Skip to main content
Log in

The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips

  • Original papers
  • Published:
Biologia Plantarum

Abstract

The effects of silver nanoparticles (AgNPs), silver ions (Ag+), and polyvinylpyrrolidone (PVP) on mitosis and expression of a gene encoding cyclin-dependent kinase 2 (cdc2) in onion roots were compared. Three concentrations (5, 10, and 15 mg dm-3) were employed in combination with three incubation times (3, 6, and 9 h). PVP enhanced mitotic index and cdc2 expression. Both silver forms decreased mitotic index and cdc2 expression. Genotoxicity of both silver forms were indicated by three major distinguishable classes of chromosome aberrations: spindle disturbances, clastogenic aberrations, and chromosome stickiness. Concerning Ag+ treatments, significant enhancements in occurrence of any chromosome aberration type was associated with significant decrease in mitotic index. On the other hand, disturbed spindle in AgNPs treatments was observed even in absence of significant reduction in mitotic index suggesting that AgNPs inhibit cellular events occurring during mitosis to proceed normally rather than starting of cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ag+ :

silver ion

AgNPs:

silver nanoparticles

CDKs:

cyclin-dependent kinases

CKL:

cyclin dependent kinase like

CYC:

cyclin

DW:

deionized water

ENPs:

engineered nanoparticles

LSD:

least significant difference

PVP:

polyvinylpyrrolidone

TEM:

transmission electron microscopy

References

  • Babaei, N., Abdullah, N.A.P., Saleh, G., Abdullah, T.L.: Control of contamination and explant browning in Curculigo latifolia in vitro cultures. — J. med. Plants Res. 7: 448–454, 2013.

    CAS  Google Scholar 

  • Bhushan, B. (ed.): Springer Handbook of Nanotechnology. 3rd Edition. - Springer-Verlag, Berlin - Heidelberg 2010.

    Book  Google Scholar 

  • Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbuhler, K.: Estimation of cumulative aquatic exposure and risk due to silver: contribution of nanofunctionalized plastics and textiles. — Sci. Total Environ. 390: 396–409, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Boruc, J., Mylle, E., Duda, M., De Clercq, R., Rombauts, S., Geelen, D., Hilson, P., Inze, D., Van Damme, D., Russinova, E.: Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. — Plant Physiol. 152: 553–565, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Veylder, L., Beeckman, T., Inze, D.: The ins and outs of the plant cell cycle. — Nat. Rev. mol. cell. Biol. 8: 655–665, 2007.

    Article  PubMed  Google Scholar 

  • Francis, D.: What’s new in the plant cell cycle? - In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (ed): Progress in Botany. Vol. 70. Pp. 33–49. Springer-Verlag, Berlin - Heidelberg 2009.

    Chapter  Google Scholar 

  • Hemerly, A., De Almeida Engler, J., Bergounioux, C., Van Montagu, M., Engler, G., Inzé, D., Ferreira, P.: Dominant negative mutants of the CDC2 kinase uncouple cell division from iterative plant development. — EMBO J. 14: 3925–3936, 1995.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemerly, A.S., Ferreira, P., Engler, J., Van Montagu, M., Engler, G., Lnze, D.: cdc2a expression in Arabidopsis is linked with competence for cell division. - — Plant Cell 5: 1711–1723, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama, T., Imajuku, Y., Anai, T., Matsui, M., Oka, A.: Identification of two cell-cycle controlling cdc2 gene homologs in Arabidopsis thaliana. — Gene 105: 159–165, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Jo, Y.K., Kim, B.H., Jung, G.: Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. — Plant Dis. 93: 1037–1043, 2009.

    Article  CAS  Google Scholar 

  • John, P.C., Mews, M., Moore, R.: Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. — Protoplasma 216: 119–42, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Kaveh, R., Li, Y-S., Ranjbar, S., Tehrani, R., Brueck, C.L., Van Aken, B.: Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. — Environ. Sci. Technol. 47: 10637–10644, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.-Y.: Antimicrobial effects of silver nanoparticles. — Nanomed. Nanotechnol. Biol. Med. 3: 95–101, 2007.

    Article  CAS  Google Scholar 

  • Kitsios, G., Doonan, J.H.: Cyclin dependent protein kinases and stress responses in plants. — Plant Signal. Behav. 6: 204–209, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittler, S., Greulich, C., Köller, M., Epple, M.: Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells. — Mater. Sci. Eng. Technol. 40: 258–264, 2009.

    CAS  Google Scholar 

  • Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability and effects. — Environ. Toxicol. Chem. 27: 1825–1851, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, M., Mukherjee, A., Chandrasekaran, N.: Genotoxicity of silver nanoparticles in Allium cepa. — Sci. Total Environ. 407: 5243–5246, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Geiser-Lee, J., Deng, Y., Kolmakov, A.: Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. — Sci. Total Environ. 408: 3053–3061, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Nymark, P., Catalán, J., Suhonen, S., Järventaus, H., Birkedal, R., Clausen, P.A., Jensen, K.A., Vippola, M., Savolainen, K., Norppa, H.: Genotoxicity of polyvinylpyrrolidonecoated silver nanoparticles in BEAS 2B cells. — Toxicology 8: 38–48, 2013.

    Article  Google Scholar 

  • Panda, K.K., Achary, V.M.M., Phaomie, G., Sahu, H.K., Parinandi, N.L., Panda, B.B.: Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay. — Mutag. Res. 806: 11–23, 2016.

    CAS  Google Scholar 

  • Park, H.J., Kim, S.H., Kim, S.J., Choi, S.H.: A new composition of nanosized silica-silver for control of various plant diseases. — Plant Pathol. J. 22: 295–302, 2006.

    Article  Google Scholar 

  • Pesnya, D.S.: Cytogenetic effects of chitosan-capped silver nanoparticles in the Allium cepa test. — Caryologia 66: 275–281, 2013.

    Article  Google Scholar 

  • Prokhorova, I.M., Kibrik, B.S., Pavlov, A.V., Pesnya, D.S.: Estimation of mutagenic effect and modifications of mitosis by silver nanoparticles. — Bull. exp. Biol. Med. 156: 255–259, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Pulate, P.V., Ghurde, M.U., Deshmukh, V.R.: Cytological effect of the biological and chemical silver nano particle in Allium cepa (L). — Inter. J. Innov. biol. Sci. 1: 32–35, 2011.

    Google Scholar 

  • Rasouli, H., Hosein, M., Kamran, F., Mohammadzadeh, M.S., Khodarahmi, R.: Review: Plant cell cancer: may natural phenolic compounds prevent onset and development of plant cell malignancy? — Molecules 21: 1104–1129, 2016.

    Article  Google Scholar 

  • Remédios, C., Rosário, F., Bastos, V.: Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. — J. Bot. 2012: 1–8, 2012.

    Article  Google Scholar 

  • Savithramma, N., Ankanna, S., Bhumi, G.: Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. — Nano Vision 2: 61–68, 2012.

    Google Scholar 

  • Schmid, G. (ed): Nanoparticles: From Theory to Application. - Wiley, Weinheim 2010.

    Book  Google Scholar 

  • Scolnick, D., Halazonetis, T.: Chfr defines a mitotic stress checkpoint that delays entry into metaphase. — Nature 406: 430–435, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Shahrokh, S., Emtiazi, G.: Toxicity and unusual biological behavior of nanosilver on gram positive and negative bacteria assayed by microtiter-plate. — Eur. J. biol. Sci. 1: 28–31, 2009.

    Google Scholar 

  • Shimelis, D., Bantte, K., Feyissa, T.: Effects of polyvinyl pyrrolidone and activated charcoal to control effect of phenolic oxidation on in vitro culture establishment stage of micropropagation of sugarcane (Saccharum officinarum L.). — Adv. Crop Sci. Technol. 3: 184–187, 2015.

    Google Scholar 

  • Stals, H., Bauwens, S., Traas, J., Van Montagu, M., Engler, G., Inzé, D.: Plant CDC2 is not only targeted to the preprophase band, but is also co-located with the spindle, phragmoplast, and chromosomes. — FEBS Lett. 418: 229–234, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Syu, Y.Y., Hung, J.H., Chen, J.C., Chuang, H.W.: Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. — Plant Physiol. Biochem. 83: 57–64, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Tank, J.G., Thaker, V.S.: Cyclin-dependent kinases and their role in regulation of plant cell cycle. — Biol. Plant. 55: 201–212, 2011.

    Article  CAS  Google Scholar 

  • Vu, H.Q., El-Sayed, M.A., Ito, S-I., Yamauchi, N., Shigyo, M.: Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa aggregatum group. — Genome 55: 797–807, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S-J., Yin, Y-G., Liu, J-F.: Silver nanoparticles in the environment. — Environ. Sci. Processes Impacts 15: 78–92, 2013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fouad.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouad, A.S., Hafez, R.M. The effects of silver ions and silver nanoparticles on cell division and expression of cdc2 gene in Allium cepa root tips. Biol Plant 62, 166–172 (2018). https://doi.org/10.1007/s10535-017-0751-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0751-6

Additional key words

Navigation