Skip to main content
Log in

Advancing CO2 separation: exploring the potential of additive manufacturing in membrane technology

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive review of the transformative impact of additive manufacturing on the fabrication of gas separation membranes, specifically focusing on its application in carbon dioxide separation. Additive manufacturing allows for the creation of complex geometries, such as triply periodic minimal surfaces, at a lower cost without the need for additional tooling. The exploration extends to the realm of four-dimensional printing, enabling dynamic alterations in membrane configurations in response to external stimuli, leading to the development of self-healing and self-assembling membranes. The review systematically examines the potential of additive manufacturing in carbon dioxide separation, emphasizing the utilization of triply periodic minimal surfaces in membrane modules. A detailed summary of compatible materials essential for successful additive manufacturing is provided. The gas transport mechanism in these membranes is discussed, highlighting the technology's potential to enhance carbon dioxide separation. Additionally, surface modification methods relevant to additive manufacturing are reviewed, addressing climate change concerns by improving carbon dioxide separation performance. In conclusion, this paper underscores the considerable advancements and environmental implications of additive manufacturing in membrane technology, offering a sustainable approach to gas separation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref. [44]

Fig. 3

Adapted from Ref. [49]

Fig. 4

Adapted from Ref. [47]

Similar content being viewed by others

Data availability

This review paper does not contain any primary data as it is a synthesis of existing literature and research findings. All information presented in this review is based on publicly available data from previously published studies, reports, and other scholarly sources.

References

  1. Barghi H (2014) Functionalization of synthetic polymers for membrane bioreactors: Chalmers Tekniska Hogskola (Sweden)

  2. Bastani D, Esmaeili N, Asadollahi M (2013) Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review. J Ind Eng Chem 19(2):375–393

    Article  Google Scholar 

  3. He X (2018) A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries. Energy Sustain Soc 8(1):34

    Article  Google Scholar 

  4. Mustafa J, Farhan M, Hussain M (2016) CO2 separation from flue gases using different types of membranes. J Membr Sci Technol 6:153–159

    Google Scholar 

  5. Labreche Y (2016) Functionalized polymeric membranes for CO2 capture. J Membr Sci Res 2(2):59–65

    Google Scholar 

  6. Lai LS, Jusoh N, Tay WH, Yeong YF, Kiew PL (2022) Rapid prototyping for the formulation of monolith and membrane for CO2 removal. Sep Purif Rev 51(4):503–520

    Article  Google Scholar 

  7. Sharma I, Friedrich D, Golden T, Brandani S (2020) Monolithic adsorbent-based rapid-cycle vacuum pressure swing adsorption process for carbon capture from small-scale steam methane reforming. Ind Eng Chem Res 59(15):7109–7120

    Article  Google Scholar 

  8. Bara JE, Hawkins CI, Neuberger DT, Poppell SW (2013) 3D printing for CO2 capture and chemical engineering design. Nanomater Energy 2(5):235–243

    Article  Google Scholar 

  9. Stolaroff JK, Ye C, Nguyen DT, Baker SE, Smith WL, Spadaccini CM, Aines RD (2016) Microcapsules for carbon capture from power plants

  10. Zhakeyev A, Wang P, Zhang L, Shu W, Wang H, Xuan J (2017) Additive manufacturing: unlocking the evolution of energy materials. Adv Sci 4(10):1700187

    Article  Google Scholar 

  11. Ellebracht NC, Roy P, Moore T, Gongora AE, Oyarzun DI, Stolaroff JK, Nguyen DT (2023) 3D printed triply periodic minimal surfaces as advanced structured packings for solvent-based CO 2 capture. Energy Environ Sci 16(4):1752–1762

    Article  Google Scholar 

  12. Gharaie S, Zolfagharian A, Moghadam AAA, Shukur N, Bodaghi M, Mosadegh B, Kouzani A (2023) Direct 3D printing of a two-part silicone resin to fabricate highly stretchable structures. Prog Addit Manuf. https://doi.org/10.1007/s40964-023-00421-y

    Article  Google Scholar 

  13. Subeshan B, Baddam Y, Asmatulu E (2021) Current progress of 4D-printing technology. Prog Addit Manuf 6(3):495–516

    Article  Google Scholar 

  14. Baker RW (2012) Membrane technology and applications: John Wiley & Sons

  15. Sidhikku Kandath Valappil R, Ghasem N, Al-Marzouqi M (2021) Current and future trends in polymer membrane-based gas separation technology: a comprehensive review. J Ind Eng Chem 98:103–129

    Article  Google Scholar 

  16. Ismail AF, Khulbe KC, Matsuura T (2015) Gas separation membrane materials and structures. In: Ismail AF, Chandra Khulbe K, Matsuura T (eds) Gas separation membranes: polymeric and inorganic. Springer International Publishing, Cham, pp 37–192

    Chapter  Google Scholar 

  17. Wu H, Li Q, Sheng M, Wang Z, Zhao S, Wang J, Mao S, Wang D, Guo B, Ye N, Kang G, Li M, Cao Y (2021) Membrane technology for CO2 capture: from pilot-scale investigation of two-stage plant to actual system design. J Membr Sci 624:119137

    Article  Google Scholar 

  18. Abou-Ali AM, Al-Ketan O, Lee D-W, Rowshan R, Abu Al-Rub RK (2020) Mechanical behavior of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures. Mater Des 196:109100

    Article  Google Scholar 

  19. Yan C, Hao L, Yang L, Hussein AY, Young PG, Li Z, Li Y (2021) Triply Periodic Minimal Surface Lattices Additively Manufactured by Selective Laser Melting: Academic Press

  20. Zhou H, Zhao M, Ma Z, Zhang DZ, Fu G (2020) Sheet and network based functionally graded lattice structures manufactured by selective laser melting: design, mechanical properties, and simulation. Int J Mech Sci 175:105480

    Article  Google Scholar 

  21. Maskery I, Sturm L, Aremu AO, Panesar A, Williams CB, Tuck CJ, Wildman RD, Ashcroft IA, Hague RJM (2018) Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer 152:62–71

    Article  Google Scholar 

  22. Afshar M, Anaraki AP, Montazerian H, Kadkhodapour J (2016) Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures. J Mech Behav Biomed Mater 62:481–494

    Article  Google Scholar 

  23. Yu S, Sun J, Bai J (2019) Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater Des 182:108021

    Article  Google Scholar 

  24. Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE (2011) Minimal surface scaffold designs for tissue engineering. Biomaterials 32(29):6875–6882

    Article  Google Scholar 

  25. Lee D-W, Khan KA, Abu Al-Rub RK (2017) Stiffness and yield strength of architectured foams based on the Schwarz Primitive triply periodic minimal surface. Int J Plast 95:1–20

    Article  Google Scholar 

  26. Zargarian A, Esfahanian M, Kadkhodapour J, Ziaei-Rad S, Zamani D (2019) On the fatigue behavior of additive manufactured lattice structures. Theoret Appl Fract Mech 100:225–232

    Article  Google Scholar 

  27. Ahmed A, Arya S, Gupta V, Furukawa H, Khosla A (2021) 4D printing: fundamentals, materials, applications and challenges. Polymer 228:123926

    Article  Google Scholar 

  28. Al Rashid A, Ahmed W, Khalid MY, Koç M (2021) Vat photopolymerization of polymers and polymer composites: processes and applications. Addit Manuf 47:102279

    Google Scholar 

  29. Yusuf A, Sodiq A, Giwa A, Eke J, Pikuda O, De Luca G, Di Salvo JL, Chakraborty S (2020) A review of emerging trends in membrane science and technology for sustainable water treatment. J Clean Prod 266:121867

    Article  Google Scholar 

  30. Choi J, Kwon O-C, Jo W, Lee HJ, Moon M-W (2015) 4D printing technology: a review. 3D Print Addit Manuf. 2(4):159–167

    Article  Google Scholar 

  31. Femmer T, Kuehne AJC, Torres-Rendon J, Walther A, Wessling M (2015) Print your membrane: Rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist. J Membr Sci 478:12–18

    Article  Google Scholar 

  32. Al-Ketan O, Rowshan R, Abu Al-Rub RK (2018) Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf 19:167–183

    Google Scholar 

  33. Attaran M (2017) The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horiz 60(5):677–688

    Article  Google Scholar 

  34. Bogue R (2013) 3D printing: the dawn of a new era in manufacturing? Assem Autom 33(4):307–311

    Article  Google Scholar 

  35. He C, Li Z (2020) Silicon Containing Hybrid Copolymers: John Wiley & Sons

  36. Yeo J, Koh JJ, Wang F, Li Z, He C (2020) 3D printing silicone materials and devices. In: He C, Li Z (eds) Silicon containing hybrid copolymers. Wiley, pp 239–263

    Chapter  Google Scholar 

  37. Ortiz-Acosta D, Moore T (2019) Functional 3D printed polymeric materials. Funct Mater 9:1–5

    Google Scholar 

  38. Placone JK, Engler AJ (2018) Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthcare Mater 7(8):1701161

    Article  Google Scholar 

  39. Truby RL, Lewis JA (2016) Printing soft matter in three dimensions. Nature 540(7633):371–378

    Article  Google Scholar 

  40. Gutierrez DB, Caldona EB, Yang Z, Suo X, Cheng X, Dai S, Espiritu RD, Advincula RC (2022) 3D-printed PDMS-based membranes for CO2 separation applications. MRS Commun 12(6):1174–1182

    Article  Google Scholar 

  41. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 40:395–414

    Article  Google Scholar 

  42. Low Z-X, Chua YT, Ray BM, Mattia D, Metcalfe IS, Patterson DA (2017) Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci 523:596–613

    Article  Google Scholar 

  43. Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S (2017) Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv Mater 29(15):1606000

    Article  Google Scholar 

  44. Dommati H, Ray SS, Wang J-C, Chen S-S (2019) A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Adv 9(29):16869–16883

    Article  Google Scholar 

  45. Shie M-Y, Shen Y-F, Astuti SD, Lee AK-X, Lin S-H, Dwijaksara NLB, Chen Y-W (2019) Review of polymeric materials in 4D printing biomedical applications. Polymers 11(11):1864

    Article  Google Scholar 

  46. Shan W, Chen Y, Hu M, Qin S, Liu P (2020) 4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing. Mater Res Express 7(10):105305

    Article  Google Scholar 

  47. Yu R, Yang X, Zhang Y, Zhao X, Wu X, Zhao T, Zhao Y, Huang W (2017) Three-dimensional printing of shape memory composites with epoxy-acrylate hybrid photopolymer. ACS Appl Mater Interfaces 9(2):1820–1829

    Article  Google Scholar 

  48. Invernizzi M, Turri S, Levi M, Suriano R (2018) 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. Eur Polymer J 101:169–176

    Article  Google Scholar 

  49. Zhang Y, Huang L, Song H, Ni C, Wu J, Zhao Q, Xie T (2019) 4D printing of a digital shape memory polymer with tunable high performance. ACS Appl Mater Interfaces 11(35):32408–32413

    Article  Google Scholar 

  50. Zhao T, Yu R, Li X, Cheng B, Zhang Y, Yang X, Zhao X, Zhao Y, Huang W (2018) 4D printing of shape memory polyurethane via stereolithography. Eur Polymer J 101:120–126

    Article  Google Scholar 

  51. Liska R, Schwager F, Maier C, Cano-Vives R, Stampfl J (2005) Water-soluble photopolymers for rapid prototyping of cellular materials. J Appl Polym Sci 97(6):2286–2298

    Article  Google Scholar 

  52. Patil DM, Phalak GA, Mhaske ST (2017) Design and synthesis of bio-based UV curable PU acrylate resin from itaconic acid for coating applications. Des Monomers Polym 20(1):269–282

    Article  Google Scholar 

  53. Femmer T, Kuehne AJC, Wessling M (2014) Print your own membrane: direct rapid prototyping of polydimethylsiloxane. Lab Chip 14(15):2610–2613

    Article  Google Scholar 

  54. Femmer T, Kuehne AJC, Wessling M (2015) Estimation of the structure dependent performance of 3-D rapid prototyped membranes. Chem Eng J 273:438–445

    Article  Google Scholar 

  55. Kalsoom U, Hasan CK, Tedone L, Desire C, Li F, Breadmore MC, Nesterenko PN, Paull B (2018) Low-cost passive sampling device with integrated porous membrane produced using multimaterial 3D printing. Anal Chem 90(20):12081–12089

    Article  Google Scholar 

  56. Xing R, Huang R, Qi W, Su R, He Z (2018) Three-dimensionally printed bioinspired superhydrophobic PLA membrane for oil-water separation. AIChE J 64(10):3700–3708

    Article  Google Scholar 

  57. Gao D, Wang Z, Wu Z, Guo M, Wang Y, Gao Z, Zhang P, Ito Y (2020) 3D-printing of solvent exchange deposition modeling (SEDM) for a bilayered flexible skin substitute of poly (lactide-co-glycolide) with bioorthogonally engineered EGF. Mater Sci Eng, C 112:110942

    Article  Google Scholar 

  58. Yuan S, Strobbe D, Kruth J-P, Van Puyvelde P, Van der Bruggen B (2017) Production of polyamide-12 membranes for microfiltration through selective laser sintering. J Membr Sci 525:157–162

    Article  Google Scholar 

  59. Mazinani S, Al-Shimmery A, Chew YMJ, Mattia D (2019) 3D printed fouling-resistant composite membranes. ACS Appl Mater Interfaces 11(29):26373–26383

    Article  Google Scholar 

  60. Liang Y, Zhao J, Huang Q, Hu P, Xiao C (2021) PVDF fiber membrane with ordered porous structure via 3D printing near field electrospinning. J Membr Sci 618:118709

    Article  Google Scholar 

  61. Qian X, Ostwal M, Asatekin A, Geise GM, Smith ZP, Phillip WA, Lively RP, McCutcheon JR (2022) A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. J Membr Sci 645:120041

    Article  Google Scholar 

  62. Bagheri A, Jin J (2019) Photopolymerization in 3D printing. ACS Appl Polym Mater 1(4):593–611

    Article  Google Scholar 

  63. Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10(3):103–122

    Article  Google Scholar 

  64. Champeau M, Heinze DA, Viana TN, de Souza ER, Chinellato AC, Titotto S (2020) 4D printing of hydrogels: a review. Adv Func Mater 30(31):1910606

    Article  Google Scholar 

  65. Dong Y, Wang S, Ke Y, Ding L, Zeng X, Magdassi S, Long Y (2020) 4D printed hydrogels: fabrication, materials, and applications. Adv Mater Technol 5(6):2000034

    Article  Google Scholar 

  66. Castro AGB, Diba M, Kersten M, Jansen JA, van den Beucken JJJP, Yang F (2018) Development of a PCL-silica nanoparticles composite membrane for guided bone regeneration. Mater Sci Eng, C 85:154–161

    Article  Google Scholar 

  67. Kuang X, Roach DJ, Wu J, Hamel CM, Ding Z, Wang T, Dunn ML, Qi HJ (2019) Advances in 4D printing: materials and applications. Adv Func Mater 29(2):1805290

    Article  Google Scholar 

  68. Mitchell A, Lafont U, Hołyńska M, Semprimoschnig C (2018) Additive manufacturing — a review of 4D printing and future applications. Addit Manuf 24:606–626

    Google Scholar 

  69. Gillono M, Roppolo I, Frascella F, Scaltrito L, Pirri CF, Chiappone A (2020) CO2 permeability control in 3D printed light responsive structures. Appl Mater Today 18:100470

    Article  Google Scholar 

  70. Breger JC, Yoon C, Xiao R, Kwag HR, Wang MO, Fisher JP, Nguyen TD, Gracias DH (2015) Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces 7(5):3398–3405

    Article  Google Scholar 

  71. Kocak G, Tuncer C, Bütün V (2017) pH-Responsive polymers. Polym Chem 8(1):144–176

    Article  Google Scholar 

  72. Hester JF, Olugebefola SC, Mayes AM (2002) Preparation of pH-responsive polymer membranes by self-organization. J Membr Sci 208(1):375–388

    Article  Google Scholar 

  73. Shin D-G, Kim T-H, Kim D-E (2017) Review of 4D printing materials and their properties. Int J Precis Eng Manuf-Green Technol 4(3):349–357

    Article  Google Scholar 

  74. Cao J, Zhou C, Su G, Zhang X, Zhou T, Zhou Z, Yang Y (2019) Arbitrarily 3D configurable hygroscopic robots with a covalent-noncovalent interpenetrating network and self-healing ability. Adv Mater 31(18):1900042

    Article  Google Scholar 

  75. Yang Y, Chen Y, Wei Y, Li Y (2016) 3D printing of shape memory polymer for functional part fabrication. Int J Adv Manuf Technol 84(9):2079–2095

    Article  Google Scholar 

  76. Frost S, Ulbricht M (2013) Thermoresponsive ultrafiltration membranes for the switchable permeation and fractionation of nanoparticles. J Membr Sci 448:1–11

    Article  Google Scholar 

  77. Peng B, Yang Y, Ju T, Cavicchi KA (2021) Fused filament fabrication 4D printing of a highly extensible, self-healing, shape memory elastomer based on thermoplastic polymer blends. ACS Appl Mater Interfaces 13(11):12777–12788

    Article  Google Scholar 

  78. Yang H, Leow WR, Wang T, Wang J, Yu J, He K, Qi D, Wan C, Chen X (2017) 3D printed photoresponsive devices based on shape memory composites. Adv Mater 29(33):1701627

    Article  Google Scholar 

  79. Wei H, Zhang Q, Yao Y, Liu L, Liu Y, Leng J (2017) Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces 9(1):876–883

    Article  Google Scholar 

  80. Zhu P, Yang W, Wang R, Gao S, Li B, Li Q (2018) 4D printing of complex structures with a fast response time to magnetic stimulus. ACS Appl Mater Interfaces 10(42):36435–36442

    Article  Google Scholar 

  81. Nadgorny M, Xiao Z, Chen C, Connal LA (2016) Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer. ACS Appl Mater Interfaces 8(42):28946–28954

    Article  Google Scholar 

  82. Ma C, Lu W, Yang X, He J, Le X, Wang L, Zhang J, Serpe MJ, Huang Y, Chen T (2018) Bioinspired anisotropic hydrogel actuators with on–off switchable and color-tunable fluorescence behaviors. Adv Func Mater 28(7):1704568

    Article  Google Scholar 

  83. Ma S, Zhang Y, Wang M, Liang Y, Ren L, Ren L (2020) Recent progress in 4D printing of stimuli-responsive polymeric materials. Sci China Technol Sci 63(4):532–544

    Article  Google Scholar 

  84. Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Func Mater 23(36):4400–4407

    Article  Google Scholar 

  85. de Grooth J, Dong M, de Vos WM, Nijmeijer K (2014) Building polyzwitterion-based multilayers for responsive membranes. Langmuir 30(18):5152–5161

    Article  Google Scholar 

  86. Sharma R, Singh R, Batish A (2021) Study on barium titanate and graphene reinforced PVDF matrix for 4D applications. J Thermoplast Compos Mater 34(9):1234–1253

    Article  Google Scholar 

  87. Grinberg D, Siddique S, Le MQ, Liang R, Capsal JF, Cottinet PJ (2019) 4D Printing based piezoelectric composite for medical applications. J Polym Sci, Part B: Polym Phys 57(2):109–115

    Article  Google Scholar 

  88. Pustovarenko A, Seoane B, Abou-Hamad E, King HE, Weckhuysen BM, Kapteijn F, Gascon J (2021) Rapid fabrication of MOF-based mixed matrix membranes through digital light processing. Mater Adv 2(8):2739–2749

    Article  Google Scholar 

  89. Elsaidi SK, Ostwal M, Zhu L, Sekizkardes A, Mohamed MH, Gipple M, McCutcheon JR, Hopkinson D (2021) 3D printed MOF-based mixed matrix thin-film composite membranes. RSC Adv 11(41):25658–25663

    Article  Google Scholar 

  90. Gutierrez DB, Caldona EB, Yang Z, Suo X, Cheng X, Dai S, Espiritu RD, Advincula RC (2023) PDMS-silica composite gas separation membranes by direct ink writing. J Appl Polym Sci 140(33):e54277

    Article  Google Scholar 

  91. Gürsoy M, Karaman M (2017) Surface treatments for biological, chemical and physical applications: John Wiley & Sons

  92. Su NC, Buss HG, McCloskey BD, Urban JJ (2015) Enhancing separation and mechanical performance of hybrid membranes through nanoparticle surface modification. ACS Macro Lett 4(11):1239–1243

    Article  Google Scholar 

  93. Zarshenas K, Raisi A, Aroujalian A (2015) Surface modification of polyamide composite membranes by corona air plasma for gas separation applications. RSC Adv 5(25):19760–19772

    Article  Google Scholar 

  94. Chen J-T, Fu Y-J, Tung K-L, Huang S-H, Hung W-S, Jessie Lue S, Hu C-C, Lee K-R, Lai J-Y (2013) Surface modification of poly(dimethylsiloxane) by atmospheric pressure high temperature plasma torch to prepare high-performance gas separation membranes. J Membr Sci 440:1–8

    Article  Google Scholar 

  95. Fatyeyeva K, Dahi A, Chappey C, Langevin D, Valleton J-M, Poncin-Epaillard F, Marais S (2014) Effect of cold plasma treatment on surface properties and gas permeability of polyimide films. RSC Adv 4(59):31036–31046

    Article  Google Scholar 

  96. Konruang S, Sirijarukul S, Wanichapichart P, Yu L, Chittrakarn T (2015) Ultraviolet-ray treatment of polysulfone membranes on the O2/N2 and CO2/CH4 separation performance. J Appl Polym Sci. https://doi.org/10.1002/app.42074

    Article  Google Scholar 

  97. Roslan RA, Lau WJ, Zulhairun AK, Goh PS, Ismail AF (2020) Improving CO2/CH4 and O2/N2 separation by using surface-modified polysulfone hollow fiber membranes. J Polym Res 27(5):1–14

    Article  Google Scholar 

  98. Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K (2018) In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for CO2 separation. J Colloid Interface Sci 510:12–19

    Article  Google Scholar 

  99. Zhou R, Wang H, Wang B, Chen X, Li S, Yu M (2015) Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO2 separation. Ind Eng Chem Res 54(30):7516–7523

    Article  Google Scholar 

  100. Asatekin A, Gleason KK (2011) Polymeric nanopore membranes for hydrophobicity-based separations by conformal initiated chemical vapor deposition. Nano Lett 11(2):677–686

    Article  Google Scholar 

  101. Mishra NK, Patil N, Yi S, Hopkinson D, Grunlan JC, Wilhite BA (2021) Highly selective hollow fiber membranes for carbon capture via in-situ layer-by-layer surface functionalization. J Membr Sci 633:119381

    Article  Google Scholar 

  102. Lee TH, Lee BK, Park JS, Park J, Kang JH, Yoo SY, Park I, Kim Y-H, Park HB (2022) Surface modification of matrimid® 5218 polyimide membrane with fluorine-containing diamines for efficient gas separation. Membranes 12(3):256

    Article  Google Scholar 

  103. Won J, Kim MH, Kang YS, Park HC, Kim UY, Choi SC, Koh SK (2000) Surface modification of polyimide and polysulfone membranes by ion beam for gas separation. J Appl Polym Sci 75(12):1554–1560

    Article  Google Scholar 

  104. Song Q, Cao S, Zavala-Rivera P, Ping LuL, Li W, Ji Y, Al-Muhtaseb SA, Cheetham AK, Sivaniah E (2013) Photo-oxidative enhancement of polymeric molecular sieve membranes. Nat Commun 4(1):1918

    Article  Google Scholar 

  105. Gao Z, Wang Y, Wu H, Ren Y, Guo Z, Liang X, Wu Y, Liu Y, Jiang Z (2021) Surface functionalization of polymers of intrinsic microporosity (PIMs) membrane by polyphenol for efficient CO2 separation. Green Chem Eng 2(1):70–76

    Article  Google Scholar 

  106. Blinova NV, Svec F (2012) Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane. J Membr Sci 423–424:514–521

    Article  Google Scholar 

  107. Chen HZ, Thong Z, Li P, Chung T-S (2014) High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. Int J Hydrogen Energy 39(10):5043–5053

    Article  Google Scholar 

  108. Thiam BG, El Magri A, Vanaei HR, Vaudreuil S (2022) 3D printed and conventional membranes— a review. Polymers 14(5):1023

    Article  Google Scholar 

  109. Guo Y, Ji Z, Zhang Y, Wang X, Zhou F (2017) Solvent-free and photocurable polyimide inks for 3D printing. J Mater Chem A 5(31):16307–16314

    Article  Google Scholar 

  110. Zhang F, Ma Y, Liao J, Breedveld V, Lively RP (2018) Solution-based 3D printing of polymers of intrinsic microporosity. Macromol Rapid Commun 39(13):1800274

    Article  Google Scholar 

  111. Arias-Ferreiro G, Ares-Pernas A, Lasagabáster-Latorre A, Aranburu N, Guerrica-Echevarria G, Dopico-García MS, Abad M-J (2021) Printability study of a conductive polyaniline/acrylic formulation for 3D printing. Polymers 13(13):2068

    Article  Google Scholar 

  112. Viidik L, Seera D, Antikainen O, Kogermann K, Heinämäki J, Laidmäe I (2019) 3D-printability of aqueous poly(ethylene oxide) gels. Eur Polym J 120:109206

    Article  Google Scholar 

  113. Mishra AK, Wallin TJ, Pan W, Xu P, Wang K, Giannelis EP, Mazzolai B, Shepherd RF (2020) Autonomic perspiration in 3D-printed hydrogel actuators. Sci Robot 5(38):3918

    Article  Google Scholar 

  114. Zhao W, Lu H, Li C (2021) Composite hollow fiber membrane dehumidification: a review on membrane module, moisture permeability and self-cleaning performance. Int J Heat Mass Transf 181:121832

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the Malaysian Ministry of Higher Education through the Fundamental Research Grant Scheme (FRGS/1/2023/TK09/UCSI/03/1) and UCSI University, KL Campus through UCSI Research Excellence & Innovation Grant (REIG) (REIG-FETBE-2023/017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sze Lai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, Y.H., Lai, L.S., Shi, L. et al. Advancing CO2 separation: exploring the potential of additive manufacturing in membrane technology. Prog Addit Manuf (2024). https://doi.org/10.1007/s40964-024-00587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-024-00587-z

Keywords

Navigation