, G., Tiemann, M.: Synthesis of mesoporous magnesium oxide by CMK-3 carbon structure replication. Chem. Mater. 18, 4151–4156 (2006)

    Article  CAS  Google Scholar 

  76. Kinoshita, S., Okuda, K., Machida, N., et al.: All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials. Solid State Ionics 256, 97–102 (2014)

    Article  CAS  Google Scholar 

  77. Yu, C., van Eijck, L., Ganapathy, S., et al.: Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim. Acta 215, 93–99 (2016)

    Article  CAS  Google Scholar 

  78. Xu, R.C., Xia, X.H., Wang, X.L., et al.: Tailored Li2S–P2S5 glass–ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 5, 2829–2834 (2017)

    Article  CAS  Google Scholar 

  79. Xu, R.C., Xia, X.H., Li, S.H., et al.: All-solid-state lithium–sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. J. Mater. Chem. A 5, 6310–6317 (2017)

    Article  CAS  Google Scholar 

  80. Rao, C.N.R., Sood, A.K., Voggu, R., et al.: Some novel attributes of graphene. J. Phys. Chem. Lett. 1, 572–580 (2010)

    Article  CAS  Google Scholar 

  81. Xu, R.C., Wu, Z., Zhang, S.Z., et al.: Construction of all-solid-state batteries based on a sulfur–graphene composite and Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte. Chem. Eur. J. 23, 13950–13956 (2017)

    Article  CAS  PubMed  Google Scholar 

  82. Hao, Y., Wang, S., Xu, F., et al.: A design of solid-state Li–S cell with evaporated lithium anode to eliminate shuttle effects. ACS Appl. Mater. Interfaces 9, 33735–33739 (2017)

    Article  CAS  PubMed  Google Scholar 

  83. Liang, X., Wen, Z., Liu, Y., et al.: Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J. Power Sources 196, 3655–3658 (2011)

    Article  CAS  Google Scholar 

  84. Gracia, I., Youcef, H.B., Judez, X., et al.: S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li–S batteries. J. Power Sources 390, 148–152 (2018)

    Article  CAS  Google Scholar 

  85. Eshetu, G.G., Judez, X., Li, C., et al.: Ultrahigh performance all solid-state lithium sulfur batteries: salt anion’s chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc. 140, 9921–9933 (2018)

    Article  CAS  PubMed  Google Scholar 

  86. Tao, X., Liu, Y., Liu, W., et al.: Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3 Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017)

    Article  CAS  PubMed  Google Scholar 

  87. Sheng, O., Jin, C., Luo, J., et al.: Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all solid-state lithium–sulfur batteries. J. Mater. Chem. A 5, 12934–12942 (2017)

    Article  CAS  Google Scholar 

  88. Zhang, Y., Zhao, Y., Gosselink, D., et al.: Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21, 381–385 (2015)

    Article  CAS  Google Scholar 

  89. Nan, C., Lin, Z., Liao, H., et al.: Durable carbon-coated Li2S core-shell spheres for high performance lithium/sulfur cells. J. Am. Chem. Soc. 136, 4659–4663 (2014)

    Article  CAS  PubMed  Google Scholar 

  90. Son, Y.K., Lee, J.S., Son, Y., et al.: Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 5, 1500110 (2015)

    Article  CAS  Google Scholar 

  91. Yu, C., Ganapathy, S., de Klerk, N.J.J., et al.: Unravelling Li-ion transport from pico-seconds to seconds: bulk versus interfaces in an argyrodite Li6PS5Cl–Li2S all solid state Li-ion battery. J. Am. Chem. Soc. 138, 11192–11201 (2016)

    Article  CAS  PubMed  Google Scholar 

  92. Nagao, M., Hayashi, A., Tatsumisago, M., et al.: Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium–sulfur batteries. J. Power Sources 274, 471–476 (2015)

    Article  CAS  Google Scholar 

  93. Choi, S., Yoon, I., Nichols, W.T., et al.: Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2S–P2S5 solid electrolyte. Ceram. Int. 44, 7450–7453 (2018)

    Article  CAS  Google Scholar 

  94. Yu, C., Ganapathy, S., van Eck, E.R.H., et al.: Revealing the relation between the structure, Li-ion conductivity and solid-state battery performance of the argyrodite Li6PS5Br solid electrolyte. J. Mater. Chem. A 5, 21178–21188 (2017)

    Article  CAS  Google Scholar 

  95. Takeuchi, T., Kageyama, H., Nakanishi, K., et al.: Application of graphite–solid electrolyte composite anode in all-solid-state lithium secondary battery with Li2S positive electrode. Solid State Ionics 262, 138–142 (2014)

    Article  CAS  Google Scholar 

  96. Hakari, T., Hayashi, A., Tatsumisago, M.: Highly utilized lithium sulfide active material by enhancing conductivity in all-solid-state batteries. Chem. Lett. 44, 1664–1666 (2015)

    Article  CAS  Google Scholar 

  97. Hakari, T., Hayashi, A., Tatsumisago, M.: Li2S-based solid solutions as positive electrodes with full utilization and superlong cycle life in all-solid-state Li/S batteries. Adv. Sustain. Syst. 1, 1700017 (2017)

    Article  CAS  Google Scholar 

  98. Nishio, Y., Kitaura, H., Hayashi, A., et al.: All-solid-state lithium secondary batteries using nanocomposites of NiS electrode/Li2S–P2S5 electrolyte prepared via mechanochemical reaction. J. Power Sources 189, 629–632 (2009)

    Article  CAS  Google Scholar 

  99. Yao, X., Liu, D., Wang, C., et al.: High-energy all-solid-state lithium batteries with ultralongcycle life. Nano Lett. 16, 7148–7154 (2016)

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, Q., Mwizerwa, J.P., Wan, H., et al.: Fe3S4@Li7P3S11nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. J. Mater. Chem. A 5, 23919–23925 (2017)

    Article  CAS  Google Scholar 

  101. Matsuyama, T., Deguchi, M., Mitsuhara, K., et al.: Structure analyses using X-ray photoelectron spectroscopy and X-ray absorption near edge structure for amorphous MS3 (M: Ti, Mo) electrodes in all-solid-state lithium batteries. J. Power Sources 313, 104–111 (2016)

    Article  CAS  Google Scholar 

  102. Matsuyama, T., Hayashi, A., Ozaki, T., et al.: Electrochemical properties of all-solid-state lithium batteries with amorphous MoS3 electrodes prepared by mechanical milling. J. Mater. Chem. A 3, 14142–14147 (2015)

    Article  CAS  Google Scholar 

  103. Shin, B.R., Nam, Y.J., Kim, J.W., et al.: Interfacial architecture for extra Li+storage in all-solid-state lithium batteries. Sci. Rep. 4, 5572 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wan, H., Peng, G., Yao, X., et al.: Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. Energy Storage Mater. 4, 59–65 (2016)

    Article  Google Scholar 

  105. Ulissi, U., Ito, S., Hosseini, S.M., et al.: High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites. Adv. Energy Mater. 8, 1801462 (2018)

    Article  CAS  Google Scholar 

  106. Hakari, T., Nagao, M., Hayashi, A., et al.: All-solid-state lithium batteries with Li3PS4 glass as active material. J. Power Sources 293, 721–725 (2015)

    Article  CAS  Google Scholar 

  107. Hakari, T., Sato, Y., Yoshimi, S., et al.: Favorable carbon conductive additives in Li3PS4 composite positive electrode prepared by ball-milling for all-solid-state lithium batteries. J. Electrochem. Soc. 164, A2804–A2811 (2017)

    Article  CAS  Google Scholar 

  108. Zhang, Y., Chen, R., Liu, T., et al.: High capacity and superior cyclic performances of all-solid-state lithium batteries enabled by a glass-ceramics solo. ACS Appl. Mater. Interfaces 10, 10029–10035 (2018)

    Article  CAS  PubMed  Google Scholar 

  109. Hakari, T., Deguchi, M., Mitsuhara, K., et al.: Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes. Chem. Mater. 29, 4768–4774 (2017)

    Article  CAS  Google Scholar 

  110. Hayashi, A., Ohtsubo, R., Nagao, M., et al.: Characterization of Li2S–P2S5–Cu composite electrode for all-solid-state lithium secondary batteries. J. Mater. Sci. 45, 377–381 (2010)

    Article  CAS  Google Scholar 

  111. Yue, J., Yan, M., Yin, Y.X., et al.: Progress of the interface design in all-solid-state Li–S batteries. Adv. Funct. Mater. 28, 1707533 (2018)

    Article  CAS  Google Scholar 

  112. Luo, C., Ji, X., Chen, J., et al.: Solid-state electrolyte anchored with a carboxylatedazo compound for all-solid-state lithium batteries. Angew. Chem. Int. Ed. 57, 8567–8571 (2018)

    Article  CAS  Google Scholar 

  113. Aso, K., Sakuda, A., Hayashi, A., et al.: All-solid-state lithium secondary batteries using NiS-carbon fiber composite electrodes coated with Li2S–P2S5 solid electrolytes by pulsed laser deposition. ACS Appl. Mater. Interfaces 5, 686–690 (2013)

    Article  CAS  PubMed  Google Scholar 

  114. Choi, H.U., Jin, J.S., Park, J.Y., et al.: Performance improvement of all-solid-state Li–S batteries with optimizing morphology and structure of sulfur composite electrode. J. Alloys Comput. 723, 787–794 (2017)

    Article  CAS  Google Scholar 

  115. Suzuki, K., Kato, D., Hara, K., et al.: Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium-sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochim. Acta 258, 110–115 (2017)

    Article  CAS  Google Scholar 

  116. Hayashi, A., Ohtomo, T., Mizuno, F., et al.: All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem. Commun. 5, 701–705 (2003)

    Article  CAS  Google Scholar 

  117. Busche, M.R., Weber, D.A., Schneider, Y., et al.: In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup. Chem. Mater. 28, 6152 (2016)

    Article  CAS  Google Scholar 

  118. Lin, Z., Liu, Z., Fu, W., et al.: Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium–sulfur batteries. Angew. Chem. Int. Ed. 52, 7460–7463 (2013)

    Article  CAS  Google Scholar 

  119. Han, F., Gao, T., Zhu, Y., et al.: A battery made from a single material. Adv. Mater. 27, 3473 (2015)

    Article  CAS  PubMed  Google Scholar 

  120. Han, F., Yue, J., Fan, X., et al.: High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S Nanocomposite. Nano Lett. 16, 4521 (2016)

    Article  CAS  PubMed  Google Scholar 

  121. Lin, Z., Liu, Z., Dudney, N.J., et al.: Lithium superionic sulfide cathode for all-solid lithiumsulfur batteries. ACS Nano 7, 2829–2833 (2013)

    Article  CAS  PubMed  Google Scholar 

  122. Eom, M., Son, S., Park, C., et al.: High performance all-solid-state lithium–sulfur battery using a Li2S–VGCF nanocomposite. Electrochim. Acta 230, 279–284 (2017)

    Article  CAS  Google Scholar 

  123. Xu, R.C., Wang, X.L., Zhang, S.Z., et al.: Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid state lithium ion batteries. J. Power Sources 374, 107–112 (2018)

    Article  CAS  Google Scholar 

  124. Long, P., Xu, Q., Peng, G., et al.: NiS nanorods as cathode materials for all-solid-state lithium batteries with excellent rate capability and cycling stability. ChemElectroChem 3, 764–769 (2016)

    Article  CAS  Google Scholar 

  125. Wenzel, S., Leichtweiss, T., Krüger, D., et al.: Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics 278, 98–105 (2015)

    Article  CAS  Google Scholar 

  126. Shin, B.R., Nam, Y.J., Oh, D.Y., et al.: Comparative study of TiS2/Li−In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 146, 395–402 (2014)

    Article  CAS  Google Scholar 

  127. Eshetu, G.G., Judez, X., Li, C., et al.: Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew. Chem. Int. Ed. 56, 15368–15372 (2017)

    Article  CAS  Google Scholar 

  128. Wu, B., Wang, S., Lochala, J., et al.: The role of solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11, 1803–1810 (2018)

    Article  CAS  Google Scholar 

  129. Zheng, B., Zhu, J., Wang, H., et al.: Stabilizing Li10SnP2S12/Li Interface via an in-situ formed solid electrolyte interphase layer. ACS Appl. Mater. Interfaces 10, 25473–25482 (2018)

    Article  CAS  PubMed  Google Scholar 

  130. Wu, B., Wang, S., Evans, W.J., et al.: Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J. Mater. Chem. A 4, 15266–15280 (2016)

    Article  CAS  Google Scholar 

  131. Thangadurai, V., Weppner, W.: Li6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107 (2005)

    Article  CAS  Google Scholar 

  132. Sakuma, M., Suzuki, K., Hirayama, M., Kanno, R.: Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 285, 101–105 (2016)

    Article  CAS  Google Scholar 

  133. Leite, M.S., Ruzmetov, D., Li, Z., et al.: Insights into capacity loss mechanisms of all-solid-state Li-ion batteries with Al anodes. J. Mater Chem. A 2, 20552–20559 (2014)

    Article  CAS  Google Scholar 

  134. Wenzel, S., Randau, S., Leichtweiß, T., et al.: Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016)

    Article  CAS  Google Scholar 

  135. Wenzel, S., Weber, D.A., Leichtweiss, T., et al.: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286, 24–33 (2016)

    Article  CAS  Google Scholar 

  136. Zhang, Z., Chen, S., Yang, J., et al.: Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 10, 2556–2565 (2018)

    Article  CAS  PubMed  Google Scholar 

  137. Hartmann, P., Leichtweiss, T., Busche, M.R., et al.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064–21074 (2013)

    Article  CAS  Google Scholar 

  138. Kato, A., Hayashi, A., Tatsumisago, M., et al.: Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J. Power Sources 309, 27–32 (2016)

    Article  CAS  Google Scholar 

  139. Wenzel, S., Sedlmaier, S.J., Dietrich, C., et al.: Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 318, 102–112 (2018)

    Article  CAS  Google Scholar 

  140. Nagao, M., Hayashi, A., Tatsumisago, M., et al.: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600–18606 (2013)

    Article  CAS  PubMed  Google Scholar 

  141. Nagao, M., Hayashi, A., Tatsumisago, M.: Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochem. Commun. 22, 177–180 (2012)

    Article  CAS  Google Scholar 

  142. Sang, L., Haasch, R.T., Gewirth, A.A., et al.: Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping. Chem. Mater. 29, 3029–3037 (2017)

    Article  CAS  Google Scholar 

  143. Nagao, M., Hayashi, A., Tatsumisago, M.: Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S–P2S5 solid electrolyte. Electrochemistry 80, 734–736 (2012)

    Article  CAS  Google Scholar 

  144. Kato, A., Kowada, H., Deguchi, M., et al.: XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all solid-state lithium batteries. Solid State Ionics 322, 1–4 (2018)

    Article  CAS  Google Scholar 

  145. Sharafi, A., Meyer, H.M., Nanda, J., et al.: Characterizing the LieLi7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302, 135–139 (2016)

    Article  CAS  Google Scholar 

  146. Sudo, R., Nakata, Y., Ishiguro, K., et al.: Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 262, 151–154 (2014)

    Article  CAS  Google Scholar 

  147. Luo, W., Gong, Y., Zhu, Y., et al.: Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J. Am. Chem. Soc. 138, 12258–12262 (2016)

    Article  CAS  PubMed  Google Scholar 

  148. Han, X., Gong, Y., Fu, K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572 (2016)

    Article  CAS  PubMed  Google Scholar 

  149. Fu, K.K., Gong, Y., Liu, B., et al.: Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017)

    Article  CAS  PubMed  Google Scholar 

  150. Fu, K.K., Gong, Y., Fu, Z., et al.: Transient behavior of the metal interface in lithium metal–garnet batteries. Angew. Chem. Int. Ed. 56, 14942–14947 (2017)

    Article  CAS  Google Scholar 

  151. Luo, W., Gong, Y., Zhu, Y., et al.: Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 29, 1606042 (2017)

    Article  CAS  Google Scholar 

  152. Wang, C., Gong, Y., Liu, B., et al.: Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2017)

    Article  CAS  PubMed  Google Scholar 

  153. Shao, Y., Wang, H., Gong, Z., et al.: Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 3, 1212–1218 (2018)

    Article  CAS  Google Scholar 

  154. Liu, J., Liu, T., Pu, Y., et al.: Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer. RSC Adv. 7, 46545–46552 (2017)

    Article  CAS  Google Scholar 

  155. Tan, S.J., Zeng, X.X., Ma, Q., et al.: Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev. 1, 113–138 (2018)

    Article  Google Scholar 

  156. Chien, P.H., Feng, X., Tang, M., et al.: Li Distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI. J. Phys. Chem. Lett. 9, 1990–1998 (2018)

    Article  CAS  PubMed  Google Scholar 

  157. Fu, K.K., Gong, Y., Dai, J., et al.: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 113, 7094–7099 (2016)

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, Z., Zhao, Y., Chen, S., et al.: An advanced construction strategy of all-solid state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J. Mater. Chem. A 5, 16984–16993 (2017)

    Article  CAS  Google Scholar 

  159. Fu, K.K., Gong, Y., Hitz, G.T., et al.: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017)

    Article  CAS  Google Scholar 

  160. Li, Y., Xu, B., Xu, H., et al.: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 753 (2017)

    Article  CAS  Google Scholar 

  161. Yamada, T., Ito, S., Omoda, R., et al.: All solid-state lithium–sulfur battery using a glass-type P2S5–Li2S electrolyte: benefits on anode kinetics. J. Electrochem. Soc. 162, A646–A651 (2015)

    Article  CAS  Google Scholar 

  162. Hayashi, A., Ohtsubo, R., Ohtomo, T., et al.: All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J. Power Sources 183, 422–426 (2008)

    Article  CAS  Google Scholar 

  163. Machida, N., Kobayashi, K., Nishikawa, Y., et al.: Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ionics 175, 247–250 (2004)

    Article  CAS  Google Scholar 

  164. Kinoshita, S., Okuda, K., Machida, N., et al.: Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery. J. Power Sources 269, 727–734 (2014)

    Article  CAS  Google Scholar 

  165. Suzuki, K., Kato, D., Hara, K., et al.: Composite sulfur electrode for all-solid-state lithium–sulfur battery with Li2S–GeS2–P2S5-based thio-LISICON solid electrolyte. Electrochemistry 86, 1–5 (2018)

    Article  CAS  Google Scholar 

  166. Tanibata, N., Tsukasaki, H., Deguchi, M., et al.: A novel discharge-charge mechanism of a S–P2S5 composite electrode without electrolytes in all solid- state Li/S batteries. J. Mater. Chem. A 5, 11224–11228 (2017)

    Article  CAS  Google Scholar 

  167. Trevey, J.E., Gilsdor, J.R., Stoldt, C.R., et al.: Electrochemical investigation of all-solid-state lithium batteries with a high capacity sulfur-based electrode. J. Electrochem. Soc. 159, A1019–A1022 (2012)

    Article  CAS  Google Scholar 

  168. Zhang, Y., Chen, K., Shen, Y., et al.: Synergistic effect of processing and composition x on conductivity of xLi2S-(100-x)P2S5 electrolytes. Solid State Ionics 305, 1–6 (2017)

    Article  CAS  Google Scholar 

  169. Nagata, H., Chikusa, Y.: All-solid-state lithium-sulfur batteries using a conductive composite containing activated carbon and electroconductive polymers. Chem. Lett. 43, 1335–1336 (2014)

    Article  CAS  Google Scholar 

  170. Marmorstein, D., Yu, T.H., Striebel, K.A., et al.: Electrochemical performance of lithium-sulfur cells with three different polymer electrolytes. J. Power Sources 89, 219–226 (2000)

    Article  CAS  Google Scholar 

  171. Zhang, C., Lin, Y., Zhu, Y., et al.: Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium–sulfur batteries. RSC Adv. 7, 19231–19236 (2017)

    Article  CAS  Google Scholar 

  172. Zhu, Y., Li, J., Liu, J.: A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium–sulfur battery. J. Power Sources 351, 17–25 (2017)

    Article  CAS  Google Scholar 

  173. Judez, X., Zhang, H., Li, C., et al.: Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li–S cell. J. Phys. Chem. Lett. 8, 1956–1960 (2017)

    Article  CAS  PubMed  Google Scholar 

  174. Zhu, X., Wen, Z., Gu, Z., et al.: Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries. J. Power Sources 139, 269–273 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from the National Key Research and Development Program of China (Grant No. 2018YFB0905400) and the National Natural Science Foundation of China (Grant Nos. 21473148, 21621091, 21761132030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umeshbabu, E., Zheng, B. & Yang, Y. Recent Progress in All-Solid-State Lithium−Sulfur Batteries Using High Li-Ion Conductive Solid Electrolytes. Electrochem. Energ. Rev. 2, 199–230 (2019). https://doi.org/10.1007/s41918-019-00029-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00029-3

Keywords

Navigation