Skip to main content
Log in

Statistical Optimization and Kinetic Studies of Water Hyacinth Stem–Based Activated Carbon Adsorbent for Synthetic Textile Dye Effluent Treatment

  • Research
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

Industrial effluent from the textile industry has been the most important concern in the world for many decades. Most of the dyes used in the industry are harmful to human beings and also to the environment. In this study, the potential of water hyacinth stem–based activated carbon was studied for the decolorization of synthetic dye wastewater. The activated carbon is a carbonaceous material obtained from the degradation of biomass, which has high adsorption potential. Water hyacinth is available worldwide and has shown high potential to produce cheaper activated carbon. The adsorbent was characterized by using Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The influence of parameters such as initial pH (5–9), adsorbent dosage (0.3–0.7 g/100 ml), contact time (1–6 h), and temperature (30–45 ℃) were examined. In response surface methodology (RSM), central composite design (CCD) was adopted to optimize the parameters that influence dye adsorption. The CCD and RSM predicted an optimal condition for dye removal in synthetic wastewater at pH 6, temperature 44 ℃, and a contact time of 4 h which removed 81 ± 0.3% of dye, adopting an adsorbent dosage of 0.5 g/100 ml. Kinetic and adsorption study results agreed with the pseudo-second-order model, Langmuir’s model, and Temkin’s model. The kinetic study best fit with the Langmuir model showing that adsorption capacity was 59.52 mg g−1. It follows physical adsorption mechanism and temperature increases; the adsorption increases up to a certain temperature. After that, adsorption of dye decreases. Water hyacinth stem–based activated carbon has shown to be a promising feedstock for the degradation of textile dye effluents. This study demonstrates the use of water hyacinth stem–based activated carbon has a potential source for dye degradation in textile effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Carneiro MT et al. (2022) Application of water hyacinth biomass ( Eichhornia crassipes ) as an adsorbent for methylene blue dye from aqueous medium : kinetic and isothermal study. https://doi.org/10.3390/polym14132732

  2. Aksu Z, Isoglu IA (2006) Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution. J Hazard Mater 137(1):418–430. https://doi.org/10.1016/j.jhazmat.2006.02.019

    Article  CAS  Google Scholar 

  3. Khader EH, Khudhur RH, Abbood NS, Albayati TM (2023) Decolourisation of anionic azo dye in industrial wastewater using adsorption process: investigating operating parameters. Environ Process 10(2):34. https://doi.org/10.1007/s40710-023-00646-7

    Article  CAS  Google Scholar 

  4. Kulkarni MR, Revanth T, Acharya A, Bhat P (2017) Removal of crystal violet dye from aqueous solution using water hyacinth: equilibrium, kinetics and thermodynamics study. Resour Technol 3(1):71–77. https://doi.org/10.1016/j.reffit.2017.01.009

    Article  Google Scholar 

  5. Guerrero-Coronilla I, Morales-Barrera L, Cristiani-Urbina E (2015) Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves. J Environ Manage 152:99–108. https://doi.org/10.1016/j.jenvman.2015.01.026

    Article  CAS  Google Scholar 

  6. Singh VK, Soni AB, Singh RK (2016) Process optimization studies of malachite green dye adsorption onto eucalyptus (Eucalyptus globulus ) wood biochar using response surface methodology. Orient J Chem 32(5):2621–2631. https://doi.org/10.13005/ojc/320534

    Article  CAS  Google Scholar 

  7. Araújo LKF et al (2021) Elaeis guineensis-activated carbon for methylene blue removal: adsorption capacity and optimization using CCD-RSM. Environ Dev Sustain 23(8):11732–11750. https://doi.org/10.1007/s10668-020-01137-7

    Article  Google Scholar 

  8. Jusufi K et al (2016) Potential application of orange peels as bio-sorbents in the removal of organic molecules from wastewater. RAD Conf Proc 1(July):176–178. https://doi.org/10.21175/RadProc.2016.41

    Article  Google Scholar 

  9. Gul S, Afsar S, Gul H, Ali B (2023) Removal of crystal violet dye from wastewater using low-cost biosorbent Trifolium repens stem powder. J Iran Chem Soc 20(11):2781–2792. https://doi.org/10.1007/s13738-023-02875-x

    Article  CAS  Google Scholar 

  10. Akkari I, Graba Z, Bezzi N, Merzeg FA, Bait N, Ferhati A (2023) Raw pomegranate peel as promise efficient biosorbent for the removal of Basic Red 46 dye: equilibrium, kinetic, and thermodynamic studies. Biomass Convers Biorefinery 13(9):8047–8060. https://doi.org/10.1007/s13399-021-01620-9

    Article  CAS  Google Scholar 

  11. Gebrezgiher M, Kiflie Z (2020) Utilization of cactus peel as biosorbent for the removal of reactive dyes from textile dye effluents, J Environ Public Health, vol. 2020 https://doi.org/10.1155/2020/5383842

  12. Mahramanlioglu M, Al M, Zahoor M, Cinarli A, Kizilcikli I (2010) Removal of phenol red by activated carbon and magnetic activated carbons. Fresenius Environ Bull 19(5 A):911–918

    CAS  Google Scholar 

  13. Khalfaoui A, Pizzi A (2024) Wastewater treatment and crystal violet removal : and a Bio-Adsorbent, water, Water 2024(16):260. https://doi.org/10.3390/w16020260

  14. Tomin O, Vahala R, Yazdani MR (2024) Heliyon synthesis and efficiency comparison of reed straw-based biochar as a mesoporous adsorbent for ionic dyes removal. Heliyon 10(2):e24722. https://doi.org/10.1016/j.heliyon.2024.e24722

    Article  CAS  Google Scholar 

  15. Grassi P et al (2024) Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems. Int J Phytoremediation 26(1):82–97. https://doi.org/10.1080/15226514.2023.2225615

    Article  CAS  Google Scholar 

  16. Panda A, Samal PP, Qaiyum MA, Dey B, Dey S (2024) Think before throw: waste chili stalk powder for facile scavenging of cationic dyes from water. Environ Monit Assess 196(2):118. https://doi.org/10.1007/s10661-023-12243-0

    Article  CAS  Google Scholar 

  17. Sundararaman R, Sivalingam S, Mabel MM, Gobinath T (2024) Biosorption of Toxic Reactive Blue Textile Dye from Effluent Water Using Immobilized Biomass Based Adsorbent. Environ Nat Resour J 22(1):1–12. https://doi.org/10.32526/ennrj/22/20230192

  18. Huynh PT, Nguyen D-K, Duong B-N, Nguyen P-H, Hong PNT, Dinh V-P (2024) Thermally treated biomass of pine (Pinus kesiya) leaves for effective removal of organic dyes from aqueous solutions. J Chem Technol Biotechnol 99(1):307–316. https://doi.org/10.1002/jctb.7537

    Article  CAS  Google Scholar 

  19. Khattri SD, Singh MK (2000) Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air Soil Pollut 120(3–4):283–294. https://doi.org/10.1023/a:1005207803041

    Article  CAS  Google Scholar 

  20. Prasad R, Yadav KD 2020 Water Conservation and Management ( WCM ) Use of response surface methodology and artificial neural network approach for methylene blue removal by adsorption onto, vol. 4, no. 2, pp. 83–89 https://doi.org/10.26480/wcm.02.2020

  21. Wang X, Feng X, Ma Y (2023) Activated carbon from chili straw: K2CO3 activation mechanism, adsorption of dyes, and thermal regeneration. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-04173-1

    Article  Google Scholar 

  22. Zhou R, Zhang M, Li J, Zhao W (2020) Journal of Environmental Chemical Engineering Optimization of preparation conditions for biochar derived from water hyacinth by using response surface methodology ( RSM ) and its application in Pb 2 + removal. J Environ Chem Eng 8(5):104198. https://doi.org/10.1016/j.jece.2020.104198

    Article  CAS  Google Scholar 

  23. Kulkarni MR, Revanth T, Acharya A, Bhat P (2017) Removal of crystal violet dye from aqueous solution using water hyacinth : equilibrium, kinetics and thermodynamics study. Resour Technol. https://doi.org/10.1016/j.reffit.2017.01.009

    Article  Google Scholar 

  24. Sahu S, Pahi S, Sahu JK, Sahu UK, Patel RK (2020) Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon—an efficient bioadsorbent for methylene blue dye: equilibrium, kinetic, and thermodynamic study. Environ Sci Pollut Res 27(18):22579–22592. https://doi.org/10.1007/s11356-020-08561-2

    Article  CAS  Google Scholar 

  25. Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions : a review, vol. 167, pp. 1–9 https://doi.org/10.1016/j.jhazmat.2008.12.114

  26. Ulas M, Cavas L, Papageorgiou SK, Katsaros FK (2011) Methylene blue adsorption on activated carbon prepared from Posidonia oceanica ( L.) dead leaves : kinetics and equilibrium studies. Chem Eng J 168(1):77–85. https://doi.org/10.1016/j.cej.2010.12.038

    Article  CAS  Google Scholar 

  27. Ayele AL, Tizazu BZ, Wassie AB (2022) Chemical modification of teff straw biomass for adsorptive removal of cr (vi) from aqueous solution: Characterization, Optimization, Kinetics, and Thermodynamic Aspects. Adsorpt Sci Technol 2022(2022) https://doi.org/10.1155/2022/5820207

  28. Khuluk RH, Rahmat A, Buhani, Suharso (2019) Removal of methylene blue by adsorption onto activated carbon from coconut shell (Cocous nucifera L.) Indones. J Sci Technol 4(2):229–240. https://doi.org/10.17509/ijost.v4i2.18179

    Article  Google Scholar 

  29. Altikatoglu M, Celebi M (2011) Enhanced stability and decolorization of Coomassie Brilliant Blue R-250 by dextran aldehyde-modified horseradish peroxidase. Artif Cells Blood Substit Immobil Biotechnol 39(3):185–190. https://doi.org/10.3109/10731199.2010.533124

    Article  CAS  Google Scholar 

  30. Mani S, Bharagava RN (2016) Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety, vol. 237. https://doi.org/10.1007/978-3-319-23573-8_4

  31. Mirza A, Ahmad R (2020) An efficient sequestration of toxic crystal violet dye from aqueous solution by Alginate/Pectin nanocomposite: a novel and ecofriendly adsorbent. Groundw Sustain Dev 11:100373. https://doi.org/10.1016/j.gsd.2020.100373

    Article  Google Scholar 

  32. Bhavyasree PG, Xavier TS (2021) Adsorption studies of Methylene Blue, Coomassie Brilliant Blue, and Congo Red dyes onto CuO/C nanocomposites synthesized via Vitex negundo Linn leaf extract. Curr Res Green Sustain Chem 4(August):100161. https://doi.org/10.1016/j.crgsc.2021.100161

    Article  CAS  Google Scholar 

  33. Gao T et al. (2020) Decolorization and detoxification of triphenylmethane dyes by isolated endophytic fungus, Bjerkandera adusta SWUSI4 under non-nutritive conditions, Bioresour. Bioprocess., vol. 7, no. 1 https://doi.org/10.1186/s40643-020-00340-8

  34. Dorri Y, Kurien BT (2010) Environmentally safe removal/disposal of Coomassie Brilliant Blue from gel destain and used gel stain. Anal Biochem 404(2):193–196. https://doi.org/10.1016/j.ab.2010.05.022

    Article  CAS  Google Scholar 

  35. Hoffman JI, Guz A (1961) Toxicity of Coomassie blue. Am Heart J 61:665–666. https://doi.org/10.1016/0002-8703(61)90638-x

    Article  CAS  Google Scholar 

  36. Montero-Guadarrama I, Balderas-Hernández P, Barrera-Díaz CE, Roa-Morales G (2020) Phenol red degradation using a synergetic method (electrochemical oxidation with ozone) in batch and continuous system. Int J Electrochem Sci 15:7883–7895. https://doi.org/10.20964/2020.08.12

    Article  CAS  Google Scholar 

  37. Nibret G, Ahmad S, Rao DG, Ahmad I, Shaikh MAMU, Rehman ZU (2019) Removal of methylene blue dye from textile wastewater using water hyacinth activated carbon as adsorbent: synthesis, characterization and kinetic studies. SSRN Electron J 2013:1959–1969. https://doi.org/10.2139/ssrn.3358101

    Article  Google Scholar 

  38. Léon JJL, De Matos TN (2018) Elucidation of mechanism involved in adsorption of Pb ( II ) onto lobeira fruit ( Solanum lycocarpum ) using Langmuir, Freundlich and Temkin isotherms. Microchem J 137:348–354. https://doi.org/10.1016/j.microc.2017.11.009

    Article  CAS  Google Scholar 

  39. Sandhu ZA et al (2023) Response surface methodology: a powerful tool for optimizing the synthesis of metal sulfide nanoparticles for dye degradation. Mater Adv 4(21):5094–5125. https://doi.org/10.1039/d3ma00390f

    Article  CAS  Google Scholar 

  40. Fontana KB, Chaves ES, Sanchez JDS, Watanabe ERLR, Pietrobelli JMTA, Lenzi GG (2016) Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies. Ecotoxicol Environ Saf 124:329–336. https://doi.org/10.1016/j.ecoenv.2015.11.012

    Article  CAS  Google Scholar 

  41. Rose PK, Kumar R, Kumar R, Kumar M, Sharma P (2023) Congo red dye adsorption onto cationic amino-modified walnut shell: characterization, RSM optimization, isotherms, kinetics, and mechanism studies. Groundw Sustain Dev 21:100931. https://doi.org/10.1016/j.gsd.2023.100931

    Article  Google Scholar 

  42. Akbari A, Peighambardoust SJ, Lotfi M (2023) Hydrochar derived from Liquorice root pulp utilizing catalytic/non-catalytic hydrothermal carbonization: RSM optimization and cationic dye adsorption assessment. J Water Process Eng 55:104099. https://doi.org/10.1016/j.jwpe.2023.104099

    Article  Google Scholar 

  43. Saning A et al (2019) Green and sustainable zero-waste conversion of water hyacinth (: Eichhornia crassipes) into superior magnetic carbon composite adsorbents and supercapacitor electrodes. RSC Adv 9(42):24248–24258. https://doi.org/10.1039/c9ra03873f

    Article  CAS  Google Scholar 

  44. Dharshini P, Hariharan P, Agilandeswari K (2023) Investigation of biosorption properties of water hyacinth root in textile effluent and synthetic wastewater treatment,” vol. 45, no. 4, pp. 343–35 https://doi.org/10.3103/S1063455X23040112

  45. Mukhlish MZB, Mazumder MSI, Ferdous K, Prasad DMR, Hassan Z (2014) Uptake of Indosol Dark-blue GL dye from aqueous solution by water hyacinth roots powder : adsorption and desorption study, pp. 1027–1034 https://doi.org/10.1007/s13762-013-0363-4

  46. Yousef TA, Sahu UK, Jawad AH, Abd Malek NN, Al Duaij OK, Z. A. ALOthman (2023) Fruit peel-based mesoporous activated carbon via microwave assisted K2CO3 activation Box Behnken design and desirability function for methylene blue dye adsorption. Int J Phytoremediation 25(9):1142–1154. https://doi.org/10.1080/15226514.2022.2137102

    Article  CAS  Google Scholar 

  47. Bhatnagar A, Hogland W, Marques M, Sillanpää M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 219:499–511. https://doi.org/10.1016/j.cej.2012.12.038

    Article  CAS  Google Scholar 

  48. Ahmed MB et al (2019) Activated carbon preparation from biomass feedstock: clean production and carbon dioxide adsorption. J Clean Prod 225:405–413. https://doi.org/10.1016/j.jclepro.2019.03.342

    Article  CAS  Google Scholar 

  49. Saxena M, Sharma N, Saxena R (2020) Highly efficient and rapid removal of a toxic dye : adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surfaces Interfaces 21(August):100639. https://doi.org/10.1016/j.surfin.2020.100639

    Article  CAS  Google Scholar 

  50. Zahmatkesh S, Far SS, Sillanpää M (2022) RSM-D-optimal modeling approach for COD removal from low strength wastewater by microalgae, sludge, and activated carbon- case study Mashhad. J Hazard Mater Adv 7(June):100110. https://doi.org/10.1016/j.hazadv.2022.100110

    Article  CAS  Google Scholar 

  51. Yadvika AK, Yadav TR, Sreekrishnan S. Satya, Kohli S (2006) A modified method for estimation of chemical oxygen demand for samples having high suspended solids. Bioresour Technol 97(5):721–726. https://doi.org/10.1016/j.biortech.2005.04.013

    Article  CAS  Google Scholar 

  52. Taylor P, Soto M, Veiga MC, Méndez R, Lema JM (1989) Semi‐micro C.O.D. determination method for high‐salinity wastewater. Environ Technol Lett pp 37–41

  53. Javed I, Hanif MA, Rashid U, Nadeem F, Alharthi FA, Kazerooni EA (2022) Enhancing functionalities in nanocomposites for effective dye removal from wastewater: isothermal, kinetic and thermodynamic aspects, Water (Switzerland), vol. 14, no. 17 https://doi.org/10.3390/w14172600

  54. Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, vol. 16, no. 2. Springer Berlin Heidelberg. https://doi.org/10.1007/s13762-018-2130-z

  55. Sakkayawong N, Thiravetyan P, Nakbanpote W (2005) Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J Colloid Interface Sci 286(1):36–42. https://doi.org/10.1016/j.jcis.2005.01.020

    Article  CAS  Google Scholar 

  56. Malarvizhi R, Ho YS (2010) The influence of pH and the structure of the dye molecules on adsorption isotherm modeling using activated carbon. Desalination 264(1–2):97–101. https://doi.org/10.1016/j.desal.2010.07.010

    Article  CAS  Google Scholar 

  57. Kumar PS et al. (2013) Effect of temperature on the adsorption of methylene blue dye onto sulfuric acid – treated orange, no. October 2014, pp. 37–41 https://doi.org/10.1080/00986445.2013.819352

  58. Mousavi SA, Mahmoudi A, Amiri S, Darvishi P, Noori E (2022) Methylene blue removal using grape leaves waste: optimization and modeling. Appl Water Sci 12(5):1–11. https://doi.org/10.1007/s13201-022-01648-w

    Article  CAS  Google Scholar 

  59. Hamzezadeh A, Rashtbari Y, Afshin S, Morovati M, Vosoughi M (2022) Application of low-cost material for adsorption of dye from aqueous solution. Int J Environ Anal Chem 102(1):254–269. https://doi.org/10.1080/03067319.2020.1720011

    Article  CAS  Google Scholar 

  60. Yıldız D, Demir I, Demiral H (2023) Adsorption of malachite green on to poplar sawdust activated carbon. Sep Sci Technol 58(12):2099–2114. https://doi.org/10.1080/01496395.2023.2240492

    Article  CAS  Google Scholar 

  61. Rajahmundry GK, Garlapati C, Kumar PS, Alwi RS, Vo DVN (2021) Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276:130176. https://doi.org/10.1016/j.chemosphere.2021.130176

    Article  CAS  Google Scholar 

  62. Hii HT (2021) Adsorption isotherm and kinetic models for removal of Methyl Orange and Remazol Brilliant Blue R by coconut shell activated carbon. Trop Aquat Soil Pollut 1(1):1–10. https://doi.org/10.53623/tasp.v1i1.4

    Article  Google Scholar 

  63. Li Q et al (2023) Kinetic and thermodynamic studies of H2S adsorption by lignin-based composite membranes. J Polym Eng. https://doi.org/10.1515/polyeng-2023-0055

    Article  Google Scholar 

  64. Hossain MN, Islam MD, Rahaman A, Khatun N, Matin MA (2023) Production of cost-effective activated carbon from tea waste for tannery waste water treatment. Appl Water Sci 13(3):73. https://doi.org/10.1007/s13201-023-01879-5

    Article  CAS  Google Scholar 

  65. Fito J, Tibebu S, Nkambule TTI (2023) Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhornia crassipes under response surface methodology. BMC Chem 17(1):1–19. https://doi.org/10.1186/s13065-023-00913-6

    Article  CAS  Google Scholar 

  66. Medhat A et al (2020) Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surf Sci Adv 3(December):2021. https://doi.org/10.1016/j.apsadv.2020.100037

    Article  Google Scholar 

  67. Yang L, Yungang W (2023) High-performance sorbents from ionic liquid activated walnut shell carbon : an investigation of adsorption and regeneration, pp. 22744–22757 https://doi.org/10.1039/d3ra03555g

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. P. Hariharan outlined the ideology of the research. K. Sakthiuma conceived and designed the work. Dr. K. Agilandeswari and Dr. P. Hariharan prepared and edited the manuscript. M. Nitheshlee has done the experimental work.

Corresponding author

Correspondence to P. Hariharan.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariharan, P., Sakthiuma, K., Agilandeswari, K. et al. Statistical Optimization and Kinetic Studies of Water Hyacinth Stem–Based Activated Carbon Adsorbent for Synthetic Textile Dye Effluent Treatment. Water Conserv Sci Eng 9, 14 (2024). https://doi.org/10.1007/s41101-024-00246-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41101-024-00246-y

Keywords

Navigation