Skip to main content
Log in

Global well-posedness of the Landau–Lifshitz–Gilbert equation for initial data in Morrey spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish the global well-posedness of the Landau–Lifshitz–Gilbert equation in \(\mathbb R^n\) for any initial data \(\mathbf{m}_0\in H^1_*(\mathbb R^n,\mathbb S^2)\) whose gradient belongs to the scaling critical Morrey space \(M^{2,2}(\mathbb R^n)\) with small norm \(\displaystyle \Vert \nabla \mathbf{m}_0\Vert _{M^{2,2}(\mathbb R^n)}\). The method is based on priori estimates of a dissipative Schrödinger equation of Ginzburg-Landau types obtained from the Landau–Lifshitz–Gilbert equation by the moving frame technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\mathbf{m}\) satisfies (1.1) in the sense of distributions, if, for any \(\Phi \in C_0^\infty (P_{r_0}(z_0),\mathbb S^2)\), the following holds:

    $$\begin{aligned} \int _{P_{r_0}(z_0)} \big [\langle \partial _t \mathbf{m}, \Phi \rangle +\lambda \langle \nabla \mathbf{m}, \nabla \Phi \rangle -\langle \mathbf{m}\times \nabla \mathbf{m},\nabla \Phi \rangle -\lambda \langle |\nabla \mathbf{m}|^2\mathbf{m},\Phi \rangle \big ]\,dyds=0. \end{aligned}$$

References

  1. Adams, D.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bejenaru, I., Ionescu, A., Kenig, C.: Global existence and uniqueness of Schrödinger maps in dimensions \(d\ge 4\). Adv. Math. 215(1), 263–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bejenaru, I., Ionescu, A., Kenig, C., Tataru, D.: Global Schrödinger maps in dimensions \(d\ge 2\): small data in the critical Sobolev spaces. Ann. Math. 173(3), 1443–1506 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y.M., Struwe, M.: Existence and partial regularity for the heat flow for harmonic maps. Math. Z. 201, 83–103 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding, S. J., Wang, C.Y.: Finite time singularity of the Landau–Lifshitz–Gilbert equation. Internat. Math. Res. Notices, 2007, rnm012 (2007)

  6. Freire, A., Müller, S., Struwe, M.: Weak convergence of wave maps from (1+2)-dimensional Minkowski space to Riemannian manifolds. Invent. Math. 130(3), 589–617 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hélein, F.: Harmonic maps, conservation laws and moving frames. Translated from the 1996 French original. With a foreword by James Eells. Second edition. Cambridge Tracts in Mathematics, 150. Cambridge University Press, Cambridge, pp. xxvi+264 (2002)

  8. Gilbert, T.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443–3449 (2004)

    Article  Google Scholar 

  9. Guo, B.L., Hong, M.C.: The Landau–Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc. Var. Partial Differ. Equ. 1, 311–334 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giga, Y., Miyakawa, T.: Navier-Stokes flow in \(\mathbb{R}^3\) with measures as initial vorticity and Morrey spaces. Commun. Partial Differ. Equ. 14(5), 577–618 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harpes, P.: Uniqueness and bubbling of the 2-dimensional Landau–Lifshitz flow. Calc. Var. Partial Differ. Equ. 20(2), 213–229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harpes, P.: Bubbling of approximations for the 2-D Landau–Lifshitz flow. Comm. Partial Differ. Equ. 31(1–3), 1–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, T., Wang, C.Y.: Notes on the regularity of harmonic map system. Proc. Am. Math. Soc. 138(6), 2015–2023 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, T., Wang, C.Y.: On uniqueness of heat flow of harmonic maps. Preprint, arXiv:1208.1470

  15. Kato, T.: Strong \(L^p\)-solutions of the Navier-Stokes equation in \(\mathbb{R}^m\), with applications to weak solutions. Math. Z. 187(4), 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19(5–6), 959–1014 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Landau, L., Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153–169 (1935)

    MATH  Google Scholar 

  18. Melcher, C.: Existence of partially regular solutions for Landau–Lifshitz equations in \(\mathbb{R}^3.\) Comm. Partial Differ. Equ. 30, 567–587 (2005)

  19. Melcher, C.: Global solvability of the Cauchy problem for the Landau–Lifshitz–Gilbert equation in higher dimensions. Indiana Univ. Math. J. 61(3), 1175–1200 (2012)

  20. Melcher, C., Ptashnyk, M.: Landau–Lifshitz–Slonczewski equations: global weak and classical solutions. SIAM J. Math. Anal. 45(1), 407–429 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moser, R.: Partial regularity for Landau–Lifshitz equations. Max-Planck-Institute for Mathematics in the Sciences 26, Preprint series (2003)

  22. Moser, R.: Partial Regularity for Harmonic Maps and Related Problems. World Scientific, Hackensack (2005)

    Book  MATH  Google Scholar 

  23. Nahmod, A., Stefanov, A., Uhlenbeck, K.: On Schrödinger maps. Commun. Pure Appl. Math. 56(1), 114–151 (2003)

    Article  MATH  Google Scholar 

  24. Seo, S.: Regularity of Landau–Lifshitz equations. Ph.D. thesis, University of Minnesota (2003)

  25. Stein, E.: Princeton Mathematical Series. Singular integrals and differentiability properties of functions, vol. 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  26. Shatah, J., Struwe, M.: The cauchy problem for wave maps. Int. Math. Res. Not. (11), 555–571 (2002)

  27. Struwe, M.: On the evolution of harmonic maps of Riemannian surfaces. Comment. Math. Helvetici. 60, 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Struwe, M.: On the evolution of harmonic maps in higher dimension. J. Differ. Geom. 28, 485–502 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Taylor, M.: Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17(9–10), 1407–1456 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Triebel, H.: Local function spaces, heat and Navier–Stokes equations. EMS Tracts in Mathematics, 20. European Mathematical Society (EMS), Zrich, (2013). x+232 pp. ISBN:978-3-03719-123-1

  31. Wang, C.Y.: On Landau-Lifshitz equation in dimensions at most four. Indiana Univ. Math. J. 55, 1615–1644 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, C.Y.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200(1), 1–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

J. Lin has been partially supported by NSF of China (Grant 11001085) and the Ph.D. Programs Foundation of Ministry of Education of China (Grant 20100172120026). B. Lai has been partially supported by NSF of China (Grants 11201119 and 11126155). C. Wang has been partially supported by NSF grants 1001115 and 1265574, NSF of China grant 11128102, and a Simons Fellowship in Mathematics. The work was completed while both J. Lin and B. Lai visited Department of Mathematics, University of Kentucky. They would like to thank the Department for its hospitality and excellent research environment. Finally, the third author wishes to thank Professor Y. Giga for both his interest and useful suggestion on several important references on the study of Morrey spaces for evolution equations. The authors wish to thank annoymous referees for their constructive suggestions that improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Wang.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Lai, B. & Wang, C. Global well-posedness of the Landau–Lifshitz–Gilbert equation for initial data in Morrey spaces. Calc. Var. 54, 665–692 (2015). https://doi.org/10.1007/s00526-014-0801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0801-2

Mathematics Subject Classification

Navigation