Skip to main content
Log in

Isolation and expression analysis of defensin gene and its promoter from Brassica juncea

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The full-length pathogen-inducible plant defensin gene encoding 80 amino acid sequences of pathogen-related gene PR12 (Bjdefensin) was isolated from Brassica juncea. Conserved domain (CD) search reveals its similarity with gamma thionin and knottins families of plant antimicrobial peptides. The protein blast reveals more than 80% of its similarity with defensin-like protein of Brassica rapa and Camelina sativa. Gene expression studies revealed that the transcript levels of Bjdefensin gene increases significantly upon Alternaria infection, jasmonic acid and wounding treatments but was not induced by salicylic acid. To further study the stress-inducible regulation of Bjdefensin gene, its promoter (2.5 kb) was isolated and cloned upstream of GUS gene in pORER2 vector. In silico studies of Bjdefensin promoter showed many important conserved cis-elements, responsive to biotic and abiotic stresses. Histochemical GUS assay showed pathogen-inducible expression of Bjdefensin promoter after fungal infection. Bjdefensin promoter was also induced by Jasmonic acid and wounding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

SA:

Salicylic acid

JA:

Jasmonic acid

ET:

Ethylene

SAR:

Systemic acquired resistance

ISR:

Induced systemic resistance

References

  • Anuradha, T. S., Divya, K., Jami, S. K., & Kirti, P. B. (2008). Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Reports, 27, 1777–1786.

    Article  Google Scholar 

  • Anuradha, T. S., Jami, S. K., & Kirti, P. B. (2009). A defensin gene of indian mustard is stress induced. Journal of Plant Biochemistry and Biotechnology, 18(2), 221–224.

    Article  CAS  Google Scholar 

  • Beer, A. D., & Vivier, M. A. (2011). Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. BMC Research Notes, 4, 459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Broekaert, W., Terras, F. R., Cammue, B. P. A., & Osborn, R. W. (1995). Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiology, 108(4), 1353–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho, A. O., & Gomes, V. M. (2011). Plant defensins and defensin-like peptides—biological activities and biotechnological applications. Current Pharmaceutical Design, 17, 4270–4293.

    Article  CAS  Google Scholar 

  • Carvalho, A. O., & Gomesa, V. M. (2009). Plant defensins Prospects for the biological functions and biotechnological properties. Peptides, 30, 1007–1020.

    Article  CAS  Google Scholar 

  • Clough, S. J., & Bent, A. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  • Coninck, B. M. De, Sels, J., Venmans, E., Thys, W., Goderis, I. J., Carron, D., et al. (2010). Arabidopsis thaliana plant defensin AtPDF1.1 is involved in the plant response to biotic stress. New Phytologist, 187, 1075–1088.

    Article  PubMed  Google Scholar 

  • Despres, C., Chubak, C., Rochon, A., Clark, A., Bethune, T., Desveaux, D., & Fobert, P. R. (2003). The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 15, 2181–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott, K. A., & Shirsat, A. H. (1998). Promoter regions of the extA extensin gene from Brassica napus control activation in response to wounding and tensile stress. Plant Molecular Biology, 37, 675–687.

    Article  CAS  PubMed  Google Scholar 

  • Epple, P., Apel, K., & Bohlmann, H. (1997). ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana. FEBS Letters, 400, 168e172.

    Article  Google Scholar 

  • Garcia-Olmedo, F., Molina, A., Alamillo, J. M., & Rodriguez Palenzuela, P. (1998). Plant defense peptides. Biopolymers, 47, 479–491.

    Article  CAS  PubMed  Google Scholar 

  • Giri, P., Taj, G., & Kumar, A. (2013). Comparison of artificial inoculation methods for studying pathogenesis of Alternaria brassicae (Berk.) Sacc on Brassica juncea (L.) Czern. (Indian mustard). African Journal of Biotechnology, 12(18), 2422–2426.

    CAS  Google Scholar 

  • Glauser, G., Grata, E., Dubugnon, L., Rudaz, S., Farmer, E. E., & Wolfender, J. L. (2008). Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. Journal of Biological Chemistry, 283, 16400–16407.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Hanks, J. N., Snyder, A. K., Graham, M. A., Shah, R. K., Blaylock, L. A., Harrison, M. J., et al. (2005). Defensin gene family in Medicago truncatula structure, expression and induction by signal molecules. Plant Molecular Biology, 58, 385–399.

    Article  CAS  PubMed  Google Scholar 

  • Jefferson, R. A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.

    Article  CAS  Google Scholar 

  • Jung, C., Lyou, S. H., Yeu, S., Kim, M. A., Rhee, S., Kim, M., et al. (2007). Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Reports, 26, 1053–1063.

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk, N., Li, M., Wittek, F., Reid, N., Singh, R., Shirley, N., et al. (2010). Defensin promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnology Journal, 8, 47–64.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution. Molecular Biology and Evolution, 33(7), 1870–1874. doi:10.1093/molbev/msw054.

    Article  CAS  PubMed  Google Scholar 

  • Lay, F. T., & Anderson, M. A. (2005). Defensins-components of the innate immune system in plants. Current Protein and Peptide Science, 6, 85–101.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud, E. A., Solliman, M., et al. (2008). Cloning of a novel antifungal promoter from Phaseolus vulgaris and the determination of its activity in stably transformed Nicotiana tabacum plants. Current Issues in Molecular Biology, 11, 55–63.

    Google Scholar 

  • Manners, J. M., Penninckx, I. A. M. A., Vermaere, K., Kazan, K., Brown, R. L., Morgan, A., et al. (1998). The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Molecular Biology, 38(6), 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, A., Pandey, D., Goel, A., & Kumar, A. (2010). Molecular cloning and insilico analysis of functional homologues of hypersensitive response gene(s) induced during pathogenesis of Alternaria blight in two genotypes of Brassica. Journal of Proteomics and Bioinformatics, 3, 244–248.

    Article  CAS  Google Scholar 

  • Murray, M. G., Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA, Vol. 8 Nucle Aci Res. Institution of Washington, Department of Plant Biology, Stanford, CA 94305, USA

  • Nishiuchi, T., Shinshi, H., & Suzuki, K. (2004). Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: Possible involvement of NtWRKYs and autorepression. Journal of Biological Chemistry, 279, 55355–55361.

    Article  CAS  PubMed  Google Scholar 

  • Park, H. C., Kang, Y. H., Chun, H. J., Koo, J. C., Cheong, Y. H., Kim, C. Y., et al. (2002). Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Molecular Biology, 50, 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Penninckx, I. A. M. A., Eggermont, K., Terras, F. R. G., Thomma, B. P. H. J., Samblanx, G. W., Buchala, A., et al. (1996). Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell, 8, 2309–2323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J. P., & Broekaert, W. F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell, 10(12), 2103–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awai, K., et al. (2001). Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Research, 8(4), 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., et al. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences USA, 97(21), 11655–11660.

    Article  CAS  Google Scholar 

  • Terras, F. R. G., Eggermont, K., Kovaleva, V., Raikhel, N. V., Osborn, R. W., & Kester, A. (1995). Small cysteine-rich antifungal proteins from radish, their role in host defense. Plant Cell, 7, 573–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma, B. P. H. J., Cammue, B. P. A., & Thevissen, K. (2002). Plant defensins. Planta, 216, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Thomma, B. P., Eggermont, K., Penninckx, I. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P., et al. (1998). Separate jasmonate-dependent and salicylate dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences USA, 95, 15107–15111.

    Article  CAS  Google Scholar 

  • Van Loon, L. C., & Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.

    Article  Google Scholar 

  • Venu, V., Singh, N., Vasudev, S., Yadava, D. K., Kumar, S., Naresh, S., et al. (2013). Assesment of genetic diversity in Brassica juncea (brassicaceae) genotypes using phenotypic differences and SSR markers. Revista de biología tropical, 61(4), 1919–1934.

    Google Scholar 

  • Vieweg, M. F., Fruhling, M., Quandt, H. J., Heim, U., Baumlein, H., Puhler, A., et al. (2004). The promoter of the Vicia faba L. leghemoglobingene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells ofmycorrhizal roots from different legume and nonlegume plants. Molecular Plant-Microbe Interactions, 17, 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Mao, H., Dong, C., Ji, R., Cai, L., Fu, H., et al. (2009). Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. MPMI, 22(3), 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Wong, J. H., Xia, L., & Ng, T. B. (2007). A review of defensins of diverse origins. Current Protein and Peptide Science, 8, 446–459.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Wu, L., Liu, Z., Qian, L., Wang, M., Zhou, L., et al. (2009). A plant defensin gene from Orychophragmus violaceus can improve Brassica napus’ resistance to Sclerotinia sclerotiorum. African Journal of Biotechnology, 8(22), 6101–6109.

    Article  CAS  Google Scholar 

  • Yevtushenko, D. P., Sidorov, V. A., Romeroa, R., Kaya, W. W., & Misra, S. (2004). Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato. Plant Science, 167, 715–772.

    Article  CAS  Google Scholar 

  • Zimmerli, L., Stein, M., Lipka, V., Schulze-Lefert, P., & Somerville, S. (2004). Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant Journal, 40, 633–646.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Author is thankful to Director NRCPB for all possible help and financial support during the tenure of the work. This study was funded by NRCPB. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Grover.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, S., Ali, S., Nayankantha, N.N.C. et al. Isolation and expression analysis of defensin gene and its promoter from Brassica juncea . J Plant Dis Prot 124, 591–600 (2017). https://doi.org/10.1007/s41348-017-0103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-017-0103-y

Keywords

Navigation