Skip to main content
Log in

Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A solid polymer electrolyte is fabricated using polyethylene oxide (PEO), lithium bis(Trifluromethanesulfonyl)imide (LiTFSI), and montmorillonite (MMT), with the aim of improving lithium ion conductivity, and the resulting solid polymer electrolyte is used for all solid-state lithium/sulfur batteries. The effect of temperature and nanoclay content on the conductivity of the resulting solid polymer electrolyte is investigated. The optimized electrolyte containing 10 wt% MMT exhibits ionic conductivity of 3.22 × 10−4 S cm−1 at 60 °C, a value that meets the operation requirements of an all solid-state sulfur cell. At 60 °C, all solid-state Li/S batteries using PEO/MMT solid polymer electrolyte display a good cycling performance, delivering 998 mAh g−1 initial discharge capacities and retaining a reversible specific discharge capacity of 634 mAh g−1 after 100 cycles at 0.1 C rate. At a higher rate of 0.5 C, the solid-state batteries still could deliver an acceptable specific discharge capacity of 643 mAh g−1 at 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Zhang Y, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Sun KEK, Yermukhambetova A, Chen P (2013) Effect of nanosized Mg0.6Ni0.4O prepared by self-propagating high temperature synthesis on sulfur cathode performance in Li/S batteries. Powder Technol 235:248–255

    Article  CAS  Google Scholar 

  3. Zhao Y, Zhang Y, Gosselink D, Doan TNL, Sadhu M, Cheang HJ, Chen P (2012) Polymer electrolytes for lithium/sulfur batteries. Membranes 2:553–564

    Article  CAS  Google Scholar 

  4. Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46:1135–1143

    Article  CAS  Google Scholar 

  5. Zhang Y, Zhao Y, Sun KEK, Chen P (2011) Development in lithium/sulfur secondary batteries. Open Mater Sci J 5:215–221

    Article  Google Scholar 

  6. Zhang SS (2012) Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta 70:344–348

    Article  CAS  Google Scholar 

  7. Zhang Y, Bakenov Z, Zhao Y, Konarov A, Wang Q, Chen P (2013) Three-dimensional carbon fiber as current collector for lithium/sulfur batteries. Ionics. doi:10.1007/s11581-013-1042-7

    Google Scholar 

  8. Zhao Y, Zhang Y, Bakenov Z, Chen P (2013) Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode. Solid State Ionics 234:40–45

    Article  CAS  Google Scholar 

  9. Zhang Y, Zhao Y, Bakenov Z, Babaa MR, Konarov A, Ding C, Chen P (2013) Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries. J Electrochem Soc 160:A1194–A1198

    Article  CAS  Google Scholar 

  10. Zhang Y, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Malik M, Paron T, Chen P (2012) One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries. J Power Sources 208:1–8

    Article  CAS  Google Scholar 

  11. Zhang Y, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P (2013) Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathode for high performance lithium/sulfur batteries. J Mater Chem A 1:295–301

    Article  CAS  Google Scholar 

  12. Zhang Y, Zhao Y, Konarov A, Gosselink D, Soboleski HG, Chen P (2013) A novel nano-sulfur/polypyrrole/graphene nanocomposite cathode with a dual-layered structure for lithium rechargeable batteries. J Power Sources 241:517–521

    Article  CAS  Google Scholar 

  13. Hassoun J, Sun YK, Scrosati B (2011) Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery. J Power Sources 196:343–348

    Article  CAS  Google Scholar 

  14. Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9:1978–1988

    Article  CAS  Google Scholar 

  15. Tao RY, Zhao Y, Fujinami T (2007) Lithium borate-PEO polymer electrolytes characterized with high lithium ion transference numbers. Mater Sci Eng B 137:69–73

    Article  CAS  Google Scholar 

  16. Kim S, Park SJ (2007) Preparation and ion-conducting behaviors of poly(ethylene oxide)-composite electrolytes containing lithium montmorillonite. Solid State Ionics 178:973–979

    Article  CAS  Google Scholar 

  17. Burgaz E (2011) Poly(ethylene-oxide)/clay/silica nanocomposites: Morphology and thermomechanical properties. Polymer 52:5118–5126

    Article  CAS  Google Scholar 

  18. Kim S, Hwang EJ, Jung Y, Han M, Park S (2008) Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials. Colloid Surf A-Physicochem Eng Asp 313–314:216–219

    Article  Google Scholar 

  19. Angulakshmi N, Nahm KS, Nair JR, Gerbaldi C, Bongiovanni R, Penazzi N, Stephan AM (2013) Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries. Electrochim Acta 90:179–185

    Article  CAS  Google Scholar 

  20. Shin JH, Kim KW, Ahn HJ, Ahn JH (2002) Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3-TinO2n-1 composite polymer electrolytes for lithium/sulfur battery. Mat Sci Eng B-Solid 95:148–156

    Article  Google Scholar 

  21. Zhu XJ, Wen ZY, Gu ZH, Lin ZX (2005) Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries. J Power Sources 139:269–273

    Article  CAS  Google Scholar 

  22. Jeon BH, Yeon JH, Kim KM, Chung IJ (2002) Preparation and electrochemical properties of lithium-sulfur polymer batteries. J Power Sources 109:89–97

    Article  CAS  Google Scholar 

  23. Yu X, Xie J, Yang J, Wang K (2004) All solid-state rechargeable lithium cells based on nano-sulfur composite cathodes. J Power Sources 132:181–186

    Article  CAS  Google Scholar 

  24. Xiao Q, Wang X, Li W, Li Z, Zhang T, Zhang H (2009) Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J Membr Sci 334:117–122

    Article  CAS  Google Scholar 

  25. Zhang Y, Zhao Y, Bakenov Z, Gosselink D, Chen P (2014) Poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/nanoclay composite gel polymer electrolyte for lithium/sulfur batteries. J Solid State Electrochem 18:1111–1116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Positec, Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Foundation for Innovation (CFI), and the Canada Research Chairs (CRC). One of the authors (YZ) thanks the China Scholarship Council for Study Abroad Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, Y., Gosselink, D. et al. Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21, 381–385 (2015). https://doi.org/10.1007/s11581-014-1176-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1176-2

Keywords

Navigation