Skip to main content
Log in

Local uniqueness of the magnetic Ginzburg–Landau equation

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the magnetic Ginzburg–Landau equation:

$$\begin{aligned} \left\{ \begin{aligned}-\Delta _A \psi +\frac{\lambda }{2}(|\psi |^2-1)\psi =0\quad \text {in }{\mathbb {R}}^2,\\ \nabla \times \nabla \times A+\text {Im}({\overline{\psi }}\nabla _{A}\psi )=0\quad \text {in }{\mathbb {R}}^2,\\ |\psi |\rightarrow 1\quad \text {as }|x|\rightarrow +\infty , \end{aligned}\right. \end{aligned}$$

where \(\lambda >1\) is a coupling parameter, \(\nabla _A=\nabla -iA\) and \(\Delta _A=\nabla _A\cdot \nabla _A\) are, respectively, the covariant gradient and Laplacian. We prove, by perturbation arguments, that the only possible minimizer of the magnetic Ginzburg–Landau functional with degree 1 is the radial solution for \(\lambda \) sufficiently close to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alama, S., Bronsard, L., Giorgi, T.: Uniqueness of symmetric vortex solutions in the Ginzburg-Landau model of superconductivity. J. Funct. Anal. 167, 399–424 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bethuel, F., Brezis, H., Helein, F.: Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var. PDEs 1, 123–148 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bethuel, F., Brezis, H., Helein, F.: Ginzburg-Landau Vortices. Birkhäuser, Basel (1994)

    Book  Google Scholar 

  4. Berger, M., Chen, Y.: Symmetric vortices for the nonlinear Ginzburg-Landau equations of superconductivity, and the nonlinear desingularization phenomena. J. Funct. Anal. 82, 259–295 (1989)

    Article  MathSciNet  Google Scholar 

  5. Bethuel, F., Riviére, T.: Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 12, 243–303 (1995)

    Article  MathSciNet  Google Scholar 

  6. Clemons, C.: An existence and uniqueness result for symmetric vortices for the Ginzberg-Landau equations of superconductivity. J. Differential Equations 157, 150–162 (1999)

    Article  MathSciNet  Google Scholar 

  7. Demoulini, S., Stuart, D.: Gradient flow of the superconducting Ginzburg-Landau functional on the plane. Comm. Anal. Geom. 5, 121–198 (1997)

    Article  MathSciNet  Google Scholar 

  8. Esteban, M., Lions, P.L.: Stationary solutions of nonlinear Schrodinger equations with an external magnetic field. In: Brezis, H. ed. Partial Differential Equations and the Calculus of Variations. Vol. I: Progress in Nonlinear Differential Equations and their Applications. Birkhauser Boston, Boston, MA, pp. 401449 (1989)

  9. Gustafson, S., Sigal, I.M.: Stability of magnetic vortices. Commun. Math. Phys. 212, 257–275 (2000)

    Article  MathSciNet  Google Scholar 

  10. Gustafson, S., Sigal, I.M., Tzaneteas, T.: Statics and dynamics of magnetic vortices and of Nielsen-Olesen (Nambu) strings. J. Math. Phys. 51, 015217 (2010)

    Article  MathSciNet  Google Scholar 

  11. Jaffe, A., Taubes, C.: Vortices and Monopoles. Birkhäuser, Basel-Boston (1980)

    MATH  Google Scholar 

  12. Ovchinnikov, Y., Sigal, I.M.: Symmetry breaking solutions to the Ginzburg-Landau equations. Sov. Phys. JETP 99, 1090 (2004)

    Article  MathSciNet  Google Scholar 

  13. Pacard, F., Riviere, T.: Linear and Nonlinear Aspects of Vortices. Birkhäuser, Boston (2000)

    Book  Google Scholar 

  14. Riviere, T.: Towards Jaffe and Taubes Conjectures in the strongly repulsive limit. Manuscripta math. 108, 217–273 (2002)

    Article  MathSciNet  Google Scholar 

  15. Shah, P.: Vortex scattering at near critical coupling. Nucl. Phys. B 429, 259–276 (1994)

    Article  Google Scholar 

  16. Stuart, D.: Dynamics of Abelian Higgs vortices in the near Bogomolny regime. Commun. Math. Phys. 159, 51–91 (1994)

    Article  MathSciNet  Google Scholar 

  17. Serfaty, S.: Coulomb gases and Ginzburg-Landau vortices. Zürich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2015)

  18. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser, Basel-Boston (2007)

    MATH  Google Scholar 

  19. Taubes, C.: Arbitrary \(n\)-vortex solutions to the first order GinzburgCLandau equations. Commun. Math. Phys. 72, 277–292 (1980)

    Article  Google Scholar 

  20. Taubes, C.: On the equivalence of the first and second order equations for gauge theories. Commun. Math. Phys. 75, 207–227 (1980)

    Article  MathSciNet  Google Scholar 

  21. Ting, F., Wei, J.: Multi-vortex non-radial solutions to the magnetic Ginzburg–Landau equations. Commun. Math. Phys. 317, 69–97 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of J. Wei is partially supported by NSERC of Canada. The research of Y. Wu is supported by NSFC (No. 11701554, No. 11771319, No. 11971339), the Fundamental Research Funds for the Central Universities (2017XKQY091) and Jiangsu overseas visiting scholar program for university prominent young & middle-aged teachers and presidents. This paper was completed when Y. Wu was visiting University of British Columbia. He is grateful to the members in Department of Mathematics at University of British Columbia for their invitation and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheng Wei.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Dedicated to Professor Michel Chipot on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we shall prove Proposition 2.1.

Proof of Proposition 2.1

Let \((\varphi ,B)\) be a solution of (1.1) with \(\lambda =1\) such that its degree is N, then under Taubes’s notations and results in [19] (see also [16]), \(\varphi =e^{\frac{1}{2}(u+i\theta )}\) with \(\theta =\sum _{j=1}^m\arg (x-a_j)\) and \(B=\frac{1}{2}(\partial _1\theta +\partial _2u,\partial _2\theta -\partial _1u)\), where \((a_1, a_2, \ldots , a_m)\) is the m vortices of \((\varphi , B)\). Moreover, u also satisfies the following elliptic equation:

$$\begin{aligned} -\Delta u+(e^{u}-1)=-4\pi \sum _{j=1}^m\delta _{a_j}\quad \text {in }{\mathbb {R}}^2, \end{aligned}$$
(3.1)

where \(\delta _{a_j}\) is the Dirac function at \(a_j\). Now, using this information in the energy functional \({\mathcal {E}}_1(\psi ,A)\), we have

$$\begin{aligned} {\mathcal {E}}_1(\psi ,B)=\int _{{\mathbb {R}}^2}\frac{1}{4}|\nabla u|^2e^u+\frac{1}{8}|\Delta u|^2+\frac{1}{8}(e^u-1)^2. \end{aligned}$$
(3.2)

By Levi’s monotone convergence theorem and (3.1),

$$\begin{aligned} \int _{{\mathbb {R}}^2}|\Delta u|^2=\lim _{\varepsilon \rightarrow 0}\int _{{\mathbb {R}}^2\backslash \cup _{j=1}^mB_\varepsilon (a_j)}|\Delta u|^2=\int _{{\mathbb {R}}^2}(e^u-1)^2. \end{aligned}$$
(3.3)

On the other hand, since \(|\varphi |\le 1\) (cf. [20]), by the diamagnetic inequality (cf. [8, (2.3)]), we know that \(|\varphi |^2-1=e^{u}-1\) in \(H^1({\mathbb {R}}^2)\). Moreover, since \(u=-\sum _{j=1}^{m}\ln (1+\frac{\sigma }{|x-a_j|^2})+v\) for some \(\sigma >4m\) and smooth v which exponentially decays to zero as \(|x|\rightarrow +\infty \) (cf. [19]), \(|\nabla u|\sim \frac{1}{|x-a_j|}\) near each vortex point \(a_j\) and \(|\nabla u|\sim \frac{1}{|x|^3}\) as \(|x|\rightarrow +\infty \). Thus, we can multiply (3.1) in \({\mathbb {R}}^2\backslash \cup _{j=1}^mB_\varepsilon (a_j)\) with \(e^{u}-1\) and integrate by parts, which implies that

$$\begin{aligned} \int _{{\mathbb {R}}^2\backslash \cup _{j=1}^mB_\varepsilon (a_j)}|\nabla u|^2e^{u}+\int _{{\mathbb {R}}^2\backslash \cup _{j=1}^mB_\varepsilon (a_j)}(e^{u}-1)^2=4m\pi . \end{aligned}$$

Let \(\varepsilon \rightarrow 0\) and applying Levi’s monotone convergence theorem yield that

$$\begin{aligned} \int _{{\mathbb {R}}^2}|\nabla u|^2e^{u}+\int _{{\mathbb {R}}^2}(e^{u}-1)^2=4m\pi . \end{aligned}$$
(3.4)

Inserting (3.3) and (3.4) into (3.2) and recalling that \({\mathcal {E}}_1(\psi ,B)=N\pi \) since \((\varphi ,B)\)’s degree is N, we must have \(m=N\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Wu, Y. Local uniqueness of the magnetic Ginzburg–Landau equation. J Elliptic Parabol Equ 6, 187–209 (2020). https://doi.org/10.1007/s41808-020-00066-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-020-00066-w

Keywords

Mathematics Subject Classification

Navigation