Skip to main content

Advertisement

Log in

Positive and negative effects of nanoparticles on agricultural crops

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Nanotechnology is one of the new approaches introduced to improve agricultural production as the present ecosystem balance starts to decline significantly due to the extensive use of classical agriculture. Nanoparticles are suitable alternative materials in place of the excessive use of chemicals, pesticides, and fungicides in agricultural crops to resist various plant diseases and pests. Moreover, it has been demonstrated that the application of nanoparticles improves plant tolerance to various biotic stresses such as drought, heat, and salt. As nanoparticles have many positive effects in improving crop production and productivity, the adverse effects of some types of nanoparticles have been noted and observed. Therefore, understanding the pros and cons is very important for the efficient use of nanoparticles. In this review, the effect of nanoparticles on plants under various biotic and abiotic stresses is discussed. The effect of nanoparticle characteristics such as shape, size, and diameter on plant performance is also discussed. Also, the expression pattern of plant genes in response to the exposure to different nanoparticles is addressed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Yunlong C, Smit B (1994) Sustainability in agriculture: a general review. Agric Ecosyst Environ. https://doi.org/10.1016/0167-8809(94)90059-0

    Article  Google Scholar 

  2. Sallam A, Alqudah AM, Dawood MFA et al (2019) Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci. https://doi.org/10.3390/ijms20133137

    Article  Google Scholar 

  3. Francis DM, Sood N, Gokhale T (2020) Applications of metal nanoparticles in agriculture. In: Pawar S (ed) Progress and prospects in nanoscience today applications of metal nanoparticles in agriculture. Nova Science Publishers, Inc.

    Google Scholar 

  4. Mishra S, Singh A, Keswani C, Singh HB (2014) Nanotechnology: exploring potential application in agriculture and its opportunities and constraints. Biotech Today 4:9–14. https://doi.org/10.5958/2322-0996.2014.00011.8

    Article  Google Scholar 

  5. Thomas R, Jasim B, Mathew J, Radhakrishnan EK (2012) Extracellular synthesis of silver nanoparticles by endophytic Bordetella sp. isolated from Piper nigrum and its antibacterial activity analysis. Nano Biomed Eng. https://doi.org/10.5101/nbe.v4i14.p183-187

    Article  Google Scholar 

  6. Saranya S, Aswani R, Remakanthan A, Radhakrishnan EK (2019) Nanotechnology in agriculture. In: Panpatte DG, Jhala YK (eds) Nanotechnology for agriculture: advances for sustainable agriculture. Springer, pp 1–17

    Google Scholar 

  7. Chandrika KP, Singh A, Tumma MK, Yadav P (2018) Nanotechnology prospects and constraints in agriculture. In: Dasgupta N, Ranjan S, Lichtfouse E (eds) Environmental nanotechnology. Environmental chemistry for a sustainable world, vol 14. Springer

    Google Scholar 

  8. Kole C, Kole P, Randunu KM et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37. https://doi.org/10.1186/1472-6750-13-37

    Article  Google Scholar 

  9. Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact. https://doi.org/10.1016/j.impact.2015.12.002

    Article  Google Scholar 

  10. Zhang B, Zheng LP, Yi Li W, Wen Wang J (2013) Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr Nanosci. https://doi.org/10.2174/1573413711309030012

    Article  Google Scholar 

  11. Khan MN, Mobin M, Abbas ZK et al (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209

    Article  Google Scholar 

  12. Fouad AS, Hafez RM (2018) The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips. Biol Plant. https://doi.org/10.1007/s10535-017-0751-6

    Article  Google Scholar 

  13. Faraday M (1857) Experimental relations of gold (and other metals) to light. Phil Trans R Soc 147:145–181

    Article  Google Scholar 

  14. Appenzeller T (1991) The man who dared to think small. Science (80-). https://doi.org/10.1126/science.254.5036.1300

    Article  Google Scholar 

  15. Mody V, Siwale R, Singh A, Mody H (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci. https://doi.org/10.4103/0975-7406.72127

    Article  Google Scholar 

  16. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res. https://doi.org/10.1021/ar960016n

    Article  Google Scholar 

  17. Heath JR (1995) The chemistry of size and order on the nanometer scale. Science (80-) 270:1315–1316

    Article  Google Scholar 

  18. Farghaly AA, Huba ZJ, Carpenter EE (2012) Magnetic field assisted polyol synthesis of cobalt carbide and cobalt microwires. J Nanoparticle Res. https://doi.org/10.1007/s11051-012-1159-z

    Article  Google Scholar 

  19. Farghaly AA, Khan RK, Collinson MM (2018) Biofouling-resistant platinum bimetallic alloys. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b02900

    Article  Google Scholar 

  20. Farghaly AA, Lam M, Freeman CJ et al (2016) Potentiometric measurements in biofouling solutions: comparison of nanoporous gold to planar gold. J Electrochem Soc. https://doi.org/10.1149/2.0101604jes

    Article  Google Scholar 

  21. Khan RK, Farghaly AA, Silva TA et al (2019) Gold-nanoparticle-decorated titanium nitride electrodes prepared by glancing-angle deposition for sensing applications. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.8b02354

    Article  Google Scholar 

  22. Xue B, Farghaly AA, Guo Z et al (2016) Monoclinic hydroxyapatite nanoplates hybrid composite with improved compressive strength, and porosity for bone defect repair: biomimetic synthesis and characterization. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2016.10919

    Article  Google Scholar 

  23. Torres Galvis HM, Bitter JH, Khare CB et al (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science (80-). https://doi.org/10.1126/science.1215614

    Article  Google Scholar 

  24. Bahadur D, Giri J, Nayak BB et al (2005) Processing, properties and some novel applications of magnetic nanoparticles. Pramana - J Phys. https://doi.org/10.1007/bf03010455

    Article  Google Scholar 

  25. Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1:157–168

    Article  Google Scholar 

  26. Majkova E, Jergel M, Yamamoto M et al (2007) Advanced nanometer-size structures. Acta Phys Slovaca. https://doi.org/10.2478/v10155-010-0087-7

    Article  Google Scholar 

  27. Tartaj P, Del Puerto MM, Veintemillas-Verdaguer S et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D. Appl, Phys

    Book  Google Scholar 

  28. Vatta LL, Sanderson RD, Koch KR (2006) Magnetic nanoparticles: properties and potential applications. Pure Appl Chem 78:1793–1801

    Article  Google Scholar 

  29. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693

    Article  Google Scholar 

  30. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev. https://doi.org/10.1039/b514191e

    Article  Google Scholar 

  31. Younes NA, Hassan HS, Elkady MF et al (2020) Impact of synthesized metal oxide nanomaterials on seedlings production of three Solanaceae crops. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03188

    Article  Google Scholar 

  32. Younes NA, Dawood MFA, Wardany AA (2019) Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.04.097

    Article  Google Scholar 

  33. Hernández-Hernández H, González-Morales S, Benavides-Mendoza A et al (2018) Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules. https://doi.org/10.3390/molecules23010178

    Article  Google Scholar 

  34. Dawood MFA, Abeed AHA, Aldaby EES (2019) Titanium dioxide nanoparticles model growth kinetic traits of some wheat cultivars under different water regimes. Indian J Plant Physiol. https://doi.org/10.1007/s40502-019-0437-5

    Article  Google Scholar 

  35. Asgari F, Majd A, Jonoubi P, Najafi F (2018) Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2018.03.021

    Article  Google Scholar 

  36. Hussain HA, Men S, Hussain S et al (2019) Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep. https://doi.org/10.1038/s41598-019-40362-7

    Article  Google Scholar 

  37. Ali S, Rizwan M, Noureen S et al (2019) Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04554-y

    Article  Google Scholar 

  38. Rizwan M, Ali S, Zia ur Rehman M et al (2019) Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.02.031

    Article  Google Scholar 

  39. Gil-Díaz M, Pinilla P, Alonso J, Lobo MC (2017) Viability of a nanoremediation process in single or multi-metal(loid) contaminated soils. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2016.09.071

    Article  Google Scholar 

  40. Bowne JB, Erwin TA, Juttner J et al (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429. https://doi.org/10.1093/mp/ssr114

    Article  Google Scholar 

  41. Lei Z, Mingyu S, Xiao W et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res. https://doi.org/10.1007/s12011-007-8028-0

    Article  Google Scholar 

  42. Taran N, Storozhenko V, Svietlova N et al (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12:60. https://doi.org/10.1186/s11671-017-1839-9

    Article  Google Scholar 

  43. Mustafa G, Komatsu S (2016) Insights into the response of soybean mitochondrial proteins to various sizes of aluminum oxide nanoparticles under flooding stress. J Proteome Res. https://doi.org/10.1021/acs.jproteome.6b00572

    Article  Google Scholar 

  44. Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics. https://doi.org/10.1016/j.jprot.2015.03.030

    Article  Google Scholar 

  45. Mustafa G, Sakata K, Komatsu S (2015) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteomics. https://doi.org/10.1016/j.jprot.2015.08.010

    Article  Google Scholar 

  46. Cai Y, Xu W, Wang M et al (2019) Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.07.077

    Article  Google Scholar 

  47. Hao Y, Xu B, Ma C et al (2019) Synthesis of novel mesoporous carbon nanoparticles and their phytotoxicity to rice (Oryza sativa L.). J Saudi Chem Soc 23:75–82. https://doi.org/10.1016/J.JSCS.2018.05.003

    Article  Google Scholar 

  48. Feng Y, Chen W, Jia Y et al (2016) N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria. Nanoscale. https://doi.org/10.1039/c6nr03317b

    Article  Google Scholar 

  49. Cai L, Liu C, Fan G et al (2019) Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in: Nicotiana benthamiana. Environ Sci Nano. https://doi.org/10.1039/c9en00850k

    Article  Google Scholar 

  50. Abbai R, Kim YJ, Mohanan P et al (2019) Silicon confers protective effect against ginseng root rot by regulating sugar efflux into apoplast. Sci Rep. https://doi.org/10.1038/s41598-019-54678-x

    Article  Google Scholar 

  51. Adeel M, Farooq T, White JC et al (2021) Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124167

    Article  Google Scholar 

  52. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol. https://doi.org/10.1038/nnano.2007.108

    Article  Google Scholar 

  53. Martin-Ortigosa S, Peterson DJ, Valenstein JS et al (2014) Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol. https://doi.org/10.1104/pp.113.233650

    Article  Google Scholar 

  54. Cunningham FJ, Demirer GS, Goh NS et al (2020) Nanobiolistics: an emerging genetic transformation approach. In: Rustgi S, Luo H (eds) Methods in molecular biology. Humana

    Google Scholar 

  55. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. https://doi.org/10.1021/es800422x

    Article  Google Scholar 

  56. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2013.02.059

    Article  Google Scholar 

  57. Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2013.01.063

    Article  Google Scholar 

  58. Jiang HS, Qiu XN, Li GB et al (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem. https://doi.org/10.1002/etc.2577

    Article  Google Scholar 

  59. Lalau CM, Mohedano RA, Schmidt ÉC et al (2014) Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma. https://doi.org/10.1007/s00709-014-0671-7

    Article  Google Scholar 

  60. Manuscript A (2012) NIH Public Access. 59:3485–3498. https://doi.org/10.1021/jf104517j.Interaction

  61. Olchowik J, Bzdyk RM, Studnicki M et al (2017) The effect of silver and copper nanoparticles on the condition of English oak (Quercus robur L.) seedlings in a container nursery experiment. Forests. https://doi.org/10.3390/f8090310

    Article  Google Scholar 

  62. Faisal M, Saquib Q, Alatar AA et al (2016) Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biol Res. https://doi.org/10.1186/s40659-016-0080-9

    Article  Google Scholar 

  63. Du W, Gardea-Torresdey JL, Ji R et al (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol. https://doi.org/10.1021/acs.est.5b03055

    Article  Google Scholar 

  64. Cvjetko P, Zovko M, Štefanić PP et al (2018) Phytotoxic effects of silver nanoparticles in tobacco plants. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0928-8

    Article  Google Scholar 

  65. Milewska-Hendel A, Zubko M, Stróż D, Kurczyńska EU (2019) Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. Int J Mol Sci. https://doi.org/10.3390/ijms20071650

    Article  Google Scholar 

  66. Fedorenko AG, Minkina TM, Chernikova NP et al (2020) The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environ Geochem Health. https://doi.org/10.1007/s10653-020-00530-5

    Article  Google Scholar 

  67. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel : size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater. https://doi.org/10.1155/2012/132424

    Article  Google Scholar 

  68. Khodakovskaya MV, De Silva K, Nedosekin DA et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1008856108

    Article  Google Scholar 

  69. Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies. Mater Focus. https://doi.org/10.1166/mat.2016.1329

    Article  Google Scholar 

  70. Koul A, Kumar A, Singh VK et al (2018) Exploring plant-mediated copper, iron, titanium, and cerium oxide nanoparticles and their impacts. In: Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK (eds) Nanomaterials in plants, algae, and microorganisms. Academic Press

    Google Scholar 

  71. Linglan M, Chao L, Chunxiang Q et al (2008) Rubisco activase mRNA expression in spinach: Modulation by nanoanatase treatment. Biol Trace Elem Res. https://doi.org/10.1007/s12011-007-8069-4

    Article  Google Scholar 

  72. Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics. https://doi.org/10.1007/s10142-013-0341-4

    Article  Google Scholar 

  73. Smirnova E, Gusev A, Zaytseva O et al (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng. https://doi.org/10.1007/s11705-012-1290-5

    Article  Google Scholar 

  74. Yan S, Zhao L, Li H et al (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2012.12.013

    Article  Google Scholar 

  75. Wang X, Yang X, Chen S et al (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01243

    Article  Google Scholar 

  76. Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR (2017) Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis. Environ Toxicol Chem. https://doi.org/10.1002/etc.3500

    Article  Google Scholar 

  77. Yue L, Ma C, Zhan X et al (2017) Molecular mechanisms of maize seedling response to La2O3 NP exposure: water uptake, aquaporin gene expression and signal transduction. Environ Sci Nano. https://doi.org/10.1039/c6en00487c

    Article  Google Scholar 

  78. Misra P, Shukla PK, Pramanik K et al (2016) Nanotechnology for crop improvement. In: Kole C, Kumar D, Khodakovskaya M (eds) Plant nanotechnology. Springer, pp 219–256

    Chapter  Google Scholar 

  79. Ghasemi B, Hosseini R, Dehghan Nayeri F (2015) Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turk J Botany. https://doi.org/10.3906/bot-1410-9

    Article  Google Scholar 

  80. Gao F, Hong F, Liu C et al (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of Rubisco-Rubisco activase. Biol Trace Elem Res. https://doi.org/10.1385/BTER:111:1:239

    Article  Google Scholar 

  81. Ze Y, Liu C, Wang L et al (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of arabidopsis thaliana. Biol Trace Elem Res. https://doi.org/10.1007/s12011-010-8901-0

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

DA, MF, YM, AF, AS performed literature search, data collection, and wrote the review; MA designed all graphical presentation of this study, AS contributed to the study conception and design. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmed Sallam.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Moneim, D.A., Dawood, M.F.A., Moursi, Y.S. et al. Positive and negative effects of nanoparticles on agricultural crops. Nanotechnol. Environ. Eng. 6, 21 (2021). https://doi.org/10.1007/s41204-021-00117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00117-0

Keywords

Navigation