Skip to main content
Log in

The effect of annealing temperature on hydrothermally grown sisal-like ZnO microstructures

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

This study has extensively described the fabrication and characterization of sisal-like ZnO microstructures. HMT aqueous solution containing zinc nitrate tetrahydrate as crystalline zinc source has been utilized to synthesize sisal-like ZnO samples via a controlled hydrothermal route. A variety of characterization techniques including FESEM, XRD, FT-IR, and Raman spectroscopy have been employed to investigate the effects related to varying annealing temperatures on morphological and structural properties. The FESEM observations have revealed a transition from hexagonal microrods to modified microrods and then to pointed microrods for sisal-like ZnO architectures as the annealing temperature increases. XRD results have indicated a considerably high purity for as-synthesized ZnO microstructures. The crystalline quantities of ZnO samples have been estimated using various X-ray line-broadening analysis methods including Debye-Scherrer and Williamson-Hall techniques. UV-Vis DRS measurements have been carried out to study optical properties. Results have shown improved light harvesting related to both enhanced absorption intensities and decreased band-gap energies with the increase of annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. da Silva, L.F., Mastelaro, V.R., Catto, A.C., Escanhoela Jr., C.A., Bernardini, S., Zílio, S.C., Longo, E., Aguir, K.: Ozone and nitrogen dioxide gas sensor based on a nanostructured SrTi0. 85Fe0. 15O3 thin film. J. Alloys Compd. 638, 374–379 (2015)

    Article  Google Scholar 

  2. Brian, O., Michael, G.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353(6346), 737–740 (1991)

    Article  Google Scholar 

  3. Minne, S., Manalis, S., Quate, C.: Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl. Phys. Lett. 67(26), 3918–3920 (1995)

    Article  CAS  Google Scholar 

  4. Karimi, T., Haghighatzadeh, A.: Enhanced photocatalytic activity of SnO2 NPs by chromium (Cr) concentration. Bull. Mater. Sci. 42(4), 158 (2019)

    Article  Google Scholar 

  5. Efimov, A.A., Volkov, I.A., Ivanov, V., Vasiliev, A.A., Varfolomeev, A., Pislyakov, A.V., Lagutin, A.S., Maeder, T.: Spark discharge synthesis of semiconductor nanoparticles for thick-film metal oxide gas sensors. Proc. Eng. 168, 1036–1039 (2016)

    Article  CAS  Google Scholar 

  6. Li, Y., Wang, S., Wu, J., Ma, J., Cui, L., Lu, H., Sheng, Z.: One-step hydrothermal synthesis of hybrid core-shell Co3O4@ SnO2–SnO for supercapacitor electrodes. Ceram. Int. (2020)

  7. Acharyulu, N., Srinivasu, C., Babavali, S.F.: Synthesis of carbon nano spherical structures and nano composite oxide [TiO2/SnO2 (2: 1)] hollow spheres by hydrothermal method and study of characterization with photo catalytic activity. Materials Today, Proceedings (2020)

    Google Scholar 

  8. Suvith, V., Devu, V., Philip, D.: Facile synthesis of SnO2/NiO nano-composites: Structural, magnetic and catalytic properties. Ceram. Int. 46(1), 786–794 (2020)

    Article  CAS  Google Scholar 

  9. Asadi, A., Akbarzadeh, R., Eslami, A., Jen, T.-C., Oviroh, P.O.: Effect of synthesis method on NS-TiO2 photocatalytic performance. Energy Procedia. 158, 4542–4547 (2019)

    Article  CAS  Google Scholar 

  10. Mahmoudabadi, Z.D., Eslami, E.: One-step synthesis of CuO/TiO2 nanocomposite by atmospheric microplasma electrochemistry–its application as photoanode in dye-sensitized solar cell. J. Alloys Compd. 793, 336–342 (2019)

    Article  CAS  Google Scholar 

  11. Xiao, Q.: Synthesis and characterization of 3D ZnO superstructures via a template-free hydrothermal method. Powder Technol. 189(1), 103–107 (2009)

    Article  CAS  Google Scholar 

  12. Kumar, V., Singh, R., Purohit, L., Singh, F.: Effect of swift heavy ion on structural and optical properties of undoped and doped nanocrystalline zinc oxide films. Adv. Mater. Lett. 4(6), 423–427 (2013)

    Article  Google Scholar 

  13. Koao, L., Dejene, F., Swart, H.: Properties of flower-like ZnO nanostructures synthesized using the chemical bath deposition. Mater. Sci. Semicond. Process. 27, 33–40 (2014)

    Article  CAS  Google Scholar 

  14. Worasawat, S., Masuzawa, T., Hatanaka, Y., Neo, Y., Mimura, H., Pecharapa, W.: Synthesis and characterization of ZnO nanorods by hydrothermal method. Mater. Today: Proc. 5(5), 10964–10969 (2018)

    CAS  Google Scholar 

  15. Agarwal, S., Rai, P., Gatell, E.N., Llobet, E., Güell, F., Kumar, M., Awasthi, K.: Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sensors Actuators B Chem. 292, 24–31 (2019)

    Article  CAS  Google Scholar 

  16. Singh, R., Singh, F., Kanjilal, D., Agarwal, V., Mehra, R.: White light emission from chemically synthesized ZnO–porous silicon nanocomposite. J. Phys. D. Appl. Phys. 42(6), 062002 (2009)

    Article  Google Scholar 

  17. Kumar, V., Singh, R., Purohit, L., Mehra, R.: Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline. J. Mater. Sci. Technol. 27(6), 481–488 (2011)

    Article  CAS  Google Scholar 

  18. Wager, J.F.: Transparent electronics. science 300(5623), 1245-1246 (2003).

  19. Grätzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 164(1-3), 3–14 (2004)

    Article  Google Scholar 

  20. Johnson, J.C., Yan, H., Yang, P., Saykally, R.J.: Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B. 107(34), 8816–8828 (2003)

    Article  CAS  Google Scholar 

  21. Kim, I.-D., Hong, J.-M., Lee, B.H., Kim, D.Y., Jeon, E.-K., Choi, D.-K., Yang, D.-J.: Dye-sensitized solar cells using network structure of electrospun ZnO nanofiber mats. Appl. Phys. Lett. 91(16), 163109 (2007)

    Article  Google Scholar 

  22. Rabenau, A.: The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. Engl. 24(12), 1026–1040 (1985)

    Article  Google Scholar 

  23. Huang, J., Matsunaga, N., Shimanoe, K., Yamazoe, N., Kunitake, T.: Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing. Chem. Mater. 17(13), 3513–3518 (2005)

    Article  CAS  Google Scholar 

  24. Yadav, A., Prasad, V., Kathe, A., Raj, S., Yadav, D., Sundaramoorthy, C., Vigneshwaran, N.: Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull. Mater. Sci. 29(6), 641–645 (2006)

    Article  CAS  Google Scholar 

  25. Izu, N., Murayama, N., Shin, W., Itoh, T., Matsubara, I.: Preparation of SnO2 nanoparticles less than 10 nm in size by precipitation using hydrophilic carbon black powder. Mater. Lett. 62(2), 313–316 (2008)

    Article  CAS  Google Scholar 

  26. El-Desoky, M., Ali, M., Afifi, G., Imam, H.: Annealing effects on the structural and optical properties of growth ZnO thin films fabricated by pulsed laser deposition (PLD). J. Mater. Sci. Mater. Electron. 25(11), 5071–5077 (2014)

    Article  CAS  Google Scholar 

  27. Ray, P.G., Das, M., Wan, M., Jacob, C., Roy, S., Basak, P., Dhara, S.: Surfactant and catalyst free facile synthesis of Al-doped ZnO nanorods–An approach towards fabrication of single nanorod electrical devices. Appl. Surf. Sci. 512, 145732 (2020)

    Article  Google Scholar 

  28. Lingmin, Y., Lei, C., Chun, L., Mingli, Y., Xinhui, F.: Resistive-type UV–visible photodetector based on CdS NWs/ZnO nanowalls heterostructure fabricated using in-situ synthesis method. Journal of Alloys and Compounds, 154090 (2020).

  29. de Almeida, W.L., Rodembusch, F.S., Ferreira, N.S.: de Sousa. V.C, Eco-friendly and cost-effective synthesis of ZnO nanopowders by Tapioca-assisted sol-gel route. Ceramics International (2020)

    Google Scholar 

  30. Dhandapani, P., Prakash, A.A., AlSalhi, M.S., Maruthamuthu, S., Devanesan, S., Rajasekar, A.: Ureolytic bacteria mediated synthesis of hairy ZnO nanostructure as photocatalyst for decolorization of dyes. Mater. Chem. Phys. 122619 (2020)

  31. Dong, P., Hou, G., Liu, C., Zhang, X., Tian, H., Xu, F., Xi, X., Shao, R.: Origin of activity and stability enhancement for Ag3PO4 photocatalyst after calcination. Materials. 9(12), 968 (2016)

    Article  Google Scholar 

  32. Reunchan, P., Boonchun, A., Umezawa, N.: Electronic properties of highly-active Ag 3 AsO 4 photocatalyst and its band gap modulation: an insight from hybrid-density functional calculations. Phys. Chem. Chem. Phys. 18(33), 23407–23411 (2016)

    Article  CAS  Google Scholar 

  33. Duan, X., Huang, Y., Agarwal, R., Lieber, C.M.: Single-nanowire electrically driven lasers. Nature. 421(6920), 241–245 (2003)

    Article  CAS  Google Scholar 

  34. Mayers, B., Xia, Y.: Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds. Adv. Mater. 14(4), 279–282 (2002)

    Article  CAS  Google Scholar 

  35. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science. 292(5523), 1897–1899 (2001)

    Article  CAS  Google Scholar 

  36. Qiu, Y., Yang, S.: ZnO nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv. Funct. Mater. 17(8), 1345–1352 (2007)

    Article  CAS  Google Scholar 

  37. Long, T., Yin, S., Takabatake, K., Zhnag, P., Sato, T.: Synthesis and characterization of ZnO nanorods and nanodisks from zinc chloride aqueous solution. Nanoscale Res. Lett. 4(3), 247 (2009)

    Article  CAS  Google Scholar 

  38. Lao, J., Huang, J., Wang, D., Ren, Z.: ZnO nanobridges and nanonails. Nano Lett. 3(2), 235–238 (2003)

    Article  CAS  Google Scholar 

  39. Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16(25), R829 (2004)

    Article  CAS  Google Scholar 

  40. Wang, Z., Qian, X.-f., Yin, J., Zhu, Z.-k.: Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir. 20(8), 3441–3448 (2004)

    Article  CAS  Google Scholar 

  41. Tan, L., Gao, H., Andriamitantsoa, R.S., Hu, B.-t.: Facial fabrication of hierarchical 3D Sisal-like CuO/ZnO nanocomposite and its catalytic properties. Chem. Phys. Lett. 708, 77–80 (2018)

    Article  CAS  Google Scholar 

  42. Iwan, S., Zhao, J., Tan, S., Sun, X.: Enhancement of UV photoluminescence in ZnO tubes grown by metal organic chemical vapour deposition (MOCVD). Vacuum. 155, 408–411 (2018)

    Article  CAS  Google Scholar 

  43. Bao, Y., Gao, L., Feng, C., Ma, J., Zhang, W., Liu, C., Simion, D.: Hollow flower-like ZnO: Synthesis, growth mechanism and application in polyacrylate. Adv. Powder Technol. (2020)

  44. Lam, S.-M., Sin, J.-C., Hua, L., Haixiang, L., Wei, L.J., Zeng, H.: A Z-scheme WO3 loaded-hexagonal rod-like ZnO/Zn photocatalytic fuel cell for chemical energy recuperation from food wastewater treatment. Appl. Surf. Sci. 145945 (2020).

  45. Yu, Q., Fu, W., Yu, C., Yang, H., Wei, R., Li, M., Liu, S., Sui, Y., Liu, Z., Yuan, M.: Fabrication and optical properties of large-scale ZnO nanotube bundles via a simple solution route. J. Phys. Chem. C. 111(47), 17521–17526 (2007)

    Article  CAS  Google Scholar 

  46. Ranjitha, A., Muthukumarasamy, N., Thambidurai, M., Agilan, S., Balasundaraprabhu, R.: Effect of hydrothermal growth temperature on structural and optical properties of TiO 2 nanoparticles. J. Mater. Sci. Mater. Electron. 24(2), 553–558 (2013)

    Article  CAS  Google Scholar 

  47. Liu, S.-Y., Chen, T., Wan, J., Ru, G.-P., Li, B.-Z., Qu, X.-P.: The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method. Appl. Phys. A. 94(4), 775–780 (2009)

    Article  CAS  Google Scholar 

  48. El-Desoky, M., Ali, M., Afifi, G., Imam, H., Al-Assiri, M.: Effects of annealing temperatures on the structural and dielectric properties of ZnO nanoparticles. Silicon. 10(2), 301–307 (2018)

    Article  CAS  Google Scholar 

  49. Raoufi, D.: Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew. Energy. 50, 932–937 (2013)

    Article  CAS  Google Scholar 

  50. Pudukudy, M., Hetieqa, A.: Yaakob, Z: Synthesis, characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures. Appl. Surf. Sci. 319, 221–229 (2014)

    Article  CAS  Google Scholar 

  51. Umar, A., Kumar, R., Kumar, G., Algarni, H., Kim, S.H.: Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. J. Alloys Compd. 648, 46–52 (2015)

    Article  CAS  Google Scholar 

  52. Uthirakumar, P., Hong, C.-H.: Effect of annealing temperature and pH on morphology and optical property of highly dispersible ZnO nanoparticles. Mater. Charact. 60, 1305–1310 (2009)

    Article  CAS  Google Scholar 

  53. Sahu, K., Kar, A.K.: Morphological, optical, photocatalytic and electrochemical properties of hydrothermally grown ZnO nanoflowers with variation in hydrothermal temperature. Mater. Sci. Semicond. Process. 104, 104648 (2019)

    Article  CAS  Google Scholar 

  54. Rekha, K., Nirmala, M., Nair, M.G., Anukaliani, A.: Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B Condens. Matter. 405(15), 3180–3185 (2010)

    Article  CAS  Google Scholar 

  55. Singh, P., Kumar, A., Kaushal, A., Kaur, D., Pandey, A., Goyal, R.: In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition. Bull. Mater. Sci. 31(3), 573–577 (2008)

    Article  CAS  Google Scholar 

  56. Sivakami, R., Dhanuskodi, S., Karvembu, R.: Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 43–50 (2016)

    Article  CAS  Google Scholar 

  57. Lee, J.S., De Angelis, R.: X-ray diffraction patterns from nanocrystalline binary alloys. Nanostruct. Mater. 7(7), 805–812 (1996)

    Article  CAS  Google Scholar 

  58. Mote, V., Purushotham, Y., Dole, B.: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Article  Google Scholar 

  59. Ataie Dil, M., Haghighatzadeh, A., Mazinani, B.: Photosensitization effect on visible-light-induced photocatalytic performance of TiO2/chlorophyll and flavonoid nanostructures: kinetic and isotherm studies. Bull. Mater. Sci. 42(5), 248 (2019)

    Article  Google Scholar 

  60. Chittan, M.V., Kumar, C.M., Sowjanya, K., Kumar, B.R.: Estimation of lattice strain in nanometer-sized alumina doped ZnO ceramics by X-ray peak profile analysis. Mater. Today: Proc. 4(8), 9237–9245 (2017)

    Google Scholar 

  61. Prabhu, Y.T., Rao, K.V., Kumar, V.S.S., Kumari, B.S.: X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 2014 (2014).

  62. Yogamalar, R., Srinivasan, R., Vinu, A., Ariga, K., Bose, A.C.: X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 149(43-44), 1919–1923 (2009)

    Article  CAS  Google Scholar 

  63. Ramasamy, V., Vijayalakshmi, G.: Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles. Superlattice. Microst. 85, 510–521 (2015)

    Article  CAS  Google Scholar 

  64. Bindu, P., Thomas, S.: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8(4), 123–134 (2014)

    Article  Google Scholar 

  65. Suresh, R., Ponnuswamy, V., Mariappan, R.: Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method. Appl. Surf. Sci. 273, 457–464 (2013)

    Article  CAS  Google Scholar 

  66. Al-Assiri, M., Mostafa, M., Ali, M., El-Desoky, M.: Synthesis, structural and electrical properties of annealed ZnO thin films deposited by pulsed laser deposition (PLD). Superlattice. Microst. 75, 127–135 (2014)

    Article  CAS  Google Scholar 

  67. Sharma, A., Rai, V., Mani, S., Chawade, S.: A study of structural parameters and photoluminescence of Tb doped ZnO nanoparticles. Mater. Today: Proc. (2019)

  68. Wahab, R., Ansari, S., Seo, H.-K., Kim, Y.S., Suh, E.-K., Shin, H.-S.: Low temperature synthesis and characterization of rosette-like nanostructures of ZnO using solution process. Solid State Sci. 11(2), 439–443 (2009)

    Article  CAS  Google Scholar 

  69. Selvi, N., Sankar, S.: Effect of shells ZnO; SiO2 on SnO2 hybrid core-shell nanospheres and their structural, morphological and magnetic properties. Int. J. Chem. Technol. Res. 6(14), 5665–5671 (2014)

    CAS  Google Scholar 

  70. BANAVATU, L., RAO, D.S., Basavaiah, K.: Synthesis of γ-Bi2MoO6 by Co-precipitation Method and Evaluation for Photocatalytic Degradation of Rhodamine B, Crystal Violet and Orange II Dyes Under Visible Light Irradiation. Asian J. Chem. 30(1), 97–102 (2018)

    Article  CAS  Google Scholar 

  71. Jang, M., Ryu, M., Yoon, M., Lee, S., Kim, H., Onodera, A., Kojima, S.: A study on the Raman spectra of Al-doped and Ga-doped ZnO ceramics. Curr. Appl. Phys. 9(3), 651–657 (2009)

    Article  Google Scholar 

  72. Zolfaghari, M.: Propose for Raman mode position for Mn-doped ZnO nanoparticles. Phys. B Condens. Matter. 555, 1–8 (2019)

    Article  CAS  Google Scholar 

  73. Zhang, R., Yin, P.-G., Wang, N., Guo, L.: Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11(4), 865–869 (2009)

    Article  Google Scholar 

  74. Peng, Z., Dai, G., Chen, P., Zhang, Q., Wan, Q., Zou, B.: Synthesis, characterization and optical properties of star-like ZnO nanostructures. Mater. Lett. 64(8), 898–900 (2010)

    Article  CAS  Google Scholar 

  75. Lv, J., Sun, Y., Cao, L., Zhao, M., Shang, F., Mao, S., Jiang, Y., Xu, J., Wang, F., Zhou, Z.: Effect of reaction temperature on surface morphology and photoelectric properties of ZnO grown by hydrothermal method in mixed solvent. J. Mater. Sci. Mater. Electron. 26(7), 5518–5523 (2015)

    Article  CAS  Google Scholar 

  76. Sahu, S., Nanda, K.: Semiconductor nanoparticles: physics and applications. Proc. Indian Natl. Sci. Acad. 103 (2001)

Download references

Acknowledgment

The authors would like to thank the Research Council for their generous support of this work.

Funding

The current study was partially supported by the Ahvaz Branch of Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Haghighatzadeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighatzadeh, A., Hosseini, M., Haghighi, S. et al. The effect of annealing temperature on hydrothermally grown sisal-like ZnO microstructures. J Aust Ceram Soc 57, 993–1002 (2021). https://doi.org/10.1007/s41779-021-00602-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00602-4

Keywords

Navigation