Skip to main content
Log in

Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

In recent years, lithium batteries using conventional organic liquid electrolytes have been found to possess a series of safety concerns. Because of this, solid polymer electrolytes, benefiting from shape versatility, flexibility, low-weight and low processing costs, are being investigated as promising candidates to replace currently available organic liquid electrolytes in lithium batteries. However, the inferior ion diffusion and poor mechanical performance of these promising solid polymer electrolytes remain a challenge. To resolve these challenges and improve overall comprehensive performance, polymers are being coordinated with other components, including liquid electrolytes, polymers and inorganic fillers, to form polymer-based composite electrolytes. In this review, recent advancements in polymer-based composite electrolytes including polymer/liquid hybrid electrolytes, polymer/polymer coordinating electrolytes and polymer/inorganic composite electrolytes are reviewed; exploring the benefits, synergistic mechanisms, design methods, and developments and outlooks for each individual composite strategy. This review will also provide discussions aimed toward presenting perspectives for the strategic design of polymer-based composite electrolytes as well as building a foundation for the future research and development of high-performance solid polymer electrolytes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Kalluri, S., Yoon, M., Jo, M., et al.: Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion batteries. Adv. Mater. 29, 1605807 (2017)

    Article  CAS  Google Scholar 

  4. Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium-sulphur batteries. J. Power Sources 255, 204–218 (2014)

    Article  CAS  Google Scholar 

  6. Marcinek, M., Syzdek, J., Marczewski, M., et al.: Electrolytes for Li-ion transport—review. Solid State Ion. 276, 107–126 (2015)

    Article  CAS  Google Scholar 

  7. Lv, D., Shao, Y., Lozano, T., et al.: Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015)

  8. Bai, P., Li, J., Brushett, F.R., et al.: Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016)

    Article  CAS  Google Scholar 

  9. Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Goodenough, J.B.: Rechargeable batteries: challenges old and new. J. Solid State Electrochem. 16, 2019–2029 (2012)

    Article  CAS  Google Scholar 

  13. Yin, Y.X., Xin, S., Guo, Y.G., et al.: Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013)

    Article  CAS  Google Scholar 

  14. Yang, C.P., Yin, Y.X., Zhang, S.F., et al.: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, R., Zhang, X.Q., Cheng, X.B., et al.: Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28, 1705838 (2018)

    Article  CAS  Google Scholar 

  16. Zheng, Y., Zhou, T., Zhao, X., et al.: Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 29, 1700396 (2017)

    Article  CAS  Google Scholar 

  17. Janek, J., Zeier, W.G.: A solid future for battery development. Nat. Energy. 1, 16141 (2016)

    Article  Google Scholar 

  18. Quartarone, E., Mustarelli, P.: Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Takada, K.: Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013)

    Article  CAS  Google Scholar 

  20. Li, J., Ma, C., Chi, M., et al.: Lithium ion batteries: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015)

  21. Manthiram, A., Yu, X., Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017)

    Article  CAS  Google Scholar 

  22. Bates, J.B., Dudney, N.J., Gruzalski, G.R., et al.: Fabrication and characterization of amorphous lithium electrolyte thin-films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993)

    Article  CAS  Google Scholar 

  23. Alpen, U.V., Rabenau, A., Talat, G.H.: Ionic-conductivity in Li3N single-crystals. Appl. Phys. Lett. 30, 621–623 (1977)

    Article  Google Scholar 

  24. Boukamp, B.A., Huggins, R.A.: Lithium ion conductivity in lithium nitride. Phys. Lett. A 58, 231–233 (1976)

    Article  Google Scholar 

  25. Boukamp, B.A., Huggins, R.A.: Lithium ion conductivity in lithium nitride. J. Electrochem. Soc. 124, C129–C129 (1977)

    Google Scholar 

  26. Murugan, R., Thangadurai, V., Weppner, W.: Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007)

    Article  CAS  Google Scholar 

  27. Thangadurai, V., Narayanan, S., Pinzaru, D.: Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Mazza, D.: Remarks on a ternary phase in the La2O3–Nb2O5–Li2O, La2O3–Ta2O5–Li2O system. Mater. Lett. 7, 205–207 (1988)

    Article  CAS  Google Scholar 

  29. Taylor, B.E., English, A.D., Berzins, T.: New solid ionic conductors. Mater. Res. Bull. 12, 171–181 (1977)

    Article  CAS  Google Scholar 

  30. Hong, H.Y.P.: Crystal-structure and ionic-conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 13, 117–124 (1978)

    Article  CAS  Google Scholar 

  31. Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016)

    Article  CAS  Google Scholar 

  33. Mercier, R., Malugani, J.P., Fahys, B., et al.: Superionic conduction in Li2S–P2S5–LiI-Glasses. Solid State Ion. 5, 663–666 (1981)

    Article  CAS  Google Scholar 

  34. McGrogan, F.P., Swamy, T., Bishop, S.R., et al.: Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017)

  35. Wenzel, S., Leichtweiss, T., Kruger, D., et al.: Interphase formation on lithium solid electrolytes-An in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 278, 98–105 (2015)

    Article  CAS  Google Scholar 

  36. Wenzel, S., Randau, S., Leichtweiss, T., et al.: Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016)

    Article  CAS  Google Scholar 

  37. Richards, W.D., Miara, L.J., Wang, Y., et al.: Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016)

    Article  CAS  Google Scholar 

  38. Li, Y., Xu, B., Xu, H., et al.: Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem. Int. Ed. 56, 753–756 (2017)

    Article  CAS  Google Scholar 

  39. Wood, K.N., Kazyak, E., Chadwick, A.F., et al.: Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bachman, J.C., Muy, S., Grimaud, A., et al.: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016)

    Article  CAS  PubMed  Google Scholar 

  41. Varzi, A., Raccichini, R., Passerini, S., et al.: Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A 4, 17251–17259 (2016)

    Article  CAS  Google Scholar 

  42. Wang, Y., Richards, W.D., Ong, S.P., et al.: Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1032 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. Meesala, Y., Jena, A., Chang, H., et al.: Recent advancements in Li-ion conductors for all-solid-state li-ion batteries. ACS Energy Lett. 2, 2734–2751 (2017)

    Article  CAS  Google Scholar 

  45. Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996)

    Article  CAS  Google Scholar 

  46. Meyer, W.H.: Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998)

    Article  CAS  PubMed  Google Scholar 

  47. Yue, L., Ma, J., Zhang, J., et al.: All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139–164 (2016)

    Article  Google Scholar 

  48. Tikekar, M.D., Archer, L.A., Koch, D.L.: Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Monroe, C., Newman, J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005)

    Article  CAS  Google Scholar 

  50. Stone, G.M., Mullin, S.A., Teran, A.A., et al.: Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012)

    Article  CAS  Google Scholar 

  51. Li, Y., Leung, K., Qi, Y.: Computational exploration of the Li-electrode/electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer. Acc. Chem. Res. 49, 2363–2370 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. Luntz, A.C., Voss, J., Reuter, K.: Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett. 6, 4599–4604 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. Scrosati, B., Vincent, C.A.: Polymer electrolytes: the key to lithium polymer batteries. MRS Bull. 25, 28–30 (2000)

    Article  CAS  Google Scholar 

  54. Arya, A., Sharma, A.L.: Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23, 497–540 (2017)

    Article  CAS  Google Scholar 

  55. Ngai, K.S., Ramesh, S., Ramesh, K., et al.: A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016)

    Article  CAS  Google Scholar 

  56. Croce, F., Appetecchi, G.B., Persi, L., et al.: Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998)

    Article  CAS  Google Scholar 

  57. Quartarone, E., Mustarelli, P., Magistris, A.: PEO-based composite polymer electrolytes. Solid State Ion. 110, 1–14 (1998)

    Article  CAS  Google Scholar 

  58. Manuel Stephan, A., Nahm, K.S.: Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952–5964 (2006)

    Article  CAS  Google Scholar 

  59. Le Bideau, J., Ducros, J.B., Soudan, P., et al.: Solid-state electrode materials with ionic-liquid properties for energy storage: the lithium solid-state ionic-liquid concept. Adv. Funct. Mater. 21, 4073–4078 (2011)

    Article  CAS  Google Scholar 

  60. Wu, P.W., Holm, S.R., Duong, A.T., et al.: A sol-gel solid electrolyte with high lithium ion conductivity. Chem. Mater. 9, 1004–1011 (1997)

    Article  CAS  Google Scholar 

  61. Song, J.Y., Wang, Y.Y., Wan, C.C.: Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 77, 183–197 (1999)

    Article  CAS  Google Scholar 

  62. Sadoway, D.R.: Block and graft copolymer, electrolytes for high-performance, solid-state, lithium batteries. J. Power Sources 129, 1–3 (2004)

    Article  CAS  Google Scholar 

  63. Le Nest, J.F., Callens, S., Gandini, A., et al.: A new polymer network for ionic conduction. Electrochim. Acta 37, 1585–1588 (1992)

    Article  Google Scholar 

  64. Alloin, F., Sanchez, J.Y., Armand, M.: Electrochemical-behavior of lithium electrolytes based on new polyether networks. J. Electrochem. Soc. 141, 1915–1920 (1994)

    Article  CAS  Google Scholar 

  65. Kumar, B., Scanlon, L.G.: Polymer-ceramic composite electrolytes. J. Power Sources 52, 261–268 (1994)

    Article  CAS  Google Scholar 

  66. Sun, C., Liu, J., Gong, Y., et al.: Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017)

    Article  CAS  Google Scholar 

  67. Cui, Y., Liang, X., Chai, J., et al.: High performance solid polymer electrolytes for rechargeable batteries: a self-catalyzed strategy toward facile synthesis. Adv. Sci. 4, 1700174 (2017)

  68. Cheng, X., Pan, J., Zhao, Y., et al.: Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8, 1702184 (2018)

  69. Zhou, Y.C., Li, Z.J., Lu, Y.C.: A stable lithium-selenium interface via solid/liquid hybrid electrolytes: Blocking polyselenides and suppressing lithium dendrite. Nano Energy 39, 554–561 (2017)

    Article  CAS  Google Scholar 

  70. Kalhoff, J., Eshetu, G.G., Bresser, D., et al.: Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 8, 2154–2175 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, M.Y., Li, M.X., Chang, Z., et al.: A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim. Acta 245, 752–759 (2017)

    Article  CAS  Google Scholar 

  72. Armand, M.: Polymers with ionic conductivity. Adv. Mater. 2, 278–286 (1990)

    Article  CAS  Google Scholar 

  73. Lu, Q., He, Y.B., Yu, Q., et al.: Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017)

  74. Shi, J., Yang, Y., Shao, H.: Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J. Membr. Sci. 547, 1–10 (2018)

    Article  CAS  Google Scholar 

  75. Wang, Y., Qiu, J., Peng, J., et al.: One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J. Mater. Chem. A 5, 12393–12399 (2017)

    Article  CAS  Google Scholar 

  76. Wang, S., Shi, Q.X., Ye, Y.S., et al.: Constructing desirable ion-conducting channels within ionic liquid-based composite polymer electrolytes by using polymeric ionic liquid-functionalized 2D mesoporous silica nanoplates. Nano Energy 33, 110–123 (2017)

    Article  CAS  Google Scholar 

  77. Wang, S.H., Lin, Y.Y., Teng, C.Y., et al.: Immobilization of anions on polymer matrices for gel electrolytes with high conductivity and stability in lithium ion batteries. ACS Appl. Mater. Interfaces 8, 14776–14787 (2016)

    Article  CAS  PubMed  Google Scholar 

  78. Sugihara, N., Nishimura, K., Nishino, H., et al.: Ion-conductive and elastic slide-ring gel Li electrolytes swollen with ionic liquid. Electrochim. Acta 229, 166–172 (2017)

    Article  CAS  Google Scholar 

  79. Stepniak, I., Andrzejewska, E., Dembna, A., et al.: Characterization and application of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid–based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries. Electrochim. Acta 121, 27–33 (2014)

    Article  CAS  Google Scholar 

  80. Zhang, J., Sun, B., Huang, X., et al.: Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci Rep 4, 6007 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, X., Qian, K., He, Y.B., et al.: A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. J. Mater. Chem. A 5, 18888–18895 (2017)

    Article  CAS  Google Scholar 

  82. Bhattacharyya, A.J., Maier, J.: Second phase effects on the conductivity of non-aqueous salt solutions: “Soggy sand electrolytes”. Adv. Mater. 16, 811–814 (2004)

    Article  CAS  Google Scholar 

  83. Zeng, X.X., Yin, Y.X., Shi, Y., et al.: Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem 4(2), 298–307 (2018). https://doi.org/10.1016/j.chempr.2017.12.003

    Article  CAS  Google Scholar 

  84. Zhong, X., Tang, J., Cao, L., et al.: Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors. Electrochim. Acta 244, 112–118 (2017)

    Article  CAS  Google Scholar 

  85. Díaz, M., Ortiz, A., Ortiz, I.: Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 469, 379–396 (2014)

    Article  CAS  Google Scholar 

  86. Yang, G., Oh, H., Chanthad, C., et al.: Dumbbell-shaped octasilsesquioxanes functionalized with ionic liquids as hybrid electrolytes for lithium metal batteries. Chem. Mater. 29, 9275–9283 (2017)

    Article  CAS  Google Scholar 

  87. Wang, X., Zhu, H., Girard, G.M.A., et al.: Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. J. Mater. Chem. A 5, 23844–23852 (2017)

    Article  CAS  Google Scholar 

  88. Zhou, D., Liu, R., Zhang, J., et al.: In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy 33, 45–54 (2017)

    Article  CAS  Google Scholar 

  89. Fenton, D.E., Parker, J.M., Wright, P.V.: Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973)

    Article  CAS  Google Scholar 

  90. Armand, M.: The history of polymer electrolytes. Solid State Ion. 69, 309–319 (1994)

    Article  CAS  Google Scholar 

  91. Jenkins, A.D., Kratochvíl, P., Stepto, R.F.T., et al.: Glossary of basic terms in polymer science. Pure Appl. Chem. 68, 2287–2311 (1996)

    Article  CAS  Google Scholar 

  92. Giles, J.R.M., Gray, F.M., Maccallum, J.R., et al.: Synthesis and characterization of ABA block copolymer-based polymer electrolytes. Polymer 28, 1977–1981 (1987)

    Article  CAS  Google Scholar 

  93. Devaux, D., Gle, D., Phan, T.N.T., et al.: Optimization of block copolymer electrolytes for lithium metal batteries. Chem. Mater. 27, 4682–4692 (2015)

    Article  CAS  Google Scholar 

  94. Singh, M., Odusanya, O., Wilmes, G.M., et al.: Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40, 4578–4585 (2007)

    Article  CAS  Google Scholar 

  95. Panday, A., Mullin, S., Gomez, E.D., et al.: Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42, 4632–4637 (2009)

    Article  CAS  Google Scholar 

  96. Soo, P.P., Huang, B.Y., Jang, Y.I., et al.: Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J. Electrochem. Soc. 146, 32–37 (1999)

    Article  CAS  Google Scholar 

  97. Niitani, T., Shimada, M., Kawamura, K., et al.: Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem. Solid State Lett. 8, A385–A388 (2005)

    Article  CAS  Google Scholar 

  98. Young, W.S., Kuan, W.F., Epps, T.H., et al.: Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. B Polym. Phys. 52, 1–16 (2014)

    Article  CAS  Google Scholar 

  99. Bouchet, R., Maria, S., Meziane, R., et al.: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013)

    Article  CAS  PubMed  Google Scholar 

  100. Chintapalli, M., Chen, X.C., Thelen, J.L., et al.: Effect of grain size on the ionic conductivity of a block copolymer electrolyte. Macromolecules 47, 5424–5431 (2014)

    Article  CAS  Google Scholar 

  101. Fu, G., Kyu, T.: Effect of side-chain branching on enhancement of ionic conductivity and capacity retention of a solid copolymer electrolyte membrane. Langmuir 33, 13973–13981 (2017)

    Article  CAS  PubMed  Google Scholar 

  102. Zheng, Z., Gao, X., Luo, Y., et al.: Employing gradient copolymer to achieve gel polymer electrolytes with high ionic conductivity. Macromolecules 49, 2179–2188 (2016)

    Article  CAS  Google Scholar 

  103. Kang, Y.K., Cheong, K., Noh, K.A., et al.: A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties. J. Power Sources 119, 432–437 (2003)

    Article  CAS  Google Scholar 

  104. Armand, M.: Polymer solid electrolytes—an overview. Solid State Ionics 9–10, 745–754 (1983)

    Article  Google Scholar 

  105. Ben Youcef, H., Garcia-Calvo, O., Lago, N., et al.: Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochim. Acta 220, 587–594 (2016)

    Article  CAS  Google Scholar 

  106. Nishimoto, A., Agehara, K., Furuya, N., et al.: High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32, 1541–1548 (1999)

    Article  CAS  Google Scholar 

  107. Snyder, J.F., Carter, R.H., Wetzel, E.D.: Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem. Mater. 19, 3793–3801 (2007)

    Article  CAS  Google Scholar 

  108. Laik, B., Legrand, L., Chausse, A., et al.: Ion-ion interactions and lithium stability in a crosslinked PEO containing lithium salts. Electrochim. Acta 44, 773–780 (1998)

    Article  CAS  Google Scholar 

  109. Khurana, R., Schaefer, J.L., Archer, L.A., et al.: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014)

    Article  CAS  PubMed  Google Scholar 

  110. Zheng, Q., Ma, L., Khurana, R., et al.: Structure-property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance. Chem. Sci. 7, 6832–6838 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hwang, S.S., Cho, C.G., Kim, H.: Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochem. Commun. 12, 916–919 (2010)

    Article  CAS  Google Scholar 

  112. Klempner, D.: Interpenetrating polymer networks. Angew. Chem. Int. Ed. 17, 97–106 (1978)

    Article  Google Scholar 

  113. Sperling, L.H.: Interpenetrating polymer networks. In: Utracki, L.A. (ed.) Polymer Blends Handbook. Interpenetrating Polymer Networks, vol. 1, pp. 417–447. Springer, Dordrecht (2002)

    Google Scholar 

  114. Sperling, L.H.: Interpenetrating polymer networks and related materials. J. Polym. Sci. Macromol. Rev. 12, 141–180 (1977)

    Article  CAS  Google Scholar 

  115. Liu, X., Ding, G., Zhou, X., et al.: An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. J. Mater. Chem. A 5, 11124–11130 (2017)

    Article  CAS  Google Scholar 

  116. Suk, J., Lee, Y.H., Kim, D.Y., et al.: Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. J. Power Sources 334, 154–161 (2016)

    Article  CAS  Google Scholar 

  117. Nair, J.R., Destro, M., Bella, F., et al.: Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. J. Power Sources 306, 258–267 (2016)

    Article  CAS  Google Scholar 

  118. Shaplov, A.S., Ponkratov, D.O., Vlasov, P.S., et al.: Ionic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials. J. Mater. Chem. A 3, 2188–2198 (2015)

    Article  CAS  Google Scholar 

  119. Ha, H.J., Kil, E.H., Kwon, Y.H., et al.: UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy Environ. Sci. 5, 6491–6499 (2012)

    Article  CAS  Google Scholar 

  120. Zeng, X.X., Yin, Y.X., Li, N.W., et al.: Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J. Am. Chem. Soc. 138, 15825–15828 (2016)

    Article  CAS  PubMed  Google Scholar 

  121. Ma, Y., Ma, J., Chai, J., et al.: Two players make a formidable combination: in situ generated poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) cross-linking gel polymer electrolyte toward 5 V high-voltage batteries. ACS Appl. Mater. Interfaces 9, 41462–41472 (2017)

    Article  CAS  PubMed  Google Scholar 

  122. Duan, H., Yin, Y.X., Zeng, X.X., et al.: In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 10, 85–91 (2018)

    Article  Google Scholar 

  123. Jacob, M.M.E., Prabaharan, S.R.S., Radhakrishna, S.: Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ion. 104, 267–276 (1997)

    Article  CAS  Google Scholar 

  124. Xi, J.Y., Qiu, X.P., Li, J., et al.: PVDF-PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity. J. Power Sources 157, 501–506 (2006)

    Article  CAS  Google Scholar 

  125. Tao, C., Gao, M.H., Yin, B.H., et al.: A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochim. Acta 257, 31–39 (2017)

    Article  CAS  Google Scholar 

  126. Nunes-Pereira, J., Costa, C.M., Lanceros-Mendez, S.: Polymer composites and blends for battery separators: state of the art, challenges and future trends. J. Power Sources 281, 378–398 (2015)

    Article  CAS  Google Scholar 

  127. Zhang, H., Li, C., Piszcz, M., et al.: Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017)

    Article  CAS  PubMed  Google Scholar 

  128. Piszcz, M., Garcia-Calvo, O., Oteo, U., et al.: New single ion conducting blend based on PEO and PA-LiTFSI. Electrochim. Acta 255, 48–54 (2017)

    Article  CAS  Google Scholar 

  129. Meziane, R., Bonnet, J.P., Courty, M., et al.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011)

    Article  CAS  Google Scholar 

  130. Ma, Q., Zhang, H., Zhou, C., et al.: Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed. 55, 2521–2525 (2016)

    Article  CAS  Google Scholar 

  131. Zhao, M.K., Zuo, X.X., Ma, X.D., et al.: Self-supported PVdF/P(VC-VAc) blended polymer electrolytes for LiNi0.5Mn1.5O4/Li batteries. J. Membr. Sci. 532, 30–37 (2017)

    Article  CAS  Google Scholar 

  132. Appetecchi, G.B., Croce, F., Persi, L., et al.: Transport and interfacial properties of composite polymer electrolytes. Electrochim. Acta 45, 1481–1490 (2000)

    Article  CAS  Google Scholar 

  133. Yang, T., Zheng, J., Cheng, Q., et al.: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9, 21773–21780 (2017)

    Article  CAS  PubMed  Google Scholar 

  134. Jia, Z., Yuan, W., Zhao, H., et al.: Composite electrolytes comprised of poly(ethylene oxide) and silica nanoparticles with grafted poly(ethylene oxide)-containing polymers. RSC Adv. 4, 41087–41098 (2014)

    Article  CAS  Google Scholar 

  135. Zhu, L.J., Zhu, L.P., Zhang, P.B., et al.: Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core–shell silica nanoparticles. J. Colloid Interface Sci. 468, 110–119 (2016)

    Article  CAS  PubMed  Google Scholar 

  136. Weston, J.E., Steele, B.C.H.: Effects of inert fillers on the mechanical and electrochemical properties of lithium salt poly (ethylene-oxide) polymer electrolytes. Solid State Ion. 7, 75–79 (1982)

    Article  CAS  Google Scholar 

  137. Liu, Y., Lee, J.Y., Hong, L.: Morphology, crystallinity, and electrochemical properties of in situ formed poly(ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J. Appl. Polym. Sci. 89, 2815–2822 (2003)

    Article  CAS  Google Scholar 

  138. Adebahr, J., Best, A.S., Byrne, N., et al.: Ion transport in polymer electrolytes containing nanoparticulate TiO2: the influence of polymer morphology. Phys. Chem. Chem. Phys. 5, 720–725 (2003)

    Article  CAS  Google Scholar 

  139. Croce, F., Sacchetti, S., Scrosati, B.: Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 162, 685–689 (2006)

    Article  CAS  Google Scholar 

  140. Itoh, T., Miyamura, Y., Ichikawa, Y., et al.: Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. J. Power Sources 119, 403–408 (2003)

    Article  CAS  Google Scholar 

  141. Wang, Y.J., Pan, Y., Kim, D.: Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes. J. Power Sources 159, 690–701 (2006)

    Article  CAS  Google Scholar 

  142. Xia, Y., Wang, X., Xia, X., et al.: A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium–sulfur batteries. Chem. Eur. J. 23, 15203–15209 (2017)

    Article  CAS  PubMed  Google Scholar 

  143. Li, D., Chen, L., Wang, T., et al.: 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 10, 7069–7078 (2018)

    Article  CAS  PubMed  Google Scholar 

  144. Zheng, J., Tang, M., Hu, Y.Y.: Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016)

    Article  CAS  Google Scholar 

  145. Keller, M., Appetecchi, G.B., Kim, G.T., et al.: Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)(15)LiTFSI. J. Power Sources 353, 287–297 (2017)

    Article  CAS  Google Scholar 

  146. Zhang, X., Liu, T., Zhang, S., et al.: Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017)

    Article  CAS  PubMed  Google Scholar 

  147. Liu, W., Liu, N., Sun, J., et al.: Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015)

    Article  CAS  PubMed  Google Scholar 

  148. Zhao, K., Wen, M., Dong, Y., et al.: Thermal induced strain relaxation of 1D iron oxide for solid electrolyte interphase control and lithium storage improvement. Adv. Energy Mater. 7, 1601582 (2017)

  149. Zhao, Y., Wu, C., Peng, G., et al.: A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 301, 47–53 (2016)

    Article  CAS  Google Scholar 

  150. Villaluenga, I., Wujcik, K.H., Tong, W., et al.: Compliant glass-polymer hybrid single ion-conducting electrolytes for lithium batteries. Proc. Natl. Acad. Sci. U. S. A. 113, 52–57 (2016)

    Article  CAS  PubMed  Google Scholar 

  151. Lin, D.C., Liu, W., Liu, Y.Y., et al.: High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016)

    Article  CAS  PubMed  Google Scholar 

  152. Liu, Z.C., Fu, W.J., Payzant, E.A., et al.: Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013)

    Article  CAS  PubMed  Google Scholar 

  153. Yao, X.Y., Liu, D., Wang, C.S., et al.: High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 16, 7148–7154 (2016)

    Article  CAS  PubMed  Google Scholar 

  154. Kumar, B., Rodrigues, S.J.: Poly(ethylene oxide)-based composite electrolytes crystalline reversible arrow amorphous transition. J. Electrochem. Soc. 148, A1336–A1340 (2001)

    Article  CAS  Google Scholar 

  155. Kumar, B., Scanlon, L.G., Spry, R.J.: On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. J. Power Sources 96, 337–342 (2001)

    Article  CAS  Google Scholar 

  156. Zhang, J.X., Zhao, N., Zhang, M., et al.: Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016)

    Article  CAS  Google Scholar 

  157. Yamada, H., Bhattacharyya, A.J., Maier, J.: Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina. Adv. Funct. Mater. 16, 525–530 (2006)

    Article  CAS  Google Scholar 

  158. Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Article  CAS  Google Scholar 

  159. Maier, J.: Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171–263 (1995)

    Article  CAS  Google Scholar 

  160. Andreev, O.L., Druzhinin, K.V., Shevelin, P.Y., et al.: Influence of solid electrolyte particles size on ionic transport in model composite system (PVdF-HFP-Li1.3Al0.3Ti1.7(PO4)3). Ionics 19, 33–39 (2013)

    Article  CAS  Google Scholar 

  161. He, X.M., Shi, Q., Zhou, X., et al.: In situ composite of nano SiO2-P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim. Acta 51, 1069–1075 (2005)

    Article  CAS  Google Scholar 

  162. Zhai, H., Xu, P., Ning, M., et al.: A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 17, 3182–3187 (2017)

    Article  CAS  PubMed  Google Scholar 

  163. Liu, W., Lee, S.W., Lin, D., et al.: Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017)

    Article  CAS  Google Scholar 

  164. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  PubMed  Google Scholar 

  165. Dean, C.R., Young, A.F., Meric, I., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)

    Article  CAS  PubMed  Google Scholar 

  166. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., et al.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  CAS  PubMed  Google Scholar 

  167. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., et al.: Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  CAS  Google Scholar 

  168. Butler, S.Z., Hollen, S.M., Cao, L., et al.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)

    Article  CAS  PubMed  Google Scholar 

  169. Lim, M.-Y., Kim, H.J., Baek, S.J., et al.: Improved strength and toughness of polyketone composites using extremely small amount of polyamide 6 grafted graphene oxides. Carbon 77, 366–378 (2014)

    Article  CAS  Google Scholar 

  170. Shim, J., Kim, D.-G., Kim, H.J., et al.: Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J. Mater. Chem. A 2, 13873–13883 (2014)

    Article  CAS  Google Scholar 

  171. Yuan, M., Erdman, J., Tang, C., et al.: High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv. 4, 59637–59642 (2014)

    Article  CAS  Google Scholar 

  172. Shim, J., Kim, H.J., Kim, B.G., et al.: 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries. Energy Environ. Sci. 10, 1911–1916 (2017)

    Article  CAS  Google Scholar 

  173. Fu, K., Gong, Y.H., Dai, J.Q., et al.: Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U. S. A. 113, 7094–7099 (2016)

    Article  CAS  PubMed  Google Scholar 

  174. Zekoll, S., Marriner-Edwards, C., Hekselman, A.K.O., et al.: Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 11, 185–201 (2018)

    Article  CAS  Google Scholar 

  175. Wieczorek, W., Zalewska, A., Raducha, D., et al.: Composite polyether electrolytes with Lewis acid type additives. J. Phys. Chem. B 102, 352–360 (1998)

    Article  CAS  Google Scholar 

  176. Wieczorek, W.: Entropy effects on conductivity of the blend-based and composite polymer solid electrolytes. Solid State Ion. 53–56, 1064–1070 (1992)

    Article  Google Scholar 

  177. Almond, D.P., West, A.R.: Entropy effects in ionic conductivity. Solid State Ion. 18–19, 1105–1109 (1986)

    Article  Google Scholar 

  178. Wieczorek, W., Lipka, P., Zukowska, G., et al.: Ionic interactions in polymeric electrolytes based on low molecular weight poly(ethylene glycol)s. J. Phys. Chem. B 102, 6968–6974 (1998)

    Article  CAS  Google Scholar 

  179. Wieczorek, W., Raducha, D., Zalewska, A., et al.: Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J. Phys. Chem. B 102, 8725–8731 (1998)

    Article  CAS  Google Scholar 

  180. Chung, S.H., Wang, Y., Persi, L., et al.: Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J. Power Sources 97–8, 644–648 (2001)

    Article  Google Scholar 

  181. Nan, C.W., Fan, L.Z., Lin, Y.H., et al.: Enhanced ionic conductivity of polymer electrolytes containing nanocomposite SiO2 particles. Phys. Rev. Lett. 91, 266104 (2003)

    Article  CAS  PubMed  Google Scholar 

  182. Liu, W., Lin, D., Sun, J., et al.: Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10, 11407–11413 (2016)

    Article  CAS  PubMed  Google Scholar 

  183. Zhao, C.Z., Zhang, X.Q., Cheng, X.B., et al.: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U. S. A. 114, 11069–11074 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kalnaus, S., Tenhaeff, W.E., Sakamoto, J., et al.: Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications. J. Power Sources 241, 178–185 (2013)

    Article  CAS  Google Scholar 

  185. Fu, K., Gong, Y., Li, Y., et al.: Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017)

    Article  CAS  Google Scholar 

  186. Tu, Z., Kambe, Y., Lu, Y., et al.: Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014)

  187. Zhou, W., Wang, S., Li, Y., et al.: Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016)

    Article  CAS  PubMed  Google Scholar 

  188. Bucur, C.B., Jones, M., Kopylov, M., et al.: Inorganic-organic layer by layer hybrid membranes for lithium-sulfur batteries. Energy Environ. Sci. 10, 905–911 (2017)

    Article  CAS  Google Scholar 

  189. Duan, H., Yin, Y.X., Shi, Y., et al.: Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 140, 82–85 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Center Project of National Natural Science Foundation of China under grant No. 51788104, the National Key R&D Program of China (Gant 2016YFA0202500), the National Natural Science Foundation of China (21773264, 51672281), Beijing Natural Science Foundation (L172023), and the “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA 21070300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, SJ., Zeng, XX., Ma, Q. et al. Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochem. Energ. Rev. 1, 113–138 (2018). https://doi.org/10.1007/s41918-018-0011-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0011-2

Keywords

PACS

Navigation