Skip to main content

Advertisement

Log in

Kinetic Study of BTEX Removal Using Granulated Surfactant-Modified Natural Zeolites Nanoparticles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Increasing release of organic pollutants to the environment has caused one of the largest world crises for water resources. Volatile organic compounds are toxic monoaromatic pollutants of soil and water. In this research, natural zeolite nanoparticles were produced mechanically by means of a milling technique, modified using two cationic surfactants of hexadecyltrimethylammonium chloride and n-cetyl pyridinium bromide and formed as granules using a novel technique already developed by our group. The granulated adsorbents were used to uptake benzene, toluene, ethylbenzene, and xylenes (BTEX) from contaminated water. Two intra-particle diffusion models (i.e., Weber and Morris and Vermeulen models) and three surface reaction models (i.e., pseudo-first order, pseudo-second order, and Elovich) were applied to evaluate the kinetics of adsorption and the best fitted model was chosen. Results of the adsorption kinetic evaluations were shown that uptake of granulated nanozeolites are higher than natural zeolites (in the order of four). Kinetic results revealed that the adsorption follows a pseudo-second order indicating existence of chemisorption in the studied conditions. It was noticed that the intra-particle diffusion is prevailing in the first stage of adsorption for a relatively short time (i.e., first 25 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abramian, L., & El-Rassy, H. (2009). Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chemical Engineering Journal, 150, 403–410.

    Article  CAS  Google Scholar 

  • Accay, K., Sirkecioglu, A., Tather, M., Savasci, O. T., & Erdem-Senatalar, A. (2004). Wet ball milling of zeolite HY. Powder Technology, 142, 121.

    Article  Google Scholar 

  • Azizian, S. (2004). Kinetic models of sorption: A theoretical analysis. Journal of Colloid and Interface Science, 276, 47–52.

    Article  CAS  Google Scholar 

  • Bowman, R. S., et al. (2001). In J. A. Smith & S. Burns (Eds.), Physical and Chemical Remediation of Contaminated Aquifers (p. 161). New York: Kluwer Academic.

    Google Scholar 

  • Breck, D. W. (1974). Zeolite Molecular Sieves. New York: Wiley.

    Google Scholar 

  • Charkhi, A., Kazemeini, M., Kazemian, H., & Ahmadi, S. J. (2010a). Granulation of nano zeolites utilizing sodium alginate as an external template, Iran international zeolite conference, IIZC2010, April 29–30, Tehran, Iran.

  • Charkhi, A., Kazemian, H., & Kazemeini, M. (2010). Experimental design optimized ball milling of natural clinoptilolite zeolite for production of nano powders. Powder Technology, 203, 389–396.

    Article  CAS  Google Scholar 

  • Cook, D., Newcombe, G., & Sztajnbok, P. (2001). The application of PAC for MIB and Geosmin removal: Predicting PAC doses in four raw waters. Water Research, 35, 1325–1333.

    Article  CAS  Google Scholar 

  • Farhad, N., et al. (2000). Detection and remediation of soil and aquifer systems contaminated with petroleum products: An overview. Journal of Petroleum Science and Engineering, 26, 169–178.

    Article  Google Scholar 

  • Ghiaci, M., Abbaspour, A., Kia, R., & Seyedeyn-Azad, F. (2004). Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41. Separation and Purification Technology, 40, 217–229.

    Article  CAS  Google Scholar 

  • Haggerty, G. M., & Bowman, R. S. (1994). Sorption of chromate and other inorganic anions by organo-zeolite. Environmental Science & Technology, 28, 452–458.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). The kinetics of sorption of basic dyes from aqueous solutions by sphagnum moss peat. Canadian Journal of Chemical Engineering, 76, 822–826.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Hornig, G., Northcott, K., Snape, I., & Stevens, G. (2008). Assessment of sorbent materials for treatment of hydrocarbon contaminated groundwater in cold regions. Cold Regions Science and Technology, 53, 83–91.

    Article  Google Scholar 

  • Karapanagioti, H. K., Sabatini, D. A., & Bowman, R. S. (2005). Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactant-modified sorbents. Water Research, 39, 699–709.

    Article  CAS  Google Scholar 

  • Kharitonov, A. S., Fenelonov, V. B., Voskresenskaya, T. P., Rudina, N. A., Molchanov, V. V., Plyasova, L. M., et al. (1995). Mechanism of FeZSM-5 milling and its effect on the catalytic performance in benzene to phenol oxidation. Zeolites, 15, 253.

    Article  CAS  Google Scholar 

  • Koh, S. M., & Dixon, J. B. (2001). Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene. Applied Clay Science, 18, 111–122.

    Article  CAS  Google Scholar 

  • Kosanovic, C., Bronic, J., Cizmek, A., Subotic, B., Smit, I., Stubicar, M., et al. (1995). Mechanochemistry of zeolites: Part 2. Change in particulate properties of zeolites during ball milling. Zeolites, 15, 247.

    Article  CAS  Google Scholar 

  • Kosanovic, C., Subotic, B., & Cizmek, A. (1996). Thermal analysis of cation exchanged zeolites before and after their amorphization by ball milling. Thermochimica Acta, 276, 91.

    Article  CAS  Google Scholar 

  • Marcussen, E. (1993). Encapsulation and Controlled Release. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Mardini, F. A., & Legube, B. (2009). Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon Part 2: Kinetic parameters. Journal of Hazardous Materials, 170, 754–762.

    Article  Google Scholar 

  • McKay, G. (1998). Application of surface diffusion model to the adsorption of dyes on bagasse pith. Adsorpt, 4, 361–372.

    Article  CAS  Google Scholar 

  • Ozacar, M., & Sengil, I. A. (2005). A kinetic study of metal complex dye sorption onto pine sawdust. Process Biochemistry, 40, 565–572.

    Article  CAS  Google Scholar 

  • Schulze-Makuch, D., et al. (2002). Surfactant-modified zeolite can protect drinking water wells from viruses and bacteria. EOS Trans AGU, 83(18), 193.

    Article  Google Scholar 

  • Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., & Charkhi, A. (2010). Adsorption of petroleum monoaromatics from aqueous solutions using granulated surface modified natural nanozeolites: systematic study of equilibrium isotherms, Water Air Soil Pollution. doi:10.1007/s11270-010-0614-7.

  • Stankovic, J., & Kazemian, H. (2000). Clinoptilolite from zeolite deposits Semnan, Meyaneh and Firouzkooh in Iran. Mineral, 7, 31–32 (in Slovak).

    Google Scholar 

  • Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164, 473–482.

    Article  CAS  Google Scholar 

  • Torabian, A., Kazemian, H., Seifi, L., Bidhendi, G. N., Azimi, A. A., & Ghadiri, S. K. (2010). Removal of petroleum aromatics hydrocarbons by surfactant-modified natural zeolite: The effect of surfactant. Clean Soil Air Water, 38, 77–83.

    Article  CAS  Google Scholar 

  • Tseng, R. L. (2006). Mesopore control of high surface area NaOH-activated carbon. Journal of Colloid and Interface Science, 303, 494–502.

    Article  CAS  Google Scholar 

  • Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2008). Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials. Chemical Engineering Journal, 148, 354–364.

    Article  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–60.

    Google Scholar 

  • Wu, F. C., Tseng, R. L., & Juang, R. S. (2005). Comparisons of porous and adsorption properties of carbons activated by steam and KOH. Journal of Colloid and Interface Science, 283, 49–56.

    Article  CAS  Google Scholar 

  • Xie, J., & Kaliaguine, S. (1997). Zeolite ball milling as a means of enhancing the selectivity for base catalyzed reactions. Applied Catalysis A, 148, 415.

    Article  CAS  Google Scholar 

  • Zielinski, P. A., van Neste, A., & Akolekar, D. B. (1995). Effect of high-energy ball milling on the structural stability, surface and catalytic properties of small-, medium- and large-pore zeolites. Microporous Materials, 5, 123.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Iranian Oil Production and Distribution Company (NIOPDC) for financial support of this study. Dr. A. Charkhi from Sharif University of technology and the SPAG zeolite group are also acknowledged for fruitful scientific discussion and technical support. The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Kazemian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifi, L., Torabian, A., Kazemian, H. et al. Kinetic Study of BTEX Removal Using Granulated Surfactant-Modified Natural Zeolites Nanoparticles. Water Air Soil Pollut 219, 443–457 (2011). https://doi.org/10.1007/s11270-010-0719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0719-z

Keywords

Navigation