Skip to main content
Log in

Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A large gene family encoding the putative cysteine-rich defensins was discovered in Medicago truncatula. Sixteen members of the family were identified by screening a cloned seed defensin from M. sativa (Gao et al. 2000) against the Institute for Genomic Research’s (TIGR) M. truncatula gene index (MtGI version 7). Based on the comparison of their amino acid sequences, M. truncatula defensins fell arbitrarily into three classes displaying extensive sequence divergence outside of the eight canonical cysteine residues. The presence of Class II defensins is reported for the first time in a legume plant. In silico as well as Northern blot and RT-PCR analyses indicated these genes were expressed in a variety of tissues including leaves, flowers, developing pods, mature seed and roots. The expression of these genes was differentially induced in response to a variety of biotic and abiotic stimuli. For the first time, a defensin gene (TC77480) was shown to be induced in roots in response to infection by the mycorrhizal fungus, Glomus versiforme. Northern blot analysis indicated that the tissue-specific expression patterns of the cloned Def1 and Def2 genes differed substantially between M. truncatula and M. sativa. Furthermore, the induction profiles of the Def1 and Def2 genes in response to the signaling molecules methyl jasmonate, ethylene and salicylic acid differed markedly between these two legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Def:

defensin

RT-PCR:

reverse transcription-polymerase chain reaction

TC:

tentative consensus sequence

References

  • D. Albani L.S. Robert P.A. Donaldson I. Altosaar P.G. Arnison S.F. Fabijanski (1990) ArticleTitleCharacterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development Plant Mol. Biol. 15 605–622

    Google Scholar 

  • M.S. Almeida K.M. Cabral E. Kurtenbach F.C. Almeida A.P. Valente (2002) ArticleTitleSolution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action J. Mol. Biol. 315 749–757

    Google Scholar 

  • M.S. Almeida K.M.S. Cabral R.B. Zingali E. Kurtenbach (2000) ArticleTitleCharacterization of two novel defensin peptides from pea (Pisum sativum) seeds Arch. Biochem. Biophys. 378 278–286

    Google Scholar 

  • S.F. Altschul T.L. Madden A.A. Schaffer J. Zhang Z. Zhang W. Miller D.J. Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res. 25 3389–3402

    Google Scholar 

  • C. Bloch M. Richardson (1991) ArticleTitleA new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds of Sorghum (Sorghum bicolor (L.) Moench) have sequence homologies with wheat gamma-purothionins FEBS Lett. 279 101–105

    Google Scholar 

  • F. Blondon D. Marie S.A.K. Brown (1994) ArticleTitleGenome size and base composition in Medicago sativa and M. truncatula species Genome 37 264–270

    Google Scholar 

  • W.F. Broekaert B.P.A. Cammue M.F.C. Bolle ParticleDe K. Thevissen G.W. Samblanx ParticleDe R.W. Osborn (1997) ArticleTitleAntimicrobial peptides from plants Crit. Rev. Plant Sci. 16 297–323

    Google Scholar 

  • W.F. Broekaert F.R. Terras B.P. Cammue R.W. Osborn (1995) ArticleTitlePlant defensins: novel antimicrobial peptides as components of the host defense system Plant Physiol. 108 1353–1358

    Google Scholar 

  • M. Chabaud F. Carvalho-Niebel Particlede D.G. Barker (2003) ArticleTitleEfficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1 Plant Cell Rep. 22 46–51

    Google Scholar 

  • P. Chomczynski N. Sacchi (1987) ArticleTitleSingle-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction Anal. Biochem. 162 156–159

    Google Scholar 

  • D.R. Cook (1999) ArticleTitleMedicago truncatula – a model in the making Curr. Opin. Plant Biol. 2 301–304

    Google Scholar 

  • da Silva Conceicao, A. and Broekaert, W.F. 1999. Plant Defensins. In: S.K. Datta S. Muthukrishnan (Ed.), CRCPress, New York, pp. 247–260.

  • M. Fedorova J. Mortel Particlevan de P.A. Matsumoto J. Cho C.D. Town K.A. VandenBosch J.S. Gantt C.P. Vance (2002) ArticleTitleGenome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula Plant Physiol. 130 519–537

    Google Scholar 

  • B.J. Feys J.E. Parker (2000) ArticleTitleInterplay of signaling pathways in plant disease resistance Trends Genet. 16 449–455

    Google Scholar 

  • A. Gao S.M. Hakimi C.A. Mittanck Y. Wu M.B. Woerner D.M. Stark D.M. Shah J. Liang C.M.T. Rommens (2000) ArticleTitleFungal pathogen protection in potato by expression of a plant defensin peptide Nature Biotechnol. 18 1307–1310

    Google Scholar 

  • F. Garcia-Olmedo A. Molina J.M. Alamillo P. Rodriguez-Palenzuela (1998) ArticleTitlePlant defense peptides Biopolymers 47 479–491

    Google Scholar 

  • M.J. Harrison (2000) ArticleTitleMolecular genetics of model legumes Trends Plant Sci. 5 414–415

    Google Scholar 

  • M.J. Harrison G.R. Dewbre J. Liu (2002) ArticleTitleA phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi Plant Cell 14 2413–2429

    Google Scholar 

  • M.J. Harrison R.A. Dixon (1993) ArticleTitleIsoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula Mol. Plant Microbe Interact. 6 643–654

    Google Scholar 

  • S. Henikoff J.G. Henikoff (1993) ArticleTitlePerformance evaluation of amino acid substitution matrices Proteins 17 49–61

    Google Scholar 

  • J.A. Hoffmann F.C. Kafatos C.A. Janeway R.A. Ezekowitz (1999) ArticleTitlePhylogenetic perspectives in innate immunity Science 284 1313–1318

    Google Scholar 

  • K.M. Kragh J.E. Nielsen K.K. Nielsen S. Dreboldt J.D. Mikkelsen (1995) ArticleTitleCharacterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris Mol. Plant Microbe Interact. 8 424–434

    Google Scholar 

  • F.T. Lay F. Brugliera M.A. Anderson (2003a) ArticleTitleIsolation and properties of floral defensins from ornamental tobacco and petunia Plant Physiol. 131 1283–1293

    Google Scholar 

  • F.T. Lay H.J. Schirra M.J. Scanlon M.A. Anderson D.J. Craik (2003b) ArticleTitleThe three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP J. Mol. Biol. 325 175–188

    Google Scholar 

  • R.I. Lehrer T. Ganz (2002) ArticleTitleDefensins of vertebrate animals Curr. Opin. Immunol. 14 96–102

    Google Scholar 

  • J. Liu L. Blaylock G. Endre J. Cho C.D. Town K. VandenBosch M.J. Harrison (2003) ArticleTitleTranscript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis Plant Cell 15 2106–2123

    Google Scholar 

  • O. Lorenzo R. Piqueras J.J. Sanchez-Serrano R. Solano (2003) ArticleTitleEthylene Response Factor1 integrates signals from ethylene and jasmonate pathways in plant defense Plant Cell 15 165–178

    Google Scholar 

  • T.P. McGonigle M.H. Miller D.G. Evans G.L. Fairchild J.A. Swan (1990) ArticleTitleA new method that gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi New Phytol. 115 495–501

    Google Scholar 

  • P. Mergaert K. Nikovics Z. Kelemen N. Maunoury D. Vaubert A. Kondorosi E. Kondorosi (2003) ArticleTitleA novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs Plant Physiol. 132 161–173

    Google Scholar 

  • H. Nielsen J. Engelbrecht S. Brunak G. Heijne (1997) ArticleTitleIdentification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites Protein Eng. 10 1–6

    Google Scholar 

  • G.E.D. Oldroyd R. Geurts (2001) ArticleTitleMedicago truncatula, going where no plant has gone before Trends Plant Sci. 6 552–554

    Google Scholar 

  • I.A. Penninckx K. Eggermont F.R. Terras B.P. Thomma G.W. De Samblanx A. Buchala J.P. Metraux J.M. Manners W.F. Broekaert (1996) ArticleTitlePathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway Plant Cell 8 2309–2323

    Google Scholar 

  • I.A. Penninckx B.P. Thomma A. Buchala J.P. Metraux W.F. Broekaert (1998) ArticleTitleConcomitant activation of jasmonate and ethylene response pathways is required for induction of␣a plant defensin gene in Arabidopsis Plant Cell 10 2103–2113

    Google Scholar 

  • D.A. Samac D.M. Shah (1991) ArticleTitleDevelopmental and pathogen-induced activation of the Arabidopsis chitinase promoter Plant Cell 3 1063–1072

    Google Scholar 

  • A. Segura M. Moreno A. Molina F. Garcia-Olmedo (1998) ArticleTitleNovel defensin subfamily from spinach (Spinacia oleracea) FEBS Lett. 435 159–162

    Google Scholar 

  • R. Solano A. Stepanova Q. Chao J.R. Ecker (1998) ArticleTitleNuclear events in ethylene signaling: a transcriptional cascade mediated by Ethylene-insensitive3 and Ethylene-Response-Factor1 Genes Dev. 12 3703–3714

    Google Scholar 

  • Spelbrink R.G., Dilmac, N., Allen, A., Smith, T.J., Shah, D.M. and Hockerman, G.H. 2004 Differential antifungal and calcium channel blocking activity among structurally related plant defensins. Plant Physiol., in press

  • F.R. Terras K. Eggermont V. Kovaleva N.V. Raikhel R.W. Osborn A. Kester S.B. Rees S. Torrekens F. Van Leuven J. Vanderleyden (1995) ArticleTitleSmall cysteine-rich antifungal proteins from radish: their role in host defense Plant Cell 7 573–588

    Google Scholar 

  • F.R. Terras H.M. Schoofs M.F. Bolle ParticleDe F. Van Leuven S.B. Rees J. Vanderleyden B.P. Cammue W.F. Broekaert (1992) ArticleTitleAnalysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds J. Biol. Chem. 267 15301–15309

    Google Scholar 

  • B.P.H.J. Thomma W.F. Broekaert (1998) ArticleTitleTissue-specific expression of plant defensin genes PDF2.1 and PDF 2.2 in Arabidopsis thaliana Plant Physiol. Biochem. 36 533–537

    Google Scholar 

  • B.P.H.J. Thomma B.P.A. Camme K. Thevissen (2002) ArticleTitlePlant defensins Planta 216 193–202

    Google Scholar 

  • J.D. Thompson D.G. Higgins T.J. Gibson (1994) ArticleTitleCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res. 22 4673–4680

    Google Scholar 

  • P. Thoquet M. Gherardi E.P. Journet A. Kereszt J.M. Ane J.M. Prosperi T. Huguet (2002) ArticleTitleThe molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes BioMed Central Plant Biol. 2 1–13

    Google Scholar 

  • C.M. Vicient M. Delseny (1999) ArticleTitleIsolation of total RNA from Arabidopsis thaliana seeds Anal. Biochem. 268 412–413

    Google Scholar 

  • H. Zhu S.B. Cannon N.D. Young D.R. Cook (2002) ArticleTitlePhylogeny and genomic organization of the TIR and non-tIR NBS-LRR resistance gene family in Medicago truncatula Mol. Plant Microbe Interact. 15 529–539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip M. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanks, J.N., Snyder, A.K., Graham, M.A. et al. Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules. Plant Mol Biol 58, 385–399 (2005). https://doi.org/10.1007/s11103-005-5567-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-5567-7

Keywords

Navigation