Skip to main content

Advertisement

Log in

Green synthesis of MOF nanostructures: environmental benefits and applications

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

This review article deliberates on providing deep information on the environmentally friendly synthesis of metal–organic frameworks (MOFs) materials show significant potential in a wide range of applications, and their performance exceeds that of existing reference substances. Therefore, their environment friendly manufacturing is highly appreciated. Inspiring developments in industrial-scale MOF production have been made throughout the last decade. However, still there is significant obstacle for the manufacturing of green MOFs. An outline is provided on how to aid and accelerate the commercialization of the most viable MOFs, along with the potential possibilities for future applications of each metal ion. At temperatures between 80 and 100 °C, the MOF's crystallization was analyzed in real time through the use of synchrotron radiation and in situ powder X-ray diffraction. Through kinetic analysis, it was discovered that while the induction and crystallization durations vary between synthesis batches, the rate-limiting processes remain consistent. In this review article, synthesis of unique nanostructures of MOF by various green synthesis methods that are environment friendly, toxicant-free, and cost-effective is described. In addition to this, the potential uses of MOFs in various environmental applications are elaborated in this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

1. https://doi.org/10.1016/j.eng.2021.07.001, 2. https://doi.org/10.3390/catal8090368, 3. https://doi.org/10.1021/ja805235k, 4. https://doi.org/10.1016/j.enchem.2019.100005, 5. https://doi.org/10.1021/acssuschemeng.9b01022, 6. https://doi.org/10.1021/acsomega.2c05310, 7. https://doi.org/10.1039/B310502D, 8. https://doi.org/10.1016/j.micromeso.2017.11.016, 9. https://doi.org/10.3390/molecules25061291, 10. https://doi.org/10.1149/1945-7111/abc6c6, 11. https://doi.org/10.1039/B105762F, 12. https://doi.org/10.1016/j.nantod.2015.03.001, 13. https://doi.org/10.1002/chem.202004583, 14. https://doi.org/10.1016/j.joule.2017.08.008, 15. https://doi.org/10.1021/jacs.0c00270, 16. https://doi.org/10.1002/advs.201901129, 17. https://doi.org/10.1016/j.jece.2017.07.080, 18. https://doi.org/10.1021/ic048876k, 19. https://doi.org/10.3390/bios13010128, 20. https://doi.org/10.3389%2Ffbioe.2022.906374, 21. https://doi.org/10.1007/s00604-018-2879-2, 22. https://doi.org/10.1007/s11356-020-08241-1, 23. https://doi.org/10.1016/j.molliq.2021.116602, 24. https://doi.org/10.2172/1809928, 25. https://doi.org/10.1039/C8CS00829A, 26. https://doi.org/10.1021/cr200324t, 27. https://doi.org/10.1016/j.chemosphere.2020.127672, 28. https://doi.org/10.1016/j.chemosphere.2023.137920, 29. https://doi.org/10.3390/applnano3010005, 30. https://doi.org/10.1002/smll.202105715, 31. https://doi.org/10.1016/j.chemosphere.2020.129501, 32. https://doi.org/10.1039/D0NJ05632D, 33. https://doi.org/10.1016/j.cis.2022.102732, 34. https://doi.org/10.1016/j.joule.2018.09.019, 35. https://doi.org/10.1021/acs.chemrev.7b00091, 36. https://doi.org/10.1039/C3CS60442J, 37. https://doi.org/10.1021/cr9003924, 38. https://doi.org/10.1016/j.ccr.2018.08.012, 39. https://doi.org/10.1016/j.enchem.2019.100005, 40. https://doi.org/10.1039/D0TC00040J, 41. https://doi.org/10.1039/D0DT02623A, 42. https://doi.org/10.1016/j.sna.2020.111984.

References

  1. Kong XJ, Li JR (2021) An overview of metal–organic frameworks for green chemical engineering. Engineering 7(8):1115–1139

    Article  Google Scholar 

  2. Isaeva VI, Nefedov OM, Kustov LM (2018) Metal–organic frameworks-based atalysts for biomass processing. Catalysts 8(9):368

    Article  Google Scholar 

  3. Allendorf MD, Houk RJ, Andruszkiewicz L, Talin AA, Pikarsky J, Choudhury A, Hesketh PJ (2008) Stress-induced chemical detection using flexible metal− organic frameworks. J Am Chem Soc 130(44):14404–14405

    Article  Google Scholar 

  4. Li D, Xu HQ, Jiao L, Jiang HL (2019) Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem 1(1):100005

    Article  Google Scholar 

  5. Wang S, Serre C (2019) Toward green production of water-stable metal–organic frameworks based on high-valence metals with low toxicities. ACS Sustain Chem Eng 7(14):11911–11927

    Google Scholar 

  6. Yusuf VF, Malek NI, Kailasa SK (2022) Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment. ACS Omega 7(49):44507–44531

    Article  Google Scholar 

  7. Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis–a critical technology overview. Green Chem 6(3):128–141

    Article  Google Scholar 

  8. Alqadami AA, Khan MA, Siddiqui MR, Alothman ZA (2018) Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead (II) from water. Microporous Mesoporous Mater 261:198–206

    Article  Google Scholar 

  9. Tibbetts I, Kostakis GE (2020) Recent bio-advances in metal-organic frameworks. Molecules 25(6):1291. https://doi.org/10.3390/molecules25061291

    Article  Google Scholar 

  10. Varsha MV, Nageswaran G (2020) Direct electrochemical synthesis of metal organic frameworks. J Electrochem Soc 167:155527. https://doi.org/10.1149/1945-7111/abc6c6

    Article  Google Scholar 

  11. Walton RI (2002) Subcritical solvothermal synthesis of condensed inorganic materials. Chem Soc Rev 31(4):230–238

    Article  Google Scholar 

  12. Lai J, Niu W, Luque R, Xu G (2015) Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10(2):240–267

    Article  Google Scholar 

  13. Amrute AP, De Bellis J, Felderhoff M, Schüth F (2021) Mechanochemical synthesis of catalytic materials. Chem A Eur J 27(23):6819–6847

    Article  Google Scholar 

  14. Zhang H, Nai J, Yu L, Lou XW (2017) Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1(1):77–107

    Article  Google Scholar 

  15. Connolly BM, Madden DG, Wheatley AEH, Fairen-Jimenez D (2020) Shaping the future of fuel: monolithic metal-organic frameworks for high-density gas storage. J Am Chem Soc 142(19):8541–8549

    Article  Google Scholar 

  16. Yilmaz G, Peh SB, Zhao D, Ho GW (2019) Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv Sci 6(21):1901129

    Article  Google Scholar 

  17. Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6(3):3531–3555

    Article  Google Scholar 

  18. Ma S, Sun D, Ambrogio MW, Chmelka BF (2019) Metal–organic frameworks as potential catalysts for environmental applications. Chem Soc Rev 48(8):2102–2135

    Google Scholar 

  19. Wang H, Li Y, Huang R, Liu J, Tang Z, Nie L (2020) Metal-organic frameworks (MOFs)-based sensing platforms for environmental pollutant detection. TrAC Trends Anal Chem 123:115744

    Google Scholar 

  20. Zhao C, Yuan Y, Cai Z, Zhang W, Huang X, Xiang S (2018) MOF-derived hierarchical porous carbon as anode for lithium ion battery with high performance. J Power Sources 393:86–92

    Google Scholar 

  21. Liu C, Yu LQ, Zhao YT et al (2018) Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Microchim Acta 185:342. https://doi.org/10.1007/s00604-018-2879-2

    Article  Google Scholar 

  22. Li J, Wang L, Liu Y et al (2020) The research trends of metal-organic frameworks in environmental science: a review based on bibliometric analysis. Environ Sci Pollut Res 27:19265–19284. https://doi.org/10.1007/s11356-020-08241-1

    Article  Google Scholar 

  23. Meena J, Gupta A, Ahuja R, Singh M, Panda AK (2021) Recent advances in nano-engineered approaches used for enzyme immobilization with enhanced activity. J Mole Liquids 338:116602

    Article  Google Scholar 

  24. Long JR, Reimer J, Queen W, Drisdell W, Frechet J, Haranczyk M, Helms B, Jerome B, Koniges A, Kortright J, Meza J, Prendergast D, Svec F, Teat S, Whitelam S, Hopkinson D, Luebke D, Brown C, Zhou H-C, Galli G, Krishna R, Neaton J, Smit B, Xu T, Yaghi O, Gagliardi L, Tsapatsis M (2021) Center for gas separations (CGS), US. https://doi.org/10.2172/1809928

  25. Ding M, Flaig RW, Jiang HL, Yaghi OM (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48(10):2783–2828

    Article  Google Scholar 

  26. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112(2):1105–1125

    Article  Google Scholar 

  27. Wang C, Zhang C, Liu Y, Li J (2020) Metal-organic frameworks for water treatment: progress and prospects. J Hazard Mater 384:121385

    Google Scholar 

  28. Rizwan M, Akhtar N, Ali S, Ok YS, Ishaque W (2021) Metal-organic frameworks for water purification: Opportunities and challenges. J Environ Manage 289:112488

    Google Scholar 

  29. Farooq U, Mishra RK, Dubey SP, Khan Z (2021) Metal-organic frameworks (MOFs) for water purification: a review. Chemosphere 279:130465

    Google Scholar 

  30. Yang X, Wu S, Chen Y, Liu X, Zhao Q, Guo L, Xu T (2020) Applications of metal-organic frameworks in water treatment: a review. Sci Total Environ 718:137308

    Google Scholar 

  31. Zhang L, Zou R, Zhao Y, Yu H, Zhu G, Liu H (2021) Metal-organic frameworks as promising adsorbents for water purification: a review. J Environ Chem Eng 9(3):105425

    Google Scholar 

  32. Li B, Wang Y, Chi Q, Yuan Z, Liu B, Zhang Z (2021) Direct synthesis of imines from nitro compounds and biomass-derived carbonyl compounds over nitrogen-doped carbon material supported Ni nanoparticles. New J Chem 45(9):4464–4471

    Article  Google Scholar 

  33. Peng Y, Zhou T, Ma J, Bai Y, Cao S, Pang H (2022) Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv Colloid Interface Sci 307:102732

    Article  Google Scholar 

  34. Wang K, Lv L, Sun Y, Xu F, Liu B, Song Y, Li J (2018) MIL-100 (Fe) and its derived composites as advanced anodes for lithium-ion batteries. ACS Appl Mater Interfaces 10(19):16156–16164

    Google Scholar 

  35. Li L, Yang R, Wang Z, Lu GQ (2017) Metal-organic frameworks for heterogeneous basic catalysis. Chem Soc Rev 46(3):712–745

    Google Scholar 

  36. Dhakshinamoorthy A, Garcia H (2014) Metal–organic frameworks as catalysts for oxidation reactions. Chem Soc Rev 43(16):5750–5765

    Article  Google Scholar 

  37. Corma A, Garcia H, Llabrés I Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110(8):4606–4655

    Article  Google Scholar 

  38. Wang H, Li K, Li X, Wu C (2018) Metal–organic frameworks for heterogeneous catalysis: a review. Chin J Catal 39(11):1783–1803

    Google Scholar 

  39. Zhang JP, Zhang YB (2016) Metal–organic frameworks for catalysis: state-of-the-art, challenges, and opportunities. J Am Chem Soc 138(30):9741–9766

    Google Scholar 

  40. Xu Q et al (2017) Metal-organic frameworks for environmental sensing and catalysis. J Mater Chem A 5(47):24612–24631

    Google Scholar 

  41. Wang J et al (2018) Recent advances in metal-organic frameworks for environmental sensing and remediation. Coord Chem Rev 375:448–462

    Google Scholar 

  42. Wang L et al (2016) Metal-organic frameworks for sensing applications in environmental monitoring. TrAC Trends Anal Chem 82:334–346

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the core research Grant (CRG) provided by Science and Engineering Research Board (SERB) (CRG/2019/004990).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Jagtap.

Ethics declarations

Conflict of interest

Authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhakat, P., Nigam, A. & Jagtap, S. Green synthesis of MOF nanostructures: environmental benefits and applications. Nanotechnol. Environ. Eng. 8, 815–827 (2023). https://doi.org/10.1007/s41204-023-00325-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-023-00325-w

Keywords

Navigation