Skip to main content
Log in

High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Among the known fast Li+ ion conducting solids, thiophosphates and especially lithium argyrodites Li6PS5 X (X = Cl, Br) exhibit a great potential due to their high ionic conductivities and electrochemical stability. Here, we prepare all-solid-state lithium secondary batteries combining sulfur as the active cathode material with argyrodite-type Li6PS5Br as the solid electrolyte. Composite cathode powder of sulfur, Li6PS5Br and super P carbon are fabricated by a two-step ball milling at high rotating speed of 500 rpm, yielding a uniform composite cathode mixture with a particle size smaller than 100 nm. The resulting all-solid-state S/Li6PS5Br/In-Li batteries with S contents varied over the range of 20–40 wt% show a maximum capacity of 1460 mAh/g (with respect to the weight of sulfur) and a reversible capacity of up to 1080 mAh/g after 50 cycles at C/10 rate. Ex situ X-ray diffraction (XRD) results demonstrate that Li6PS5Br undergoes no structural change throughout the cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barghamadi M, Kapoor A, Wen C (2013) J Electrochem Soc 160:A1256–A1263

    Article  CAS  Google Scholar 

  2. Gao J, Lowe MA, Kiya Y, Abruña HD (2011) J Phys Chem C 115:25132–25137

    Article  CAS  Google Scholar 

  3. Xiong S, Kai X, Hong X, Diao Y (2011) Ionics 18:249–254

    Article  Google Scholar 

  4. Kobayashi T, Imade Y, Shishihara D, Homma K, Nagao M, Watanabe R, Yoboi T, Yamade A, Kanno R, Tatsumi T (2008) J Power Sources 182:621–625

    Article  CAS  Google Scholar 

  5. Nagao M, Hayashi A, Tatsumisago M (2011) Electrochim Acta 56:6055–6059

    Article  CAS  Google Scholar 

  6. Nagao M, Hayashi A, Tatsumisago M (2013) Energy Technol 1:186–192

    Article  CAS  Google Scholar 

  7. Agostini M, Aihara Y, Yamada T, Scrosati B, Hassoun J (2013) Solid State Ionics 244:48–51

    Article  CAS  Google Scholar 

  8. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Angew Chem Int Ed 52:7460–7463

    Article  CAS  Google Scholar 

  9. Deiseroth HJ, Kong ST, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M (2008) Angew Chem Int Ed 47:755–758

    Article  CAS  Google Scholar 

  10. Rao RP, Adams S (2011) Phys Status Solidi A 208:1804–1807

    Article  CAS  Google Scholar 

  11. Rayavarapu PR, Sharma N, Peterson VK, Adams S (2011) J Solid State Electrochem 16:1807–1813

    Article  Google Scholar 

  12. Prasada Rao R, Sharma N, Peterson VK, Adams S (2013) Solid State Ionics 230:72–76

    Article  Google Scholar 

  13. Chen M, Rao RP, Adams S (2014) Solid State Ionics 262:183–187

    Article  CAS  Google Scholar 

  14. Stadler F, Fietzek C (2010) ECS Trans 25:177–183

    Article  CAS  Google Scholar 

  15. Chen M, Rao RP, Adams S (2014) Solid State Ionics. doi:10.1016/j.ssi.2014.05.004

    Google Scholar 

  16. Ji X, Lee KT, Nazar LF (2009) Nat Mater 8:500–506

    Article  CAS  Google Scholar 

  17. Simmonds AG, Griebel JJ, Park J, Kim KR, Chuang WJ, Oleshko VP, Kim J, Kim ET, Glass RS, Soles CL, Sung YE, Char K, Pyun J (2014) ACS Macro Lett 3:229–232

    Article  CAS  Google Scholar 

  18. Zhou X, Xie J, Yang J, Zou Y, Tang J, Wang S, Ma L, Liao Q (2013) J Power Sources 243:993–1000

    Article  CAS  Google Scholar 

  19. Zhang B, Qin X, Li GR, Gao XP (2010) Energy Environ Sci 3:1531–1537

    Article  CAS  Google Scholar 

  20. Li K, Wang B, Su D, Park J, Ahn H, Wang G (2012) J Power Sources 202:389–393

    Article  CAS  Google Scholar 

  21. Zhang B, Lai C, Zhou Z, Gao XP (2009) Electrochim Acta 54:3708–3713

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Programme (CRP Awards No. NRF-CRP 8-2011-4 and NRF-CRP 10-2012-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Adams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Adams, S. High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J Solid State Electrochem 19, 697–702 (2015). https://doi.org/10.1007/s10008-014-2654-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2654-1

Keywords

Navigation