Skip to main content
Log in

Effect of hydrothermal growth temperature on structural and optical properties of TiO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 nanoparticles have been prepared by hydrothermal method at different temperatures. The X-ray diffraction results showed that anatase TiO2 nanoparticles with grain size in the range of 7–27 nm has been obtained. HRTEM images show the formation of TiO2 nanoparticles with grain size ranging from 7 to 26 nm. The Raman spectra exhibited peaks corresponding to the anatase phase of TiO2. Optical absorption studies reveal that the absorption edge shifts towards longer wavelength (red shift) with increasing hydrothermal temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Husken, M. Hunger, H.J.H. Brouwers, Build. Environ. 44, 2463–2474 (2009)

    Article  Google Scholar 

  2. A.M. Ramirez, K. Demeestere, N. De Belie, T. Mantyla, E. Levanen, Build. Environ. 45, 832–838 (2010)

    Article  Google Scholar 

  3. R. Cinnsealach, G. Boschloo, S. Nagaraja Rao, D. Fitzmaurice, Sol. Energy Mater. Sol. Cells 55, 215–223 (1998)

    Article  CAS  Google Scholar 

  4. S.H. Toma, H.E. Toma, Electrochem. Commun. 8, 1628–1632 (2006)

    Article  CAS  Google Scholar 

  5. Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin, M. Huang, Electrochim. Acta 55, 4573–4578 (2010)

    Article  CAS  Google Scholar 

  6. J. Xi, O. Wiranwetchayan, Q. Zhang, Z. Liang, Y. Sun, G. Cao (2012) J. Mater. Sci. Mater. Electron. doi 10.1007/s10854-012-0643-7

  7. Y. Jiaguo, Y. Huogen, B. Cheng, X. Zhao, Q. Zhang, J. Photochem. Photobiol. A 182, 121–127 (2006)

    Article  Google Scholar 

  8. N. Khakpash, A. Simchi, T. Jafari, J. Mater. Sci. Mater. Electron 23, 659–667 (2012)

    Article  CAS  Google Scholar 

  9. M. Inaba, Y. Oba, F. Niina, Y. Murota, Y. Ogino, A. Tasaka, K. Hirota, J. Power Sources 189, 580–584 (2009)

    Article  CAS  Google Scholar 

  10. X.Q. Gu, Y.L. Zhao, Y.H. Qiang, J. Mater. Sci. Mater. Electron 23, 1373–1377 (2012)

    Article  CAS  Google Scholar 

  11. H. Lee, M.Y. Song, Jongsoo Jurng, Y.-K. Park, Powder Technol. 214, 64–68 (2011)

    Article  CAS  Google Scholar 

  12. M. Alam Khan, M. Shaheer Akhtar, O.-B. Yang, Sol. Energy 84, 2195–2201 (2010)

    Article  Google Scholar 

  13. X. Shen, J. Zhang, B. Tian, J. Hazard. Mater. 192, 651–657 (2011)

    Article  CAS  Google Scholar 

  14. S. Song, T. Yang, Y. Li, Z.Y. Pang, L. Lin, M. Lv, S. Han, Vaccum 83, 1091–1094 (2009)

    Article  CAS  Google Scholar 

  15. F. Fernandez-Lima, D.L. Baptista, I. Zumeta, E. Pedrero, R. Prioli, E. Vigil, F.C. Zawislak, Thin Solid Films 419, 65–68 (2002)

    Article  CAS  Google Scholar 

  16. A. Ranga Rao, V. Dutta, Sol. Energy Mater. Sol. Cells 91, 1075–1080 (2007)

    Article  CAS  Google Scholar 

  17. K.A. Malinger, A. Maguer, A. Thorel, A. Gaunand, J.-F. Hochepied, Chem. Eng. J. 174, 445–451 (2011)

    Article  CAS  Google Scholar 

  18. M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, J. Am. Chem. Soc. 126, 14943–14949 (2004)

    Article  CAS  Google Scholar 

  19. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, J. Am. Ceram. Soc. 80, 3157–3171 (1997)

    Article  CAS  Google Scholar 

  20. L. Ge, M.X. Xu, M. Sun, Mater. Lett. 60, 287–290 (2006)

    Article  CAS  Google Scholar 

  21. Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, Y. Zhu, Mater. Chem. Phys. 123, 595–600 (2010)

    Article  CAS  Google Scholar 

  22. L.-H. Kao, T.-C. Hsu, L. Hong-yang, J. Colloid Interface Sci. 316, 160–167 (2007)

    Article  CAS  Google Scholar 

  23. K.P. Biju, M.K. Jain, Thin Solid Films 516, 2175–2180 (2008)

    Article  CAS  Google Scholar 

  24. T. Ohsaka, J. Phys. Soc. Jpn. 48, 1661–1668 (1980)

    Article  CAS  Google Scholar 

  25. V.V. Yakovlev, G.R. Scarel, R. Mochizuki, Appl. Phys. Lett. 76, 1107–1109 (2000)

    Article  CAS  Google Scholar 

  26. A. Turkovic, M. Ivanda, M. Drasner, A. Vranesa, M. Persin, Thin Solid Films 198, 199–205 (1991)

    Article  CAS  Google Scholar 

  27. W.-C. Huang, J.-T. Lue, J. Phys. Chem. Solids 58, 1529–1538 (2002)

    Article  Google Scholar 

  28. T. Hayashi, H. Mizuma, H. Yao, S. Takahara, Jpn. J. Appl. Phys. 37, 2660–2665 (1998)

    Article  CAS  Google Scholar 

  29. Xinyong Li, Xie Quan, Charles Kutal, Scr. Mater. 50, 499–505 (2004)

    Article  CAS  Google Scholar 

  30. R.S. Yadav, P. Mishra, R. Mishra, M. Kumar, A.C. Pandey, Ultrason. Sonochem. 17, 116–122 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology (DST), India for the financial assistance provided to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ranjitha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjitha, A., Muthukumarasamy, N., Thambidurai, M. et al. Effect of hydrothermal growth temperature on structural and optical properties of TiO2 nanoparticles. J Mater Sci: Mater Electron 24, 553–558 (2013). https://doi.org/10.1007/s10854-012-0831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0831-5

Keywords

Navigation