Skip to main content
Log in

Zinc Oxide Nanostructure Synthesis on Si(100) by Vapor Phase Transport and the Effect of Antimony Doping on Photoelectric Properties, Morphology, and Structure

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Zinc Oxide (ZnO) has been shown to exhibit semiconducting and piezoelectric dual properties. This has led to a large commercial demand on ZnO for optoelectronics that operate at the blue-ultraviolet regions. Consequently, varying techniques have been devised to create different nanostructures of ZnO. Here, the single step synthesis of ZnO nanostructures was performed on Si(100) substrates with a thin ZnO seed-layer. A modified chemical vapor deposition (CVD) method was developed to accomplish the structure formation. Sb doping of the structures in the gas phase was performed to study its effects on structure and optoelectronic properties. Different structures were realized including nanofilaments, nanoparticles, microflowers, nanorods, nanotubes, and nanocolumns. Only nanorods/columns, and nanotubes are shown in this work. Morphology was examined using scanning electron microscopy (SEM). Energy-dispersive X-ray spectroscopy (EDS) and X-ray powder diffraction (XRD) were used for structural studies. Optoelectronic properties were explored using room-temperature photoluminescence (PL) spectroscopy. PL data show the relative decrease in the number of defects and increase in crystal quality upon increasing reaction time. Significant structural effects were also observed upon doping. Some structural defects might be attributed to the diffusion of Sb ions into the lattices of ZnO, replacement of Zn by Sb, and ionic radii difference. These stacking faults are most likely the reason behind the dominance and broadening of DLE peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Look, Mater. Sci. Eng., BB80 (1–3), 383–387 (2001).

    Article  CAS  Google Scholar 

  2. M. Gratzel, Acc. Chem. Res.42 (11), 1788–1798 (2009).

    Article  CAS  Google Scholar 

  3. M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater.4 (6), 455–459 (2005).

    Article  CAS  Google Scholar 

  4. R. Nasser, W. B. H. Othmen, H. Elhouichet and M. Ferid, Appl. Surf. Sci.393, 486–495 (2017).

    Article  CAS  Google Scholar 

  5. J.-H. Sun, S.-Y. Dong, J.-L. Feng, X.-J. Yin and X.-C. Zhao, J. Mol. Catal. A: Chem.335 (1–2), 145–150 (2011).

    Article  CAS  Google Scholar 

  6. G. Poongodi, P. Anandan, R. M. Kumar and R. Jayavel, Spectrochim. Acta, Part A148, 237–243 (2015).

    Article  CAS  Google Scholar 

  7. S. Limpijumnong, S. B. Zhang, S.-H. Wei and C. H. Park, Phys. Rev. Lett.92 (15), 155504/155501–155504/155504 (2004).

    Article  Google Scholar 

  8. D. W. Zeng, C. S. Xie, B. L. Zhu, R. Jiang, X. Chen, W. L. Song, J. B. Wang and J. Shi, J. Cryst. Growth266 (4), 511–518 (2004).

    Article  CAS  Google Scholar 

  9. C. H. Zang, J. F. Su, B. Wang, D. M. Zhang and Y. S. Zhang, J. Lumin.131 (8), 1817–1820 (2011).

    Article  CAS  Google Scholar 

  10. J. K. Liang, H. L. Su, C. L. Kuo, S. P. Kao, J. W. Cui, Y. C. Wu and J. C. A. Huang, Electrochim. Acta125, 124–132 (2014).

    Article  CAS  Google Scholar 

  11. S.-D. Baek, Y. C. Kim and J.-M. Myoung, Appl. Surf. Sci.480, 122–130 (2019).

    Article  CAS  Google Scholar 

  12. Y. H. Leung, X. Y. Chen, A. M. C. Ng, M. Y. Guo, F. Z. Liu, A. B. Djurisic, W. K. Chan, X. Q. Shi and M. A. Van Hove, Appl. Surf. Sci.271, 202–209 (2013).

    Article  CAS  Google Scholar 

  13. F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu and W. P. Beyermann, Appl. Phys. Lett.88 (5), 052106/052101–052106/052103 (2006).

    Article  Google Scholar 

  14. D. C. Iza, D. Munoz-Rojas, Q. Jia, B. Swartzentruber and J. L. MacManus-Driscoll, Nanoscale Res. Lett.7 (1), 655/651–655/658, 658 pp. (2012).

    Article  Google Scholar 

  15. Y. Zhang, Z. Zhang, B. Lin, Z. Fu and J. Xu, J. Phys. Chem. B109 (41), 19200–19203 (2005).

    Article  CAS  Google Scholar 

  16. H. Shokry Hassan, A. B. Kashyout, H. M. A. Soliman, M. A. Uosif and N. Afify, Appl. Surf. Sci.277, 73–82 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trad, T., Blount, P., Romero, Z. et al. Zinc Oxide Nanostructure Synthesis on Si(100) by Vapor Phase Transport and the Effect of Antimony Doping on Photoelectric Properties, Morphology, and Structure. MRS Advances 5, 1687–1695 (2020). https://doi.org/10.1557/adv.2020.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.150

Navigation