Skip to main content
Log in

Affine statistical bundle modeled on a Gaussian Orlicz–Sobolev space

  • Survey Paper
  • Published:
Information Geometry Aims and scope Submit manuscript

Abstract

The dually flat structure of statistical manifolds can be derived in a non-parametric way from a particular case of affine space defined on a qualified set of probability measures. The statistically natural displacement mapping of the affine space depends on the notion of Fisher’s score. The model space must be carefully defined if the state space is not finite. Among various options, we discuss how to use Orlicz–Sobolev spaces with Gaussian weight. Such a fully non-parametric set-up provides tools to discuss intrinsically infinite-dimensional evolution problems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Notes

  1. The difference in terminology between Mathematical Statistics and Physics is sometimes confusing. The tutorial [51] and the textbook [8] should be helpful.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn., p. 305. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Amari, S.-I.: Differential geometry of curved exponential families-curvatures and information loss. Ann. Stat. 10(2), 357–385 (1982). https://doi.org/10.1214/aos/1176345779

    Article  MathSciNet  Google Scholar 

  3. Amari, S.: Dual connections on the Hilbert bundles of statistical models. In: Dodson, C.T.J. (ed.) Geometrization of Statistical Theory (Lancaster, 1987), pp. 123–151. ULDM Publ, Lancaster (1987)

    Google Scholar 

  4. Amari, S.-I.: Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998). https://doi.org/10.1162/089976698300017746

    Article  Google Scholar 

  5. Amari, S.-I.: Information Geometry and Its Applications. Applied Mathematical Sciences, vol. 194, p. 374. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55978-8

    Book  Google Scholar 

  6. Amari, S.-I., Kumon, M.: Estimation in the presence of infinitely many nuisance parameters—geometry of estimating functions. Ann. Stat. 16(3), 1044–1068 (1988). https://doi.org/10.1214/aos/1176350947

    Article  MathSciNet  Google Scholar 

  7. Amari, S.-I., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191, p. 206. American Mathematical Society, Providence, Oxford University Press, Oxford (2000). https://doi.org/10.1090/mmono/191 (Translated from the 1993 Japanese original by Daishi Harada)

  8. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60, p. 516. Springer, New York (1989). (Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition)

  9. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 64, p. 407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56478-4

    Book  Google Scholar 

  10. Bauer, M., Bruveris, M., Michor, P.W.: Uniqueness of the Fisher–Rao metric on the space of smooth densities. Bull. Lond. Math. Soc. 48(3), 499–506 (2016). https://doi.org/10.1112/blms/bdw020

    Article  MathSciNet  Google Scholar 

  11. Bogachev, V.I.: Differentiable Measures and the Malliavin Calculus. Mathematical Surveys and Monographs, vol. 164, p. 488. American Mathematical Society, Providence (2010). https://doi.org/10.1090/surv/164

    Book  Google Scholar 

  12. Bourbaki, N.: Variétés Differentielles et Analytiques. Fascicule de Résultats / Paragraphes 1 à 7. Éléments de mathématiques, vol. XXXIII. Hermann, Paris (1971)

  13. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, p. 599. Springer, New York (2011). https://doi.org/10.1007/978-0-387-70914-7

    Book  Google Scholar 

  14. Brown, L.D.: Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory. IMS Lecture Notes. Monograph Series, vol. 9, p. 283. Institute of Mathematical Statistics, Hayward (1986)

    Google Scholar 

  15. Buldygin, V.V., Kozachenko, Y.V.: Metric Characterization of Random Variables and Random Processes. Translations of Mathematical Monographs, vol. 188, p. 257. American Mathematical Society, Providence (2000). (Translated from the 1998 Russian original by V. Zaiats)

  16. Cena, A.: Geometric structures on the non-parametric statistical manifold. Ph.D. thesis, Università degli Studi di Milano (2002)

  17. Cena, A., Pistone, G.: Exponential statistical manifold. Ann. Inst. Stat. Math. 59(1), 27–56 (2007). https://doi.org/10.1007/s10463-006-0096-y

    Article  MathSciNet  Google Scholar 

  18. Čencov, N.N.: Statistical Decision Rules and Optimal Inference. Translations of Mathematical Monographs, vol. 53, p. 499. American Mathematical Society, Providence (1982). https://doi.org/10.1090/mmono/053. (Translation from the Russian edited by Lev J. Leifman)

  19. Chirco, G., Pistone, G.: Dually affine Information Geometry modeled on a Banach space. (2022). arXiv:2204.00917

  20. Chirco, G., Malagò, L., Pistone, G.: Lagrangian and Hamiltonian dynamics for probabilities on the statistical bundle. Int. J. Geom. Methods Mod. Phys. (2022). https://doi.org/10.1142/s0219887822502140

    Article  MathSciNet  Google Scholar 

  21. Efron, B.: Defining the curvature of a statistical problem (with applications to second order efficiency). Ann. Stat. 3(6), 1189–1242 (1975). https://doi.org/10.1214/aos/1176343282. (With a discussion by C. R. Rao, Don A. Pierce, D. R. Cox, D. V. Lindley, Lucien LeCam, J. K. Ghosh, J. Pfanzagl, Niels Keiding, A. P. Dawid, Jim Reeds and with a reply by the author)

  22. Efron, B.: The geometry of exponential families. Ann. Stat. 6(2), 362–376 (1978). https://doi.org/10.1214/aos/1176344130

    Article  MathSciNet  Google Scholar 

  23. Efron, B., Hastie, T.: Computer Age Statistical Inference. Institute of Mathematical Statistics (IMS) Monographs. Algorithms, Evidence, and Data Science, vol. 5, p. 475. Cambridge University Press, New York (2016). https://doi.org/10.1017/CBO9781316576533

    Book  Google Scholar 

  24. Gibilisco, P., Pistone, G.: Connections on non-parametric statistical manifolds by Orlicz space geometry. IDAQP 1(2), 325–347 (1998). https://doi.org/10.1142/S021902579800017X

    Article  MathSciNet  Google Scholar 

  25. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res. 6, 695–709 (2005)

    MathSciNet  Google Scholar 

  26. Kass, R.E., Vos, P.W.: Geometrical Foundations of Asymptotic Inference. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1997). https://doi.org/10.1002/9781118165980

    Book  Google Scholar 

  27. Lang, S.: Differential and Riemannian Manifolds. Graduate Texts in Mathematics, 3rd edn., p. 364. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4182-9

    Book  Google Scholar 

  28. Lê, H.V.: Natural differentiable structures on statistical models and the Fisher metric (2022). arXiv:2208.06539

  29. Li, W., Montúfar, G.: Natural gradient via optimal transport. Inf. Geom. 1(2), 181–214 (2018). https://doi.org/10.1007/s41884-018-0015-3

    Article  MathSciNet  Google Scholar 

  30. Lods, B., Pistone, G.: Information geometry formalism for the spatially homogeneous Boltzmann equation. Entropy 17(6), 4323–4363 (2015). https://doi.org/10.3390/e17064323

    Article  ADS  MathSciNet  Google Scholar 

  31. Lott, J.: Some geometric calculations on Wasserstein space. Commun. Math. Phys. 277(2), 423–437 (2008). https://doi.org/10.1007/s00220-007-0367-3

    Article  ADS  MathSciNet  Google Scholar 

  32. Malagò, L., Montrucchio, L., Pistone, G.: Wasserstein riemannian geometry of gaussian densities. Inf. Geom. 1(2), 137–179 (2018). https://doi.org/10.1007/s41884-018-0014-4

    Article  MathSciNet  Google Scholar 

  33. Malliavin, P.: Integration and Probability. Graduate Texts in Mathematics, vol. 157, p. 322. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4202-4. (With the collaboration of Héléne Airault, Leslie Kay and Gérard Letac, Edited and translated from the French by Kay, With a foreword by Mark Pinsky)

  34. Malliavin, P.: Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 313, p. 343. Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-15074-6

  35. Montrucchio, L., Pistone, G.: Kantorovich distance on finite metric spaces: Arens-eells norm and cut norms. Inf. Geom. (2021). https://doi.org/10.1007/s41884-021-00050-w

    Article  Google Scholar 

  36. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

    Book  Google Scholar 

  37. Nomizu, K., Sasaki, T.: Affine Differential Geometry: Geometry of Affine. Immersions Cambridge Tracts in Mathematics, vol. 111. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  38. Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality. Cambridge Tracts in Mathematics, vol. 192, p. 239. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139084659

    Book  Google Scholar 

  39. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001). https://doi.org/10.1081/PDE-100002243

    Article  MathSciNet  Google Scholar 

  40. Parry, M., Dawid, A.P., Lauritzen, S.: Proper local scoring rules. Ann. Stat. 40(1), 561–592 (2012). https://doi.org/10.1214/12-AOS971

    Article  MathSciNet  Google Scholar 

  41. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11(5–6), 355–607 (2019). https://doi.org/10.1561/2200000073. arXiv:1803.00567

    Article  Google Scholar 

  42. Pistone, G.: Examples of the application of nonparametric information geometry to statistical physics. Entropy 15(10), 4042–4065 (2013). https://doi.org/10.3390/e15104042

    Article  ADS  MathSciNet  Google Scholar 

  43. Pistone, G.: Nonparametric information geometry. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Comput. Sci., vol. 8085, pp. 5–36. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40020-9_3. First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings

  44. Pistone, G.: Information geometry of the Gaussian space. In: Information Geometry and Its Applications. Springer Proc. Math. Stat., vol. 252, pp. 119–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97798-0_5

  45. Pistone, G.: Lagrangian function on the finite state space statistical bundle. Entropy 20(2), 139 (2018). https://doi.org/10.3390/e20020139

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Pistone, G.: Information geometry of smooth densities on the Gaussian space: Poincaré inequalities. In: Nielsen, F. (ed.) Progress in Information Geometry. Signals and Communication Technology, pp. 1–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65459-7_1

  47. Pistone, G.: Statistical bundle of the transport model. In: Geometric Science of Information. Lecture Notes in Comput. Sci., vol. 12829, pp. 752–759. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80209-7_81

  48. Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Stat. 23(5), 1543–1561 (1995)

    Article  MathSciNet  Google Scholar 

  49. Santacroce, M., Siri, P., Trivellato, B.: New results on mixture and exponential models by Orlicz spaces. Bernoulli 22(3), 1431–1447 (2016). https://doi.org/10.3150/15-BEJ698

    Article  MathSciNet  Google Scholar 

  50. Siri, P., Trivellato, B.: Robust concentration inequalities in maximal exponential models. Stat. Prob. Lett. 170, 109001 (2021). https://doi.org/10.1016/j.spl.2020.109001

    Article  MathSciNet  Google Scholar 

  51. Susskind, L., Hrabovsky, G.: The Theoretical Minimum: What You Need to Know to Start Doing Physics. Basic Books, New York (2013)

    Google Scholar 

  52. Vershynin, R.: High-dimensional Probability: an Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 47, p. 284. Cambridge University Press, Cambridge (2018). https://doi.org/10.1017/9781108231596. (With a foreword by Sara van de Geer)

  53. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002). https://doi.org/10.1016/S1874-5792(02)80004-0

  54. Wainwright, M.J.: High-dimensional Statistics: A Non-asymptotic Viewpoint. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108627771

  55. Weyl, H.: Space Time Matter. Dover, New York (1952). (Translation of the 1921 RAUM ZEIT MATERIE)

Download references

Acknowledgements

It is a pleasure to acknowledge the contribution of many people to my work in non-parametric IG. In particular, I like to mention professor Sun-ichi Amari’s constant encouragement and the critical assessment by Nihat Ay, Jürgen Jost, Hông Vân Lê, Lorenz Schwachöfer in [9, 3.3]. I also like to mention friends and coworkers in order of appearance in this paper: Carlo Sempi, Paolo Gibilisco, Alberto Cena, Maria Piera Rogantin, Barbara Trivellato, Paola Siri, Marina Santacroce, Luigi Malagò, Luigi Montrucchio, Goffredo Chirco, Bertrand Lods. The author was partially supported by de Castro Statistics, Collegio Carlo Alberto, and is a member of GNAMPA, Istituto di Alta Matematica, Rome.

Funding

The author is supported by de Castro Statistics, Collegio Carlo Alberto, and INdAM-Gnafa.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Giovanni Pistone.

Ethics declarations

Conflict of interest

The author is on the Editorial Board of Information Geometry. The author states that there are no other conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Nihat Ay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pistone, G. Affine statistical bundle modeled on a Gaussian Orlicz–Sobolev space. Info. Geo. 7 (Suppl 1), 109–130 (2024). https://doi.org/10.1007/s41884-022-00078-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41884-022-00078-6

Keywords

Navigation