Skip to main content
Log in

BTX Removal from Aqueous Solution Using Copper- and Nickel-Modified Zeolite 4A: Kinetic, Thermodynamic, and Equilibrium Studies

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

The purpose of the present study is to investigate the ability of zeolite 4A adsorbent modified with nanoparticles of copper and nickel to remove benzene, toluene, and xylene (BTX) from aqueous solution. The nanoparticle-modified zeolite 4A was characterized using FTIR, XRD, BET, and BJH techniques. Also, the effect of contact time, adsorbent dosage, solution temperature, and pH on the removal of BTX from aqueous solutions was investigated. Results revealed that the specific surface area for zeolite 4A increased from 0.69296 to 2.7735 m2/g and 2.6681 m2/g by modification of zeolite with copper and nickel nanoparticles, respectively. The BTX removal increased by modification of zeolite 4A with copper and nickel nanoparticles, while the removal efficiency using nickel nanoparticle–modified zeolite was more than copper nanoparticle–modified zeolite. Also, with the increase of time, adsorbent dosage, and pH and decrease of temperature, BTX removal increased. The optimal values for the contact time, adsorbent dosage, pH, and temperature were 75 min, 5 g, 10, and 25 °C, respectively. The adsorption kinetic results showed BTX adsorption using modified zeolite is followed by the pseudo-second-order model. The experimental results were best fitted with the Freundlich isotherm model. The thermodynamic results indicate that the BTX adsorption using modified zeolite is exothermic and thermodynamically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Aziz HM, Farag RS, Abdel-Gawad SA (2019) Carbamazepine removal from aqueous solution by green synthesis zero-valent iron/Cu nanoparticles with Ficus benjamina leaves’ extract. Int J Environ Res 13(5):843–852 https://link.springer.com/article/10.1007/s41742-019-00220-w

    Article  CAS  Google Scholar 

  2. Agrawal A, Sahu KK (2006) Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J Hazard Mater 137(2):915–924. https://doi.org/10.1016/j.jhazmat.2006.03.039

    Article  CAS  Google Scholar 

  3. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  CAS  Google Scholar 

  4. Aivalioti M, Vamvasakis I, Gidarakos E (2010) BTEX and MTBE adsorption onto raw and thermally modified diatomite. J Hazard Mater 178(1–3):136–143. https://doi.org/10.1016/j.jhazmat.2010.01.053

    Article  CAS  Google Scholar 

  5. Aly OM, Faust SD (1964) Herbicides in surface waters, studies on fate of 2, 4-D and ester derivatives in natural surface waters. J Agric Food Chem 12(6):541–546. https://doi.org/10.1021/jf60136a016

    Article  CAS  Google Scholar 

  6. Ansari R, Mosayebzadeh Z (2010) Removal of basic dye methylene blue from aqueous solutions using sawdust and sawdust coated with polypyrrole. J Iran Chem Soc 7(2):339–350. https://doi.org/10.1007/BF03246019

    Article  CAS  Google Scholar 

  7. Baile P, Fernández E, Vidal L, Canals A (2019) Zeolites and zeolite-based materials in extraction and microextraction techniques. Analyst 144(2):366–387. https://doi.org/10.1039/C8AN01194J

    Article  CAS  Google Scholar 

  8. Banerjee S, Chattopadhyaya MC, Srivastava V, Sharma YC (2014) Adsorption studies of methylene blue onto activated saw dust: kinetics, equilibrium, and thermodynamic studies. Environ Prog Sustain Energy 33(3):790–799. https://doi.org/10.1002/ep.11840

    Article  CAS  Google Scholar 

  9. Bardhan G, Russo D, Goldstein D, Levy GJ (2016) Changes in the hydraulic properties of a clay soil under long-term irrigation with treated wastewater. Geoderma 264:1–9. https://doi.org/10.1016/j.geoderma.2015.10.004

    Article  CAS  Google Scholar 

  10. Bhatnagar A, Minocha AK, Sillanpää M (2010) Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J 48(2):181–186. https://doi.org/10.1016/j.bej.2009.10.005

    Article  CAS  Google Scholar 

  11. Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interf Sci 140(2):114–131. https://doi.org/10.1016/j.cis.2007.12.008

    Article  CAS  Google Scholar 

  12. Cabrera-Lafaurie WA, Román FR, Hernández-Maldonado AJ (2014) Removal of salicylic acid and carbamazepine from aqueous solution with Y-zeolites modified with extraframework transition metal and surfactant cations: equilibrium and fixed-bed adsorption. J Environ Chem Eng 2(2):899–906. https://doi.org/10.1016/j.jece.2014.02.008

    Article  CAS  Google Scholar 

  13. Cálix EM, Tan LC, Rene ER, Nancharaiah YV, Van Hullebusch ED, Lens PN (2019) Simultaneous removal of sulfate and selenate from wastewater by process integration of an ion exchange column and upflow anaerobic sludge blanket bioreactor. Sep Sci Technol 54(8):1387–1399. https://doi.org/10.1080/01496395.2018.1533562

    Article  CAS  Google Scholar 

  14. Carmody O, Frost R, Xi Y, Kokot S (2007) Adsorption of hydrocarbons on organo-clays—implications for oil spill remediation. J Colloid Interface Sci 305(1):17–24. https://doi.org/10.1016/j.jcis.2006.09.032

    Article  CAS  Google Scholar 

  15. Chen L, Liu F, Liu Y, Dong H, Colberg PJ (2011) Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier. J Hazard Mater 188(1–3):110–115. https://doi.org/10.1016/j.jhazmat.2011.01.076

    Article  CAS  Google Scholar 

  16. Dada A, Olalekan A, Olatunya A, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3(1):38–45. https://doi.org/10.9790/5736-0313845

    Article  CAS  Google Scholar 

  17. Daifullah A, Girgis B (2003) Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf A Physicochem Eng Asp 214(1–3):181–193. https://doi.org/10.1016/S0927-7757(02)00392-8

    Article  CAS  Google Scholar 

  18. Faghihian H, Moayed M, Firooz A, Iravani M (2013) Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies. J Colloid Interface Sci 393:445–451. https://doi.org/10.1016/j.jcis.2012.11.010

    Article  CAS  Google Scholar 

  19. Faulconer EK, von Reitzenstein NVH, Mazyck DW (2012) Optimization of magnetic powdered activated carbon for aqueous Hg (II) removal and magnetic recovery. J Hazard Mater 199-200:9–14. https://doi.org/10.1016/j.jhazmat.2011.10.023

    Article  CAS  Google Scholar 

  20. Friend C, Muetterties E (1981) Coordination chemistry of metal surfaces. 3. Benzene and toluene interactions with nickel surfaces. J Am Chem Soc 103(4):773–779. https://doi.org/10.1021/ja00394a008

    Article  CAS  Google Scholar 

  21. García-Peña I, Ortiz I, Hernández S, Revah S (2008) Biofiltration of BTEX by the fungus Paecilomyces variotii. Int Biodeterior Biodegradation 62(4):442–447. https://doi.org/10.1016/j.ibiod.2008.03.012

    Article  CAS  Google Scholar 

  22. Ghadiri, S. K., Nabizadeh, R., Mahvi, A. H., Naseri, S., Kazemian, H., Mesdaghinia, A. R., & Nazmara, S. (2010). Methyl tert-butyl ether adsorption on surfactant modified natural zeolites.

  23. Ghazi-Khansari M, Zendehdel R, Pirali-Hamedani M, Amini M (2006) Determination of morphine in the plasma of addicts in using zeolite Y extraction following high-performance liquid chromatography. Clin Chim Acta 364(1–2):235–238. https://doi.org/10.1016/j.cccn.2005.07.002

    Article  CAS  Google Scholar 

  24. Guelli Ulson de Souza SMA, da Luz AD, da Silva A, Ulson de Souza AA (2012) Removal of mono-and multicomponent BTX compounds from effluents using activated carbon from coconut shell as the adsorbent. Ind Eng Chem Res 51(18):6461–6469. https://doi.org/10.1021/ie2026772

    Article  CAS  Google Scholar 

  25. Hashemi MSH, Eslami F, Karimzadeh R (2019) Organic contaminants removal from industrial wastewater by CTAB treated synthetic zeolite Y. J Environ Manag 233:785–792. https://doi.org/10.1016/j.jenvman.2018.10.003

    Article  CAS  Google Scholar 

  26. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70(2):115–124. https://doi.org/10.1016/S0923-0467(98)00076-1

    Article  CAS  Google Scholar 

  27. Jodeh S, Ahmad R, Suleiman M, Radi S, Emran KM, Salghi R, Hadda TB (2015) Kinetics, thermodynamics and adsorption of BTX removal from aqueous solution via date-palm pits carbonization using SPME/GC-MS. J Mater Environ Sci 6(10):2853–2870 Doi: 10.1.1.718.5183

    CAS  Google Scholar 

  28. Kang J, Cheng K, Zhang L, Zhang Q, Ding J, Hua W, Wang Y (2011) Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer–Tropsch catalysts for the production of C5–C11 isoparaffins. Angew Chem Int Ed 50(22):5200–5203. https://doi.org/10.1002/anie.201101095

    Article  CAS  Google Scholar 

  29. Kumar KV (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater 137(3):1538–1544. https://doi.org/10.1016/j.jhazmat.2006.04.036

    Article  CAS  Google Scholar 

  30. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I Solids J Am Chem Soc 38(11):2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  31. Li Y-H, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41(5):1057–1062. https://doi.org/10.1016/S0008-6223(02)00440-2

    Article  CAS  Google Scholar 

  32. Li J, Zhan Y, Lin J, Jiang A, Xi W (2014) Removal of bisphenol A from aqueous solution using cetylpyridinium bromide (CPB)-modified natural zeolites as adsorbents. Environ Earth Sci 72(10):3969–3980 https://link.springer.com/article/10.1007/s12665-014-3286-6

    Article  CAS  Google Scholar 

  33. Lin SH, Huang CY (1999) Adsorption of BTEX from aqueous solution by macroreticular resins. J Hazard Mater 70(1–2):21–37. https://doi.org/10.1016/S0304-3894(99)00148-X

    Article  CAS  Google Scholar 

  34. Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3(3):320–324. https://doi.org/10.1007/s11783-009-0030-7

    Article  CAS  Google Scholar 

  35. Lin C-W, Chen L-H, I Y-P, Lai C-Y (2010) Microbial communities and biodegradation in lab-scale BTEX-contaminated groundwater remediation using an oxygen-releasing reactive barrier. Bioprocess Biosyst Eng 33(3):383–391. https://doi.org/10.1007/s00449-009-0336-7

    Article  CAS  Google Scholar 

  36. Machado S, Pacheco J (2016) Nanoremediation with zero-valent iron nanoparticles soil remediation. CRC Press, Boca Raton, pp 117–129

    Google Scholar 

  37. Maya F, Ghani M (2019) Ordered macro/micro-porous metal-organic framework of type ZIF-8 in a steel fiber as a sorbent for solid-phase microextraction of BTEX. Microchim Acta 186(7):425 https://link.springer.com/article/10.1007/s00604-019-3560-0

    Article  Google Scholar 

  38. Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122(1–2):161–170. https://doi.org/10.1016/j.jhazmat.2005.03.024

    Article  CAS  Google Scholar 

  39. Motsa MM, Mamba BB, Thwala JM, Msagati TA (2011) Preparation, characterization, and application of polypropylene–clinoptilolite composites for the selective adsorption of lead from aqueous media. J Colloid Interface Sci 359(1):210–219. https://doi.org/10.1016/j.jcis.2011.02.067

    Article  CAS  Google Scholar 

  40. Muir B, Wołowiec M, Bajda T, Nowak P, Czupryński P (2016) The removal of organic compounds by natural and synthetic surface-functionalized zeolites: a mini-review. Mineralogia 48(1–4):145–156. https://doi.org/10.1515/mipo-2017-0017

    Article  CAS  Google Scholar 

  41. Noroozi R, Al-Musawi TJ, Kazemian H, Kalhori EM, Zarrabi M (2018) Removal of cyanide using surface-modified Linde type-A zeolite nanoparticles as an efficient and eco-friendly material. J Water Process Eng 21:44–51. https://doi.org/10.1016/j.jwpe.2017.11.011

    Article  Google Scholar 

  42. Nourmoradi H, Nikaeen M, Khiadani M (2012) Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: equilibrium, kinetic and thermodynamic study. Chem Eng J 191:341–348. https://doi.org/10.1016/j.cej.2012.03.029

    Article  CAS  Google Scholar 

  43. Ortiz-Martínez K, Guerrero-Medina KJ, Román FR, Hernández-Maldonado AJ (2015) Transition metal modified mesoporous silica adsorbents with zero microporosity for the adsorption of contaminants of emerging concern (CECs) from aqueous solutions. Chem Eng J 264:152–164. https://doi.org/10.1016/j.cej.2014.11.068

    Article  CAS  Google Scholar 

  44. Öztürk N, Bektaş TE (2004) Nitrate removal from aqueous solution by adsorption onto various materials. J Hazard Mater 112(1–2):155–162. https://doi.org/10.1016/j.jhazmat.2004.05.001

    Article  CAS  Google Scholar 

  45. Padmesh TVN, Vijayaraghavan K, Sekaran G, Velan M (2006) Application of two-and three-parameter isotherm models: biosorption of acid red 88 onto Azolla microphylla. Bioremed J 10(1–2):37–44. https://doi.org/10.1080/10889860600842746

    Article  CAS  Google Scholar 

  46. Qiu H, Lv L, Pan B-C, Zhang Q-J, Zhang W-M, Zhang Q-X (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724. https://doi.org/10.1631/jzus.A0820524

    Article  CAS  Google Scholar 

  47. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2009) Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J Hazard Mater 170(2–3):969–977. https://doi.org/10.1016/j.jhazmat.2009.05.066

    Article  CAS  Google Scholar 

  48. Rahmani AR, Mahvi AH, Mesdaghinia AR, Nasseri S (2004) Investigation of ammonia removal from polluted waters by Clinoptilolite zeolite. Int J Environ Sci Technol 1(2):125–133. https://doi.org/10.1007/BF03325825

    Article  CAS  Google Scholar 

  49. Samarghandi MR, Al-Musawi TJ, Mohseni-Bandpi A, Zarrabi M (2015) Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J Mol Liq 211:431–441. https://doi.org/10.1016/j.molliq.2015.06.067

    Article  CAS  Google Scholar 

  50. Sarici-Ozdemir C (2012) Adsorption and desorption kinetics behaviour of methylene blue onto activated carbon. Physicochem Probl Mineral Process 48(2):441–454. https://doi.org/10.5277/ppmp120210

    Article  CAS  Google Scholar 

  51. Seifi L, Torabian A, Kazemian H, Bidhendi GN, Azimi AA, Farhadi F, Nazmara S (2011a) Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles. Water Air Soil Pollut 219(1–4):443–457 https://link.springer.com/article/10.1007/s11270-010-0719-z

    Article  CAS  Google Scholar 

  52. Seifi L, Torabian A, Kazemian H, Bidhendi GN, Azimi AA, Nazmara S, AliMohammadi M (2011b) Adsorption of BTEX on surfactant modified granulated natural zeolite nanoparticles: parameters optimizing by applying Taguchi experimental design method. Clean Soil Air Water 39(10):939–948. https://doi.org/10.1002/clen.201000390

    Article  CAS  Google Scholar 

  53. Shahri FB, Niazi A, Akrami A (2018) Application of full factorial design for removal of polycyclic aromatic dye from aqueous solution using 4A zeolite: adsorption isotherms, thermodynamic and kinetic studies. Polycycl Aromat Compd 38:141–156. https://doi.org/10.1080/10406638.2016.1173074

    Article  CAS  Google Scholar 

  54. Shakouri A, Heris SZ, Etemad SG, Mousavi SM (2016) Photocatalytic activity performance of novel cross-linked PEBAX copolymer nanocomposite on azo dye degradation. J Mol Liq 216:275–283. https://doi.org/10.1016/j.molliq.2016.01.008

    Article  CAS  Google Scholar 

  55. Sheikholeslami Z, Kebria DY, Qaderi F (2019) Investigation of photocatalytic degradation of BTEX in produced water using γ-Fe 2 O 3 nanoparticle. J Therm Anal Calorim 135(3):1617–1627 https://link.springer.com/article/10.1007/s10973-018-7381-x

    Article  CAS  Google Scholar 

  56. Simantiraki F, Gidarakos E (2015) Comparative assessment of compost and zeolite utilisation for the simultaneous removal of BTEX, Cd and Zn from the aqueous phase: batch and continuous flow study. J Environ Manag 159:218–226. https://doi.org/10.1016/j.jenvman.2015.04.043

    Article  CAS  Google Scholar 

  57. Smičiklas I, Dimović S, Plećaš I, Mitrić M (2006) Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res 40(12):2267–2274. https://doi.org/10.1016/j.watres.2006.04.031

    Article  CAS  Google Scholar 

  58. Vidal CB, Raulino GSC, Barros AL, Lima ACA, Ribeiro JP, Pires MJR, Nascimento RF (2012) BTEX removal from aqueous solutions by HDTMA-modified Y zeolite. J Environ Manag 112:178–185. https://doi.org/10.1016/j.jenvman.2012.07.026

    Article  CAS  Google Scholar 

  59. Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131(1–2):175–188. https://doi.org/10.1016/S0167-2738(00)00632-9

    Article  CAS  Google Scholar 

  60. Wilson M, Shaldybin M, Wilson L (2016) Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I. Occurrence and interpretation of mixed-layer R3 ordered illite/smectite. Earth Sci Rev 158:31–50. https://doi.org/10.1016/j.earscirev.2016.04.004

    Article  CAS  Google Scholar 

  61. Wołowiec M, Muir B, Bajda T, Zięba K, Kijak B, Franus W (2017a) Removal of BTEX and hexane by organo-zeolites: the influence of surfactants carbon chain length on the sorption process. Desalin Water Treat 94:120–128. https://doi.org/10.5004/dwt.2017.21537

    Article  CAS  Google Scholar 

  62. Wołowiec M, Muir B, Zięba K, Bajda T, Kowalik M, Franus W (2017b) Experimental study on the removal of VOCs and PAHs by zeolites and surfactant-modified zeolites. Energy Fuel 31(8):8803–8812 https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.7b01124

    Article  Google Scholar 

  63. Wu F-C, Tseng R-L, Juang R-S (2001) Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res 35(3):613–618. https://doi.org/10.1016/S0043-1354(00)00307-9

    Article  CAS  Google Scholar 

  64. Xu R, Pang W, Yu J, Huo Q, Chen J (2007) Chemistry of zeolites and related porous materials: synthesis and structure. Wiley, Singapore, pp 345–396

    Book  Google Scholar 

  65. Youn IS, Kim DY, Singh NJ, Park SW, Youn J, Kim KS (2011) Intercalation of transition metals into stacked benzene rings: a model study of the intercalation of transition metals into bilayered graphene. J Chem Theory Comput 8(1):99–105. https://doi.org/10.1021/ct200661p

    Article  CAS  Google Scholar 

  66. Zahedniya, M., & Tabatabaei, Z. G. (2018). Investigation of BTEX Removal from Aqueous Solution by Single Wall Carbon Nanotubes Coated with ZnO. Journal of Water and Wastewater, 29(2). https://doi.org/10.22093/wwj.2017.62042.2252

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Mamaghanifar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamaghanifar, Z., Heydarinasab, A., Ghadi, A. et al. BTX Removal from Aqueous Solution Using Copper- and Nickel-Modified Zeolite 4A: Kinetic, Thermodynamic, and Equilibrium Studies. Water Conserv Sci Eng 5, 1–13 (2020). https://doi.org/10.1007/s41101-019-00079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-019-00079-0

Keywords

Navigation