Skip to main content
Log in

Ordered macro/micro-porous metal-organic framework of type ZIF-8 in a steel fiber as a sorbent for solid-phase microextraction of BTEX

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ordered array of macropores on microporous metal-organic framework crystals was developed. This array facilitates analyte diffusion in microextraction applications. A prototypical zeolitic imidazolate framework (ZIF-8) was synthesized in the interstitial voids of a polystyrene bead packing of sub-μm polystyrene beads. After removal of polystyrene by dimethylformamide, a single-crystal ordered macroporous ZIF-8 material (SOM-ZIF-8) was obtained. The resulting μm-sized SOM-ZIF-8 crystals are based on a fully-microporous structure containing a macroporous network. The SOM-ZIF-8 crystals were placed in a stainless-steel fiber and applied as a sorbent for the extraction of benzene, toluene, ethylbenzene, and xylenes (BTEX) by headspace solid-phase microextraction (HS-SPME). The fiber was applied to the HS-SPME of BTEX from wastewater samples followed by GC with flame ionization detection. A Plackett-Burman design and Box-Behnken design were carried out to evaluate the variables affecting the method. Figures of merit include (a) limits of detection of 1.0–12 ng·L−1, (b) linear ranges of 0.004–50 μg·L−1, (c) relative standard deviations of 4.6–6.7%, and (d) excellent fiber-to-fiber reproducibility (5.6–6.7% for n = 3). Spiking recoveries between 92 and 106% were obtained for BTEX analysis in wastewater samples. The introduction of an ordered macroporous network on microporous ZIF-8 crystals enhanced analyte uptake. This increases the extraction performance by a factor of 2.5–3.1 when compared to analogous ZIF-8 crystals that lack templated macropores.

BTEX extraction is enhanced by templating an ordered macroporous network in microporous crystals as exemplified with the single-crystal ordered macropore zeolitic imidazolate framework-8 (SOM-ZIF-8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148. https://doi.org/10.1021/ac00218a019

    Article  CAS  Google Scholar 

  2. Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J (2018) Advances in solid phase microextraction and perspective on future directions. Anal Chem 90:302–360. https://doi.org/10.1021/acs.analchem.7b04502

    Article  CAS  PubMed  Google Scholar 

  3. Xu C-H, Chen G-S, Xiong Z-H, Fan YX, Wang XC, Liu Y (2016) Applications of solid-phase microextraction in food analysis. Trends Anal Chem 80:12–29. https://doi.org/10.1016/j.trac.2016.02.022

    Article  CAS  Google Scholar 

  4. Piri-Moghadam H, Ahmadi F, Pawliszyn J (2016) A critical review of solid phase microextraction for analysis of water samples. Trends Anal Chem 85:133–143. https://doi.org/10.1016/j.trac.2016.05.029

    Article  CAS  Google Scholar 

  5. Bojko B, Reyes-Garcés N, Bessonneau V, Goryński K, Mousavi F, Souza Silva EA, Pawliszyn J (2014) Solid-phase microextraction in metabolomics. Trends Anal Chem 61:168–180. https://doi.org/10.1016/j.trac.2014.07.005

    Article  CAS  Google Scholar 

  6. Zheng J, Huang J, Yang Q, Ni C, Xie X, Shi Y, Sun J, Zhu F, Ouyang G (2018) Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. Trends Anal Chem 108:135–153. https://doi.org/10.1016/j.trac.2018.08.021

    Article  CAS  Google Scholar 

  7. Ghiasvand A, Dowlatshah S, Nouraei N, Heidari N, Yazdankhah F (2015) A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey. J Chromatogr A 1406:87–93. https://doi.org/10.1016/j.chroma.2015.06.052

    Article  CAS  PubMed  Google Scholar 

  8. Feng J, Wang X, Tian Y, Bu Y, Luo C, Sun M (2017) Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction. J Chromatogr A 1517:209–214. https://doi.org/10.1016/j.chroma.2017.07.086

    Article  CAS  PubMed  Google Scholar 

  9. Rocío-Bautista P, Pacheco-Fernández I, Pasán J, Pino V (2016) Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? – A review. Anal Chim Acta 939:26–41. https://doi.org/10.1016/j.aca.2016.07.047

    Article  CAS  Google Scholar 

  10. Tian Y, Feng J, Wang X, Luo C, Sun M (2019) Ionic liquid-functionalized silica aerogel as coating for solid-phase microextraction. J Chromatogr A 1583:48–54. https://doi.org/10.1016/j.chroma.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  11. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444–1230457. https://doi.org/10.1126/science.1230444

    Article  CAS  PubMed  Google Scholar 

  12. Gu Z-Y, Yang C-X, Chang N, Yan X-P (2012) Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745. https://doi.org/10.1021/ar2002599

    Article  CAS  PubMed  Google Scholar 

  13. Rocío-Bautista P, González-Hernández P, Pino V, Pasán J, Afonso AM (2017) Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. Trends Anal Chem 90:114–134. https://doi.org/10.1016/j.trac.2017.03.002

    Article  CAS  Google Scholar 

  14. Wang X, Ma X, Wang H, Huang P, du X, Lu X (2017) A zinc(II) benzenetricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides. Microchim Acta 184:3681–3687. https://doi.org/10.1007/s00604-017-2382-1

    Article  CAS  Google Scholar 

  15. Rocío-Bautista P, Pino V, Pasán J, López-Hernández I, Ayala JH, Ruiz-Pérez C, Afonso AM (2018) Insights in the analytical performance of neat metal-organic frameworks in the determination of pollutants of different nature from waters using dispersive miniaturized solid-phase extraction and liquid chromatography. Talanta 179:775–783. https://doi.org/10.1016/j.talanta.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  16. Rocío-Bautista P, Pino V, Ayala JH, Pasán J, Ruiz-Pérez C, Afonso AM (2016) A magnetic-based dispersive micro-solid-phase extraction method using the metal-organic framework HKUST-1 and ultra-high-performance liquid chromatography with fluorescence detection for determining polycyclic aromatic hydrocarbons in waters and fruit tea. J Chromatogr A 1436:42–50. https://doi.org/10.1016/j.chroma.2016.01.067

    Article  CAS  PubMed  Google Scholar 

  17. He X, Yang W, Li S, Liu Y, Hu B, Wang T, Hou X (2018) An amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101(Cr) for extraction of pyrethroids coupled with GC-ECD. Microchim Acta 185:125. https://doi.org/10.1007/s00604-018-2672-2

    Article  CAS  Google Scholar 

  18. Ge D, Lee HK (2011) Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1218:8490–8495. https://doi.org/10.1016/j.chroma.2011.09.077

    Article  CAS  PubMed  Google Scholar 

  19. Maya F, Cabello CP, Figuerola A et al (2019) Immobilization of metal–organic frameworks on supports for sample preparation and chromatographic separation. Chromatographia 82:361–375. https://doi.org/10.1007/s10337-018-3616-z

    Article  CAS  Google Scholar 

  20. del Rio M, Cabello CP, Gonzalez V et al (2016) Metal oxide assisted preparation of core–shell beads with dense metal–organic framework coatings for the enhanced extraction of organic pollutants. Chem Eur J 22:11770–11777. https://doi.org/10.1002/chem.201601329

    Article  CAS  PubMed  Google Scholar 

  21. Darder MM, Salehinia S, Parra JB et al (2017) Nanoparticle-directed metal–organic framework/porous organic polymer monolithic supports for flow-based applications. ACS Appl Mater Interfaces 9:1728–1736. https://doi.org/10.1021/acsami.6b10999

    Article  CAS  PubMed  Google Scholar 

  22. Ghani M, Picó MFF, Salehinia S et al (2017) Metal-organic framework mixed-matrix disks: versatile supports for automated solid-phase extraction prior to chromatographic separation. J Chromatogr A 1488:1–9. https://doi.org/10.1016/j.chroma.2017.01.069

    Article  CAS  PubMed  Google Scholar 

  23. Ghani M, Ghoreishi SM, Azamati M (2018) In-situ growth of zeolitic imidazole framework-67 on nanoporous anodized aluminum bar as stir-bar sorptive extraction sorbent for determining caffeine. J Chromatogr A 1577:15–23. https://doi.org/10.1016/j.chroma.2018.09.049

    Article  CAS  PubMed  Google Scholar 

  24. Lan H, Rönkkö T, Parshintsev J, Hartonen K, Gan N, Sakeye M, Sarfraz J, Riekkola ML (2017) Modified zeolitic imidazolate framework-8 as solid-phase microextraction arrow coating for sampling of amines in wastewater and food samples followed by gas chromatography-mass spectrometry. J Chromatogr A 1486:76–85. https://doi.org/10.1016/j.chroma.2016.10.081

    Article  CAS  Google Scholar 

  25. Li J, Liu Y, Su H, Elaine Wong YL, Chen X, Dominic Chan TW, Chen Q (2017) In situ hydrothermal growth of a zirconium-based porphyrinic metal-organic framework on stainless steel fibers for solid-phase microextraction of nitrated polycyclic aromatic hydrocarbons. Microchim Acta 184:3809–3815. https://doi.org/10.1007/s00604-017-2403-0

    Article  CAS  Google Scholar 

  26. Yu L-Q, Wang L-Y, Su F-H, Hao PY, Wang H, Lv YK (2018) A gate-opening controlled metal-organic framework for selective solid-phase microextraction of aldehydes from exhaled breath of lung cancer patients. Microchim Acta 185:307. https://doi.org/10.1007/s00604-018-2843-1

    Article  CAS  Google Scholar 

  27. Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852. https://doi.org/10.1021/ac00062a008

    Article  CAS  Google Scholar 

  28. Xie L, Liu S, Han Z, Jiang R, Liu H, Zhu F, Zeng F, Su C, Ouyang G (2015) Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. Anal Chim Acta 853:303–310. https://doi.org/10.1016/j.aca.2014.09.048

    Article  CAS  PubMed  Google Scholar 

  29. Ghani M, Masoum S, Ghoreishi SM, Cerdà V, Maya F (2018) Nanoparticle-templated hierarchically porous polymer/zeolitic imidazolate framework as a solid-phase microextraction coatings. J Chromatogr A 1567:55–63. https://doi.org/10.1016/j.chroma.2018.06.059

    Article  CAS  PubMed  Google Scholar 

  30. Wang G, Lei Y, Song H (2015) Exploration of metal-organic framework MOF-177 coated fibers for headspace solid-phase microextraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Talanta 144:369–374. https://doi.org/10.1016/j.talanta.2015.06.058

    Article  CAS  PubMed  Google Scholar 

  31. Lv F, Gan N, Huang J, Hu F, Cao Y, Zhou Y, Dong Y, Zhang L, Jiang S (2017) A poly-dopamine based metal-organic framework coating of the type PDA-MIL-53(Fe) for ultrasound-assisted solid-phase microextraction of polychlorinated biphenyls prior to their determination by GC-MS. Microchim Acta 184:2561–2568. https://doi.org/10.1007/s00604-017-2208-1

    Article  CAS  Google Scholar 

  32. Liu M, Liu J, Guo C, Li Y (2019) Metal azolate framework-66-coated fiber for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. J Chromatogr A 1584:57–63. https://doi.org/10.1016/j.chroma.2018.11.043

    Article  CAS  PubMed  Google Scholar 

  33. Shang H-B, Yang C-X, Yan X-P (2014) Metal–organic framework UiO-66 coated stainless steel fiber for solid-phase microextraction of phenols in water samples. J Chromatogr A 1357:165–171. https://doi.org/10.1016/j.chroma.2014.05.027

    Article  CAS  PubMed  Google Scholar 

  34. Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y, Chen B (2018) Ordered macro-microporous metal-organic framework single crystals. Science 359:206–210. https://doi.org/10.1126/science.aao3403

    Article  CAS  PubMed  Google Scholar 

  35. Park KS, Ni Z, Côté AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191. https://doi.org/10.1073/pnas.0602439103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of this project by University of Mazandaran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Maya.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maya, F., Ghani, M. Ordered macro/micro-porous metal-organic framework of type ZIF-8 in a steel fiber as a sorbent for solid-phase microextraction of BTEX. Microchim Acta 186, 425 (2019). https://doi.org/10.1007/s00604-019-3560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3560-0

Keywords

Navigation