Skip to main content
Log in

Tailoring of crystal phase, morphology, and optical properties of ZnO nanostructures by starch-assisted co-precipitation synthesis and annealing

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

ZnO nanostructures have been synthesized by simple co-precipitation method in the presence or absence of surfactant (starch) and subsequent annealing at 500 and 800 °C for 5 h. The XRD results show ZnO and Zn5(OH)8Cl2·H2O phases in the absence, but only ZnO phase in the presence, of starch. The secondary phase diminishes upon annealing and only pure ZnO phase with improved crystallinity is realized at 800 °C. FTIR endorses different phases along with the starch surfactant by the representative modes. Diverse morphologies: hexagonal; tubular; spherical; and cluster morphologies are observed for different synthesis and annealing conditions. The direct band gap is found to be ~ 3.2 eV and experienced a red shift on annealing. The PL spectra consists of characteristic near band edge (NBE) emission in UV region and a broad emission in visible region corresponding to direct excitonic transitions and oxygen defect transitions, respectively. Samples having rod-like morphology as predominant exhibit strong UV and weak defect emissions, while those with spherical morphology as dominant display weak UV and broad defect emissions in PL. The quenching of NBE emission takes place on annealing, which is indicative of increase in non-radiative transitions or deformation of crystallinity or change in morphology. The PL emissions are strongly influenced by surfactant and annealing temperature. Such results offer new prospects for tuning and optimizing the properties of ZnO semiconductor for applications where the optical properties are decisive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Radzimska, T. Jesionowski, Materials 7(4), 2833 (2014)

    ADS  Google Scholar 

  2. J. Ma, W. Zhu, Y. Tian, Z. Wang, Nanoscale Res. Lett. 11, 200 (2016)

    ADS  Google Scholar 

  3. F.U. Hamelmann, J. Phys. Conf. Ser. 764, 012001 (2016)

    Google Scholar 

  4. K. Vidhya, M. Saravanan, G. Bhoopathi, Appl Nanosci. 5, 235 (2015)

    ADS  Google Scholar 

  5. S.S. Sanjay, A.C. Pandey, P. Ankit, M.C. Chattopadhyaya, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 83(3), 279 (2013)

    Google Scholar 

  6. G. Wisz, I. Virt, P. Sagan, P. Potera, R. Yavorskyi, Nanoscale Res. Lett. 12, 253 (2017)

    ADS  Google Scholar 

  7. E. Ozel, I.G. Tuncolu, C. Açiksar, E. Suvac, Hittite J. Sci. Eng. 3(2), 73 (2016)

    Google Scholar 

  8. M. Mrad, B. Chouchene, T.B. Chaabane, S. Afr. J. Chem. 71, 103 (2018)

    Google Scholar 

  9. S.K. Pandey, S.K. Pandey, V. Awasthi, A. Kumar, U.P. Deshpande, M. Gupta, S. Mukherjee, Bull. Mater. Sci. 37, 983 (2014)

    Google Scholar 

  10. A.K. Zak, W.H. Abd Majid, M.R. Mahmoudian, M. Darroudi, R. Yousefi, Adv. Powder Technol 24, 618 (2013)

    Google Scholar 

  11. J. Asghar, P. Muzammil, N. Sathish, IJCRST 3, 19 (2017)

    Google Scholar 

  12. N.G. Shimpi, S. Jain, N. Karmakar, A. Shah, D.C. Kothari, S. Mishra, Appl. Surf. Sci. 390, 17 (2016)

    ADS  Google Scholar 

  13. R.M. Thankachan, N. Joy, J. Abraham, N. Kalarikkal, S. Thomas, O.S. Oluwafemi, Mater. Res. Bull. 8, 131 (2017)

    Google Scholar 

  14. H. Kumar, R. Rani, ILCPA 14, 26 (2013)

    Google Scholar 

  15. D. Sun, Y. Du, Z. Li, Z. Chen, C. Zhu, S. Liu, J. Sol-Gel. Sci. Technol. 78, 347 (2016)

    Google Scholar 

  16. D.R. Lu, C.M. Xiao, S.J. Xu, Express Polym. Lett. 3, 366 (2009)

    Google Scholar 

  17. P. Vasileva, Mater. Sci. Nonequilib. Phase Transform 2, 26 (2016)

    Google Scholar 

  18. P. Raveendran, J. Fu, S.L. Wallen, J. Am. Chem. Soc. 125(46), 13940 (2003)

    Google Scholar 

  19. A. Singh, H.L. Vishwakarma, Mater. Sci. Pol. 33(4), 751 (2015)

    ADS  Google Scholar 

  20. A. Sholehah, A.H. Yuwono, Adv. Mater. Res. 1112, 57 (2015)

    Google Scholar 

  21. A. Moezzi, M. Cortie, A. McDonagh, Dalton Trans. 45, 7385 (2016)

    Google Scholar 

  22. I. Rasines, J.I.M. de Setien, Thermochim. Acta 37, 239 (1980)

    Google Scholar 

  23. O.K. Srivastava, E.A. Secco, Can. J. Chem. 45, 579 (1967)

    Google Scholar 

  24. M.Z.N. Nadiha, A. Fazilah, R. Bhat, A.A. Karim, Food Chem. 121, 1053 (2010)

    Google Scholar 

  25. W. Ciesielskia, C.Y. Lii, M.T. Yenb, P. Tomasik, Carbohydr. Polym. 51, 47 (2003)

    Google Scholar 

  26. M. Lina, X. Shanga, P. Liua, F. Xieb, X. Chena, Y.S.J. Wana, Carbohydr. Polym. 136, 266 (2016)

    Google Scholar 

  27. S.A. Roberts, R.E. Cameron, Carbohydr. Polym. 50, 133 (2002)

    Google Scholar 

  28. S.R. Senthilkumar, T. Sivakumar, Int. J. Pharm. Pharm. Sci. 6, 461 (2014)

    Google Scholar 

  29. J. Kazimierczak, D. Ciechanska, D. Wawro, K. Guzinska, Fibres Text. East. Eur. 15(61), 100 (2007)

    Google Scholar 

  30. H. Noei, C. Woll, M. Muhler, Y.M. Wang, J. Phys. Chem. C 115, 908 (2011)

    Google Scholar 

  31. K.S. Babu, A.R. Reddy, Ch. Sujatha, K.V. Reddy, A.N. Mallika, J. Adv. Ceram. 2(3), 260 (2013)

    Google Scholar 

  32. M. Andres-Verges, A. Mifsud, C.J. Serna, J. Chem. Soc. Faraday Trans. 86, 959 (1990)

    Google Scholar 

  33. Z. Sobri, Z.M.A. Ainun, E.S. Zainudin, IOP Conf. Ser. Mater. Sci. Eng. 368, 012046 (2018)

    Google Scholar 

  34. N. Vigneshwaran, S. Kumar, A.A. Kathe, P.V. Varadarajan, V. Prasad, Nanotechnology 17, 5087 (2006)

    ADS  Google Scholar 

  35. V. Prasad, A.J. Shaikh, A.A. Kathe, D.K. Bisoyi, A.K. Verma, N. Vigneshwaran, J. Mater. Process. Technol. 210(14), 1962 (2010)

    Google Scholar 

  36. X. Liu, Y. Wang, L. Yu, Z. Tong, L. Chen, H. Liu, H. Li, Starch-starke 65, 48 (2013)

    ADS  Google Scholar 

  37. Z.H. Ibupoto, K. Khun, M. Eriksson, M. AlSalhi, M. Atif, A. Ansari, M. Willander, Materials 6(8), 3584 (2013)

    ADS  Google Scholar 

  38. A.V. Ravindra, B.C. Behera, P. Padhan, J. Nanosci. Nanotechnol. 14(7), 5591 (2014)

    Google Scholar 

  39. L. Guz, L. Fama, R. Candal, S. Goyanes, Carbohydr. Polym. 157, 1611 (2017)

    Google Scholar 

  40. N. Mufti, S. Maryam, A.A. Fibriyanti, R. Kurniawan, A. Fuad, A. Taufiq, Scanning. 2018, 6545803 (2018)

    Google Scholar 

  41. W.-C. Sun, Y.-C. Yeh, C.-T. Ko, J.-H. He, M.-J. Chen, Nanoscale Res. Lett. 6, 556 (2011)

    ADS  Google Scholar 

  42. D.E. Skinner, D.P. Colombo Jr., J.J. Cavaleri, R.M. Bowman, J. Phys. Chem. 99(20), 7853 (1995)

    Google Scholar 

  43. A. Sengupta, B. Jiang, K. Mandal, J. Zhang, J. Phys. Chem. B. 103(16), 3128 (1999)

    Google Scholar 

  44. D. Verma, A.K. Kole, P. Kumbhakar, J. Alloys Compd. 625, 122 (2015)

    Google Scholar 

  45. A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, L.S. Dang, J. Appl. Phys. 106, 104307 (2009)

    ADS  Google Scholar 

  46. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)

    ADS  Google Scholar 

  47. R. Vinod, M.J. Bushiri, S.R. Achary, V. Munoz-Sanjose, MSEB 191, 1 (2015)

    Google Scholar 

  48. J. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, B. Feng, J. Alloys Compd. 477, 632 (2009)

    Google Scholar 

  49. V. Koutu, L. Shastri, M.M. Malik, Mater. Sci. Pol. 34(4), 819 (2016)

    ADS  Google Scholar 

  50. V. Noack, A. Eychmuller, Chem. Mater. 14(3), 1411 (2002)

    Google Scholar 

Download references

Acknowledgements

A. V. Ravindra acknowledges the financial support provided by Yunnan Province Post-Doctoral Training Fund-2018 and Kunming University of Science and Technology for the Post-Doctoral Fellowship. MC would like to acknowledge the Department of Science and Technology for providing funding through DST-FIST Level-1 scheme to Department of Physics, KLEF; File No: SR/FST/PS-1/2018/35. CR thanks the financial support provided by the Department of Science and Technology (DST-SERB) under the scheme of Young Scientist (File No: SB/FTP/ETA-0213/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ravindra.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrika, M., Ravindra, A.V., Rajesh, C. et al. Tailoring of crystal phase, morphology, and optical properties of ZnO nanostructures by starch-assisted co-precipitation synthesis and annealing. Eur. Phys. J. Plus 135, 112 (2020). https://doi.org/10.1140/epjp/s13360-019-00073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00073-4

Navigation