Skip to main content

Advertisement

Log in

Raw pomegranate peel as promise efficient biosorbent for the removal of Basic Red 46 dye: equilibrium, kinetic, and thermodynamic studies

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This work reports the use of raw pomegranate peel (RPP) as a low-cost biosorbent for the removal of Basic Red 46 (BR46) dye from aqueous solution. The XRD pattern indicates the amorphous nature of RPP. Hydroxyl (OH), carboxyl (COOH), and amine (NH2) are the main functional groups of the biosorbent. The scanning electron microscopy (SEM) shows the heterogeneous and rough surface of RPP. The Brunauer–Emmett–Teller (BET) surface of 1.046 m2.g−1 and the average pore diameter of 60.121 Å indicate that the molecule could easily access into the pores. The pH at the zero point charge (pHpzc) and the Boheme titration show the slight acidic property of RPP. Reduced particle size of RPP gives up an increase of the adsorption capacity of 70 mg.g−1 in 2 min, to attain 86.13 mg.g−1 with a removal rate of 86% in 60 min of contact for initial dye concentration of 200 mg.L−1 and biosorbent dosage of 2 g.L−1. Biosorption experimental isotherms data fit well with the Temkin model. The adsorption process of BR46 onto RPP was spontaneous, exothermic, and the pseudo-second order described was found to fit the kinetic data. The adsorption mechanism of BR46 onto RPP was proposed with the multiple reuse promising application in environmental wastewater recycling with RPP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Biores Technol 97(9):1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001

    Article  Google Scholar 

  2. Anastopoulos I, Kyzas GZ (2014) Agricultural peels for dye adsorption: a review of recent literature. J Mol Liq 200:381–389. https://doi.org/10.1016/j.molliq.2014.11.006

    Article  Google Scholar 

  3. Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification—a review. Chem Eng J 270:244–271. https://doi.org/10.1016/j.cej.2015.01.135

    Article  Google Scholar 

  4. Rabhi S, Belkacemi H, Bououdina M, Kerrami A, Brahem LA, Sakher E (2019) Effect of Ag doping of TiO2 nanoparticles on anatase-rutile phase transformation and excellent photodegradation of amlodipine besylate. Mater Lett 236:640–643. https://doi.org/10.1016/j.matlet.2018.11.006

    Article  Google Scholar 

  5. Kerrami, A., Mahtout, L., Bensouici, F., Bououdina, M., Rabhi, S., Sakher, E., Belkacemi, H. (2019). Synergistic effect of Rutile-Anatase Fe-doped TiO2 as efficient nanocatalyst for the degradation of Azucryl Red. Materials Research Express, 6(8), 0850f5.doi: https://doi.org/10.1088/2053-1591/ab2677/meta

  6. Samani MR, Toghraie D (2019) Removal of hexavalent chromium from water using polyaniline/wood sawdust/poly ethylene glycol composite: an experimental study. J Environ Health Sci Eng 17(1):53–62. https://doi.org/10.1007/s40201-018-00325-y

    Article  Google Scholar 

  7. Farirzadeh I, Samani MR, Toghraie D (2020) Lead removal from aqueous medium using fruit peels and polyaniline composites in aqueous and non-aqueous solvents in the presence of polyethylene glycol. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2020.09.049

    Article  Google Scholar 

  8. Dai Y, Sun Q, Wang W, Lu L, Liu M, Li J, Zhang Y (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere 211:235–253. https://doi.org/10.1016/j.chemosphere.2018.06.179

    Article  Google Scholar 

  9. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1–3):1–13. https://doi.org/10.1016/j.desal.2011.07.019

    Article  Google Scholar 

  10. Eren E (2009) Investigation of a basic dye removal from aqueous solution onto chemically modified Unyebentonite. J Hazard Mater 166(1):88–93. https://doi.org/10.1016/j.jhazmat.2008.11.011

    Article  Google Scholar 

  11. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Coll Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  Google Scholar 

  12. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365. https://doi.org/10.1016/j.envpol.2019.05.072

    Article  Google Scholar 

  13. Shoushtarian F, Moghaddam MRA, Kowsari E (2020) Efficient regeneration/reuse of graphene oxide as a nanoadsorbent for removing basic Red 46 from aqueous solutions. J Mol Liq 312:113386. https://doi.org/10.1016/j.molliq.2020.113386

    Article  Google Scholar 

  14. Boudechiche N, Fares M, Ouyahia S, Yazid H, Trari M, Sadaoui Z (2019) Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones. Microchemi J 146:1010–1018. https://doi.org/10.1016/j.microc.2019.02.010

    Article  Google Scholar 

  15. Şentürk İ, Yıldız MR (2020) Highly efficient removal from aqueous solution by adsorption of Maxilon Red GRL dye using activated pine sawdust. Korean J Chem Eng 37:985–999. https://doi.org/10.1007/s11814-020-0526-1

    Article  Google Scholar 

  16. Konicki W, Hełminiak A, Arabczyk W, Mijowska E (2018) Adsorption of cationic dyes onto Fe@ graphite core–shell magnetic nanocomposite: equilibrium, kinetics and thermodynamics. Chem Eng Res Des 129:259–270. https://doi.org/10.1016/j.cherd.2017.11.004

    Article  Google Scholar 

  17. Mekatel E, Djamel N, Trari M, Samira A, DAHDOUH, N. (2019) Removal of Maxilon Red dye by adsorption and photocatalysis: optimum conditions, equilibrium and kinetic studies. Iranian Journal of Chemistry and Chemical Engineering (IJCCE). https://doi.org/10.30492/IJCCE.2019.37245

    Article  Google Scholar 

  18. Senoussi H, Bouhidel KE (2018) Feasibility and optimisation of a batch mode capacitive deionization (BM CDI) process for textile cationic dyes (TCD) removal and recovery from industrial wastewaters. J Clean Prod 205:721–727. https://doi.org/10.1016/j.jclepro.2018.09.026

    Article  Google Scholar 

  19. Rafiaee S, Samani MR, Toghraie D (2020) Removal of hexavalent chromium from aqueous media using pomegranate peels modified by polymeric coatings: effects of various composite synthesis parameters. Synth Met 265:116416. https://doi.org/10.1016/j.synthmet.2020.116416

    Article  Google Scholar 

  20. Ben-Ali S, Jaouali I, Souissi-Najar S, Ouederni A (2017) Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J Clean Prod 142:3809–3821. https://doi.org/10.1016/j.jclepro.2016.10.081

    Article  Google Scholar 

  21. Jawad AH, Waheeb AS, Rashid RA, Nawawi WI, Yousif E (2018) Equilibrium isotherms, kinetics, and thermodynamics studies of methylene blue adsorption on pomegranate (Punica granatum) peels as a natural low-cost biosorbent. Desalin Water Treat 105:322–331. https://doi.org/10.5004/dwt.2018.22021

    Article  Google Scholar 

  22. Msaadi, R., Sassi, W., Hihn, J. Y., Ammar, S., Chehimi, M. M. (2021). Valorization of pomegranate peel balls as bioadsorbents of methylene blue in aqueous media. Emergent Materials, 1-10.doihttps://doi.org/10.1007/s42247-021-00174-w

  23. Gündüz F, Bayrak B (2017) Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. J Mol Liq 243:790–798. https://doi.org/10.1016/j.molliq.2017.08.095

    Article  Google Scholar 

  24. Thakur V, Sharma E, Guleria A, Sangar S, Singh K (2020) Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption. Materials Today: Proceedings 32:608–619. https://doi.org/10.1016/j.matpr.2020.02.756

    Article  Google Scholar 

  25. Malik DS, Jain CK, Yadav AK (2017) Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl Water Sci 7(5):2113–2136. https://doi.org/10.1007/s13201-016-0401-8

    Article  Google Scholar 

  26. Değermenci GD, Değermenci N, Ayvaoğlu V, Durmaz E, Çakır D, Akan E (2019) Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies. J Clean Prod 225:1220–1229. https://doi.org/10.1016/j.jclepro.2019.03.260

    Article  Google Scholar 

  27. Vasile C, Popescu CM, Popescu MC, Brebu M, Willfor S (2011) Thermalbehaviour/treatment of some vegetable residues. IV. Thermal decomposition of eucalyptuswood. Cellul. Chem. Technol 45(1–2):29–42

    Google Scholar 

  28. Ay ÇÖ, Özcan AS, Erdoğan Y, Özcan A (2012) Characterization of Punicagranatum L. peels and quantitatively determination of its biosorption behavior towards lead (II) ions and Acid Blue 40. Colloids Surf, B 100:197–204. https://doi.org/10.1016/j.colsurfb.2012.05.013

    Article  Google Scholar 

  29. Vinod VTP, Sashidhar RB, Sukumar AA (2010) Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermumgossypium): a natural hydrocolloid. Colloids Surf, B 75(2):490–495. https://doi.org/10.1016/j.colsurfb.2009.09.023

    Article  Google Scholar 

  30. Yamil LDO, Georgin J, Dos Reis GS, Lima ÉC, Oliveira ML, Franco DS, Dotto GL (2020) Utilization of PacaraEarpod tree (Enterolobiumcontortisilquum) and Ironwood (Caesalpinialeiostachya) seeds as low-cost biosorbents for removal of basic fuchsin. Environ Sci Pollut Res 27(26):33307–33320. https://doi.org/10.1007/s11356-020-09471-z

    Article  Google Scholar 

  31. Samani, M. R., Toghraie, D. (2020). Using of polyaniline–polyvinyl acetate composite to remove mercury from aqueous media. International Journal of Environmental Research, 1-8.doi: https://doi.org/10.1007/s41742-020-00256-3

  32. Foletto EL, Weber CT, Bertuol DA, Mazutti MA (2013) Application of papaya seeds as a macro-/mesoporous biosorbent for the removal of large pollutant molecule from aqueous solution: equilibrium, kinetic, and mechanism studies. Sep Sci Technol 48(18):2817–2824. https://doi.org/10.1080/01496395.2013.808213

    Article  Google Scholar 

  33. Sarioglu M, Bisgin T (2010) Decolorization of Basic Red 46 and Methylene Blue by anaerobic sludge: biotic and abiotic processes. Desalin Water Treat 23(1–3):61–65. https://doi.org/10.5004/dwt.2010.1951

    Article  Google Scholar 

  34. Kavci, E. (2020). Malachite green adsorption onto modified pine cone: isotherms, kinetics and thermodynamics mechanism. Chemical Engineering Communications, 1-10.doihttps://doi.org/10.1080/00986445.2020.1715961

  35. Momčilović MZ, Onjia AE, Purenović MM, Zarubica AR, Ranđelović MS (2012) Removal of cationic dye from water by activated pine cones. J Serb Chem Soc 77(6):761–774. https://doi.org/10.2298/JSC110517162M

    Article  Google Scholar 

  36. Boehm HP, Diehl E, Heck W, Sappok R (1964) Surface oxides of carbon. Angew. Chem. Int. Ed 3(10):669–677. https://doi.org/10.1002/anie.196406691

    Article  Google Scholar 

  37. Boehm, H. P. (1966). Chemical identification of surface groups. In Advances in catalysis (Vol. 16, pp. 179-274). Academic Press.doi: https://doi.org/10.1016/S0360-0564(08)60354-5https://doi.org/10.1016/S0360-0564(08)60354-5

  38. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769. https://doi.org/10.1016/0008-6223(94)90031-0

    Article  Google Scholar 

  39. Nandi BK, Goswami A, Purkait MK (2009) Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Appl Clay Sci 42(3–4):583–590. https://doi.org/10.1016/j.clay.2008.03.015

    Article  Google Scholar 

  40. Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53(1):97–110. https://doi.org/10.1016/j.seppur.2006.06.018

    Article  Google Scholar 

  41. Stavrinou A, Aggelopoulos CA, Tsakiroglou CD (2018) Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: adsorption kinetics and equilibrium isotherms as a tool. J Environ Chem Eng 6(6):6958–6970. https://doi.org/10.1016/j.jece.2018.10.063

    Article  Google Scholar 

  42. Cardoso NF, Pinto RB, Lima EC, Calvete T, Amavisca CV, Royer B, Pinto IS (2011) Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination 269(1–3):92–103. https://doi.org/10.1016/j.desal.2010.10.047

    Article  Google Scholar 

  43. Shah I, Adnan R, Ngah WSW, Mohamed N (2015) Iron impregnated activated carbon as an efficient adsorbent for the removal of methylene blue: regeneration and kinetics studies. PLoS ONE 10(4):e0122603. https://doi.org/10.1371/journal.pone.0122603

    Article  Google Scholar 

  44. Deniz F, Saygideger SD (2011) Removal of a hazardous azo dye (Basic Red 46) from aqueous solution by princess tree leaf. Desalination 268(1–3):6–11. https://doi.org/10.1016/j.desal.2010.09.043

    Article  Google Scholar 

  45. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  46. Freundlich H, Helle W (1939) On adsorption in solution. J Am Chem Soc 61:2228–2230. https://doi.org/10.1021/ja01877a071

    Article  Google Scholar 

  47. Temkin MI (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochimica. U.R.S.S 12:327–356

    Google Scholar 

  48. Graba Z, Hamoudi S, Bekka D, Bezzi N, Boukherroub R (2015) Influence of adsorption parameters of basic red dye 46 by the rough and treated Algerian natural phosphates. J Ind Eng Chem 25:229–238. https://doi.org/10.1016/j.jiec.2014.10.039

    Article  Google Scholar 

  49. Senturk HB, Ozdes D, Duran C (2010) Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunusdulcis) as a low cost biosorbent. Desalination 252(1–3):81–87. https://doi.org/10.1016/j.desal.2009.10.021

    Article  Google Scholar 

  50. Lagergren, S. About the theory of so-called adsorption of soluble substances.Sven.Vetenskapsakad.Handingarl, (1898). 24, 1–39.

  51. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  52. Weng CH, Pan YF (2007) Adsorption of a cationic dye (methylene blue) onto spent activated clay. J Hazard Mater 144(1–2):355–362. https://doi.org/10.1016/j.jhazmat.2006.09.09

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I. Akkari conducted the research designed and drafted the manuscript text. Z. Graba and N. Bezzi designed the research procedures. F. Ait Merzeg and N. Bait realized some characterization experiments. A. Ferhati rewrote and drafted the manuscript.

Corresponding authors

Correspondence to Imane Akkari or Azedine Ferhati.

Ethics declarations

Competing of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 489 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkari, I., Graba, Z., Bezzi, N. et al. Raw pomegranate peel as promise efficient biosorbent for the removal of Basic Red 46 dye: equilibrium, kinetic, and thermodynamic studies. Biomass Conv. Bioref. 13, 8047–8060 (2023). https://doi.org/10.1007/s13399-021-01620-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01620-9

Keywords

Navigation