Skip to main content
Log in

Influence on Microstructural and Mechanical Properties of Al2O3/Graphite/Flyash-Reinforced Hybrid Composite Using Scrap Aluminum Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This study assessed the possibility of using scrap aluminium alloy as a matrix material and a novel combination of compacted reinforcements were added to molten melt to evaluate their mechanical properties in terms of Compressive Strength, 0.2% offset Yield strength, Ultimate Tensile Strength, Ductility, Hardness and Impact Energy. Fine grain structure was observed in the fabricated composite compared to cast aluminium alloy. The improved mechanical behavior of the fabricated composite may be attributed to the combined effect of grain refinement, dislocation bowing and shear lag mechanism. Fracture morphology of uniaxial tensile test confirmed the transformation of ductile to cleavage fracture. The tensile strength, hardness and compressive strength were overall improved by ~ 34%, ~ 63% and ~ 32%, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. W. Miller et al., Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280(1), 37–49 (2000)

    Article  Google Scholar 

  2. S. Prasad, R. Asthana, Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol. Lett. 17(3), 445–453 (2004)

    Article  CAS  Google Scholar 

  3. K.R. Kumar, K. Kiran, V. Sreebalaji, Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide. J. Alloy. Compd. 723, 795–801 (2017)

    Article  Google Scholar 

  4. D. Miracle, Metal matrix composites–from science to technological significance. Compos. Sci. Technol. 65(15–16), 2526–2540 (2005)

    Article  CAS  Google Scholar 

  5. S.M. Dar, Y. Zhao, X. Kai, et al., Effect of external pressure on the microstructure and mechanical properties of in situ (ZrB2 + Al2O3/Al3Zr)/6016 nanocomposites. Int. J. Metalcast. 16, 2162–2174 (2022). https://doi.org/10.1007/s40962-021-00736-y

    Article  CAS  Google Scholar 

  6. R. Soundararajan et al., Evaluation of microstructures, mechanical and dry-sliding wear performance of A356-(Fly Ash/SiCp) hybrid composites. Int. J. Metalcast. 1–18 (2022)

  7. M.S. Moktar, H. Ghandvar, T.A.A. Bakar, Development and characterization of aluminum hybrid metal matrix composites used in automotive applications, in Encyclopedia of Renewable and Sustainable Materials. ed. by S. Hashmi, I.A. Choudhury (Elsevier, Oxford, 2020), pp.54–63

    Chapter  Google Scholar 

  8. A. Inegbenebor et al., Aluminum silicon carbide particulate metal matrix composite development via stir casting processing. SILICON 10(2), 343–347 (2018)

    Article  CAS  Google Scholar 

  9. M. Gowrishankar et al., Experimental validity on the casting characteristics of stir cast aluminium composites. J. Mater. Res. Technol. 9(3), 3340–3347 (2020)

    Article  CAS  Google Scholar 

  10. P. Sharma, S. Sharma, D. Khanduja, A study on microstructure of aluminium matrix composites. J. Asian Ceram. Soc. 3(3), 240–244 (2015)

    Article  Google Scholar 

  11. M.K. Surappa, Aluminium matrix composites: challenges and opportunities. Sadhana 28(1), 319–334 (2003)

    Article  CAS  Google Scholar 

  12. V. Chak, H. Chattopadhyay, T. Dora, A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J. Manuf. Process. 56, 1059–1074 (2020)

    Article  Google Scholar 

  13. V. Chak, H. Chattopadhyay, T. Dora, Application of solid processing routes for the synthesis of graphene-aluminum composites-a review. Mater. Manuf. Process. 36(11), 1219–1235 (2021)

    Article  CAS  Google Scholar 

  14. M.K. Sahu, R.K. Sahu, Fabrication of aluminum matrix composites by stir casting technique and stirring process parameters optimization, in Advanced Casting Technologies (IntechOpen, 2018)

  15. R. Palanivel, I. Dinaharan, R.F. Laubscher, Casting routes for production of metallic based composite parts, in Encyclopedia of Materials: Composites. ed. by D. Brabazon (Elsevier, Oxford, 2021), pp.559–587

    Chapter  Google Scholar 

  16. J. Luster, M. Thumann, R. Baumann, Mechanical properties of aluminium alloy 6061–Al2O3 composites. Mater. Sci. Technol. 9(10), 853–862 (1993)

    Article  CAS  Google Scholar 

  17. K. Hemalatha, V. Venkatachalapathy, N. Alagumurthy, Processing and synthesis of metal matrix Al 6063/Al2O3 metal matrix composite by stir casting process. J. Eng. Res. Appl. 3(6), 1390–1394 (2013)

    Google Scholar 

  18. A. Baradeswaran, A.E. Perumal, Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites. Compos. B Eng. 56, 464–471 (2014)

    Article  CAS  Google Scholar 

  19. S. Subramanian et al., Investigations on tribo-mechanical behaviour of Al-Si10-Mg/sugarcane bagasse ash/SiC hybrid composites. China Foundry 16(4), 277–284 (2019)

    Article  Google Scholar 

  20. V. Mohanavel, K. Rajan, M. Ravichandran, Synthesis, characterization and properties of stir cast AA6351-aluminium nitride (AlN) composites. J. Mater. Res. 31(24), 3824–3831 (2016)

    Article  CAS  Google Scholar 

  21. V. Chak, H. Chattopadhyay, Synthesis of graphene–aluminium matrix nanocomposites: mechanical and tribological properties. Mater. Sci. Technol. 37(5), 467–477 (2021)

    Article  CAS  Google Scholar 

  22. P.K. Gupta, M. Gupta, Mechanical and microstructural analysis of Al-Al2O3/B4C hybrid composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 234(12), 1503–1514 (2020)

    CAS  Google Scholar 

  23. D.S. Prasad, C. Shoba, N. Ramanaiah, Investigations on mechanical properties of aluminum hybrid composites. J. Mater. Res. Technol. 3(1), 79–85 (2014)

    Article  Google Scholar 

  24. S. Kulkarni, J. Menghani, A. Lal, Investigation of mechanical properties of fly ash and Al2O reinforced A356 alloy matrix hybrid composite manufactured by improved stir casting. Indian J. Eng. Mater. Sci. (IJEMS) 23(1), 27–36 (2016)

    CAS  Google Scholar 

  25. D.R.J. Selvam, I. Dinaharan, S. Vibin Philip, P.M. Mashinini, Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2+ Al2O3) hybrid aluminum matrix composites. J. Alloy. Compd. 740, 529–535 (2018)

    Article  Google Scholar 

  26. N. Ahamad et al., Correlation of structural and mechanical properties for Al-Al2O3-SiC hybrid metal matrix composites. J. Compos. Mater. 55(23), 3267–3280 (2021)

    Article  CAS  Google Scholar 

  27. P. Sharma et al., Influence of silicon carbide/graphite addition on properties of AA6082 reinforced composites. Aust. J. Mech. Eng. (2018)

  28. A. Baradeswaran, A. ElayaPerumal, Effect of graphite on tribological and mechanical properties of AA7075 composites. Tribol. Trans. 58(1), 1–6 (2015)

    Article  CAS  Google Scholar 

  29. K.K. Alaneme et al., Fabrication characteristics and mechanical behaviour of rice husk ash–Alumina reinforced Al-Mg-Si alloy matrix hybrid composites. J. Mater. Res. Technol. 2(1), 60–67 (2013)

    Article  CAS  Google Scholar 

  30. N. Parvin, M. Rahimian, The characteristics of alumina particle reinforced pure Al matrix composite. Acta Phys. Pol. Ser. A Gen. Phys. 121(1), 108 (2012)

    Article  CAS  Google Scholar 

  31. S. Boopathy, K. ManikandaPrasath, Structure–property correlation of Al–SiC–Al2O3 composites: influence of processing temperatures. Trans. Indian Inst. Met. 70(9), 2441–2447 (2017)

    Article  CAS  Google Scholar 

  32. M. Ramachandra, K. Radhakrishna, Synthesis-microstructure-mechanical properties-wear and corrosion behavior of an Al-Si (12%)—flyash metal matrix composite. J. Mater. Sci. 40(22), 5989–5997 (2005)

    Article  CAS  Google Scholar 

  33. G. Gashaw, P.J. Ramulu, C. Venkatesh, Fabrication, characterization and evaluation of mechanical properties of aluminium hybrid matrix composite (Al6063/SiC-Bagasse Fly-Ash), in Advances in Computational Methods in Manufacturing. (Springer, 2019), pp.743–753

    Chapter  Google Scholar 

  34. K.K. Alaneme, T. Adewale, Influence of rice husk ash–silicon carbide weight ratios on the mechanical behaviour of Al-Mg-Si alloy matrix hybrid composites. Tribol. Ind. 35(2), 163 (2013)

    Google Scholar 

  35. A. Bahrami et al., Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit. Rev. Environ. Sci. Technol. 46(2), 143–208 (2016)

    Article  Google Scholar 

  36. B.P. Kumar, A.K. Birru, Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method. Trans. Nonferrous Met. Soc. China 27(12), 2555–2572 (2017)

    Article  CAS  Google Scholar 

  37. S.S. Panda, A.K. Senapati, P.S. Rao, Effect of particle size on properties of industrial and agro waste-reinforced aluminum-matrix composite. JOM 73(7), 2096–2103 (2021)

    Article  CAS  Google Scholar 

  38. S.H. Farjana, N. Huda, M.P. Mahmud, Impacts of aluminum production: a cradle to gate investigation using life-cycle assessment. Sci. Total Environ. 663, 958–970 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Zhang et al., Environmental footprint of aluminum production in China. J. Clean. Prod. 133, 1242–1251 (2016)

    Article  CAS  Google Scholar 

  40. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Int. J. Metalcast. 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  41. C. Panthglin, S. Boontein, J. Kajornchaiyakul, et al., The effects of Zr addition on the microstructure and mechanical properties of A356–SiC composites. Int. J. Metalcast. 15, 169–181 (2021). https://doi.org/10.1007/s40962-020-00439-w

    Article  CAS  Google Scholar 

  42. N.K. Sinha, J.K. Singh, Utilization of industrial waste as mold material and its effect on the evolution of microstructure and mechanical properties of Al–Si (A319) alloy. Int. J. Metalcast. 15, 1238–1249 (2021). https://doi.org/10.1007/s40962-020-00555-7

    Article  CAS  Google Scholar 

  43. R. Prasad et al., Filler dispersion and unidirectional sliding characteristics of as-cast and multi-pass friction stir processed ZrB2/AA7075 in-situ composites. J. Tribol. 143(8) (2021)

  44. M. Warmuzek, Metallographic techniques for aluminum and its alloys. Materials Park, OH (ASM International, 2004), pp. 711–751

  45. E. ASTM, 399-90 (Reapproved 1997), Annual Book of ASTM Standards, Vol. 03.01: Metals-Mechanical testing; Elevated and low-temperature tests. Metallography, West Conshohocken, PA (ASTM, 2001)

  46. E. ASTM, Standard test methods for tension testing of metallic materials. Annual Book of ASTM Standards (ASTM, 2001)

  47. International, A., Standard test methods of compression testing of metallic materials at room temperature (ASTM International, 2009)

  48. E. ASTM, Standard test methods for notched bar impact testing of metallic materials. E23-07a, Pennsylvania, PA, USA (2007)

  49. R. Prasad et al., Microstructural, mechanical and tribological characterization of friction stir welded A7075/ZrB2 in situ composites. J. Mater. Eng. Perform. 30(6), 4194–4205 (2021)

    Article  CAS  Google Scholar 

  50. R. Yang et al., Microstructure-property analysis of ZrB2/6061Al hierarchical nanocomposites fabricated by direct melt reaction. Mater. Charact. 112, 51–59 (2016)

    Article  CAS  Google Scholar 

  51. S.A. Sajjadi, H. Ezatpour, M.T. Parizi, Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater. Des. 34, 106–111 (2012)

    Article  CAS  Google Scholar 

  52. A. Usman et al., Production and characterisation of aluminium alloy-bagasse ash composites. IOSR J. Mech. Civ. Eng. 11(4), 38–44 (2014)

    Article  Google Scholar 

  53. J.J.M. Hillary et al., A study on microstructural effect and mechanical behaviour of Al6061–5% SiC–TiB2 particulates reinforced hybrid metal matrix composites. J. Compos. Mater. 54(17), 2327–2337 (2020)

    Article  CAS  Google Scholar 

  54. M. Furukawa et al., Microhardness measurements and the Hall-Petch relationship in an Al Mg alloy with submicrometer grain size. Acta Mater. 44(11), 4619–4629 (1996)

    Article  CAS  Google Scholar 

  55. V. Chak, H. Chattopadhyay, Fabrication and heat treatment of graphene nanoplatelets reinforced aluminium nanocomposites. Mater. Sci. Eng. A 791, 139657 (2020)

    Article  CAS  Google Scholar 

  56. U. Aybarç, O. Ertuğrul, M.Ö. Seydibeyoğlu, Effect of Al2O3 particle size on mechanical properties of ultrasonic-assisted stir-casted Al A356 matrix composites. Int. J. Metalcast. 15, 638–649 (2021). https://doi.org/10.1007/s40962-020-00490-7

    Article  CAS  Google Scholar 

  57. H. Kumar et al., Mechanical and tribological characterization of industrial wastes reinforced aluminum alloy composites fabricated via friction stir processing. J. Alloy. Compd. 831, 154832 (2020)

    Article  CAS  Google Scholar 

  58. S.K. Panigrahi, R. Jayaganthan, Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling. Mater. Des. 32(6), 3150–3160 (2011)

    Article  CAS  Google Scholar 

  59. S. Panigrahi et al., A study on the combined effect of forging and aging in Mg–Y–RE alloy. Mater. Sci. Eng. A 530, 28–35 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Chechi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chechi, P., Maurya, S.K., Prasad, R. et al. Influence on Microstructural and Mechanical Properties of Al2O3/Graphite/Flyash-Reinforced Hybrid Composite Using Scrap Aluminum Alloy. Inter Metalcast 18, 975–986 (2024). https://doi.org/10.1007/s40962-023-01069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01069-8

Keywords

Navigation