Skip to main content
Log in

Effects of Hip Osteoarthritis on Mechanical Stimulation of Trabecular Bone: a Finite Element Study

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

This paper provides evidence that the onset and development of osteoarthritis can redistribute the loads over the joint and subsequently alter the mechanism of bone resorption or deposition, leading to the formation of cysts (geodes), ivory-like areas (eburnation), or both. A two-dimensional model of the proximal half of the human femur was implemented from X-ray images. Finite element analysis was performed for four scenarios with normal and altered loading of the femoral head. Strain, maximum principal strain, and strain energy density (SED) were computed and their distributions were analyzed. The results show that osteoarthritis is associated with marked abnormal remodeling conditions. In particular, the low-SED areas in trabecular bone can experience bone resorption with a subsequent formation of geodes, whereas overstimulation at the interface between trabecular and subchondral bone can result in anomalously high bone deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Woolf, A. D., & Pfleger, B. (2003). Burden of major musculoskeletal conditions. Bulletin of the World Health Organization, 9, 646–656.

    Google Scholar 

  2. Bronner, F., & Farach-Carson, M. C. (2007). Bone and osteoarthritis. London: Springer-Verlag.

    Book  Google Scholar 

  3. Marinozzi, F., Bini, F., Marinozzi, A., Zuppante, F., Pecci, R., & Bedini, R. (2012). Variability of morphometric parameters of human trabecular tissue from coxo-arthritis and osteoporotic samples. Annali dell’Istituto Superiore di Sanità, 48, 19–25.

    Google Scholar 

  4. Marinozzi, F., Bini, F., Patanè, F., Marinozzi, A., Bedini, R., & Pecci, R. (2008). Micro-CT analysis of human trabecular tissue from coxo-arthritis and osteoporotic samples. ASME International Mechanical Engineering Congress and Exposition Proceedings (IMECE), 2, 585–589.

    Google Scholar 

  5. Landells, J. W. (1953). The bone cysts of osteoarthritis. Journal of Bone & Joint Surgery, British, 35-B, 643–649.

    Google Scholar 

  6. Solomon, L. (1976). Patterns of osteoarthritis of the hip. Journal of Bone & Joint Surgery, British, 58-B, 176–183.

    Google Scholar 

  7. Resnick, D., Niwayama, G., & Coutts, R. D. (1977). Subchondral cysts (geodes) in arthritic disorders: Pathologic and radiographic appearance of the hip joint. American Journal of Roentgenology, 128, 799–806.

    Article  Google Scholar 

  8. Cox, L. G. E., van Rietbergen, B., van Donkelaar, C. C., & Ito, K. (2011). Analysis of bone architecture sensitivity for changes in mechanical loading, cellular activity, mechanotransduction, and tissue properties. Biomechanics and Modeling in Mechanobiology, 10, 701–712.

    Article  Google Scholar 

  9. Cox, L. G. E., van Donkelaar, C. C., van Rietbergen, B., Emans, P. J., & Ito, K. (2012). Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis. Bone, 50, 1152–1161.

    Article  Google Scholar 

  10. Mansell, J. P., Tarlton, J. F., & Bailey, A. J. (1997). Biochemical evidence for altered subchondral bone collagen metabolism in osteoarthritis of the hip. British Journal of Rheumatology, 36, 16–19.

    Article  Google Scholar 

  11. Li, B., & Aspden, R. M. (1997). Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. Journal of Bone and Mineral Research, 12, 641–651.

    Article  Google Scholar 

  12. Li, B., & Aspden, R. M. (1997). Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Annals of the Rheumatic Diseases, 56, 247–254.

    Article  Google Scholar 

  13. Bombelli, R., Santore, R. F., & Poss, R. (1984). Mechanics of the normal and osteoarthritic hip. A new perspective. Clinical Orthopaedics and Related Research, 182, 69–78.

    Google Scholar 

  14. Harrison, M. H. M., Schajowicz, F., & Trueta, J. (1953). Osteoarthritis of the hip: A study of the nature and evolution of the disease. Journal of Bone & Joint Surgery, British, 35-B, 598–626.

    Google Scholar 

  15. Jeffery, A. K. (1973). Osteogenesis in the osteoarthritic femoral head. Journal of Bone & Joint Surgery, British, 55-B, 262–272.

    Google Scholar 

  16. Jeffery, A. K. (1975). Osteophytes and the osteoarthritic femoral head. Journal of Bone & Joint Surgery, British, 57-B, 314–324.

    Google Scholar 

  17. Resnick, D., Niwayama, G., & Coutts, R. D. (1977). Subchondral cysts in arthritic disorders: Pathologic and radiographic appearance of the hip joint. AJR American Journal of Roentgenology, 128, 799–806.

    Article  Google Scholar 

  18. Li, G., Gao, J., Cheng, T. S., Pavlos, N. J., Zhang, C., & Zheng, M. H. (2013). Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes. Arthritis Research Theraphy, 15, 223–230.

    Article  Google Scholar 

  19. Cox, L. G., Lagemaat, M. W., Van Donkelaar, C. C., Van Rietbergen, B., Reilingh, M. L., Blankevoort, L., et al. (2011). The role of pressurized fluid in subchondral bone cyst growth. Bone, 49, 762–768.

    Article  Google Scholar 

  20. Link, T. M., & Li, X. (2011). Bone marrow changes in osteoarthritis. Seminars in Musculoskeletal Radiology, 15, 238–246.

    Article  Google Scholar 

  21. Cox, L. G. E., van Donkelaar, C. C., van Rietbergen, B., Emans, P. J., & Ito, K. (2013). Alterations to the subchondral bone architecture during osteoarthritis: Bone adaptation versus endochondral bone formation. Osteoarthritis and Cartilage, 21, 331–338.

    Article  Google Scholar 

  22. Cox, L. G. E., van Rietbergen, B., van Donkelaar, C. C., & Ito, K. (2011). The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes. Journal of Biomechanics, 44, 1765–1770.

    Article  Google Scholar 

  23. Weinans, H., Huiskes, R., & Grootenboer, H. J. (1992). The behavior of adaptive bone-remodeling simulation models. Journal of Biomechanics, 25, 1425–1441.

    Article  Google Scholar 

  24. Cox, L. G. E., van Rietbergen, B., van Donkelaar, C. C., & Ito, K. (2011). Bone structural changes in osteoarthritis as a result of mechanoregulated bone adaptation: A modeling approach. Osteoarthritis and Cartilage, 19, 676–682.

    Article  Google Scholar 

  25. Resnick, D. (1975). Patterns of migration of the femoral head in osteoarthritis of the hip. Roentgenographic-pathologic correlation and comparison with rheumatoid arthritis. The American Journal of Roentgenology Radium Therapy and Nuclear Medicine, 124, 62–74.

    Article  Google Scholar 

  26. Varich, L., Pathria, M., & Resnick, D. (1993). Patterns of central acetabular osteophytosis in osteoarthritis of the hip. Investigative Radiology, 28, 1120–1127.

    Article  Google Scholar 

  27. Elkholy, A. H., Ghista, D. N., D’Souza, F. S., & Kutty, M. S. (2005). Stress analysis of normal and osteoarthritic femur using finite element analysis. International Journal of Computer Applications in Technology, 22, 205–211.

    Article  Google Scholar 

  28. Pustoc’h, A., & Cheze, L. (2009). Normal and osteoarthritic hip joint mechanical behaviour: A comparison study. Medical & Biological Engineering & Computing, 47, 375–383.

    Article  Google Scholar 

  29. Marinozzi, F., De Paolis, A., De Luca, R., Bini, F., Bedini, R., & Marinozzi, A. 2012. Stress and strain patterns in normal and osteoarthritic femur using finite element analysis (pp. 247–250). Proceedings of CompImage-computational modelling of objects represented in images III: Fundamentals, methods and applications.

  30. Van Rietbergen, B., Huiskes, R., Eckstein, F., & Rüegsegger, P. (2003). Trabecular bone tissue strains in the healthy and osteoporotic human femur. Journal of Bone and Mineral Research, 18, 1781–1788.

    Article  Google Scholar 

  31. Verhulp, E., Van Rietbergen, B., & Huiskes, R. (2008). Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone, 42, 30–35.

    Article  Google Scholar 

  32. Marinozzi, F., Bini, F., & Marinozzi, A. (2011). Evidence of entropic elasticity of human bone trabeculae at low strains. Journal of Biomechanics, 44, 988–991.

    Article  Google Scholar 

  33. Bini, F., Marinozzi, A., Marinozzi, F., & Patanè, F. (2002). Microtensile measurements of single trabeculae stiffness in human femur. Journal of Biomechanics, 35, 1515–1519.

    Article  Google Scholar 

  34. Van Rietbergen, B., Muller, R., Ulrich, D., Ruegsegger, P., & Huiskes, R. (1999). Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. Journal of Biomechanics, 32, 443–451.

    Article  Google Scholar 

  35. Weinans, H., Huiskes, R., & Grootenboer, H. J. (1992). Effects of material properties of femoral hip components on bone remodeling. Journal of Orthopaedic Research, 10, 845–853.

    Article  Google Scholar 

  36. Nordin, M., & Frankel, V. H. (2001). Basic biomechanics of musculoskeletal system. Baltimore: Lippincott Williams & Wilkins.

    Google Scholar 

  37. Wiberg, G. (1933). Studies on the dysplastic acetabulum and congenital subluxation of the hip joint with special reference to the complication of osteoarthritis. Journal of Bone and Joint Surgery, American Volume, 15, 16–23.

    Google Scholar 

  38. Brinckmann, P., Frobin, W., & Hierholzer, E. (1981). Stress on the articular surface of the hip joint in healthy adults and persons with idiopathic osteoarthrosis of the hip joint. Journal of Biomechanics, 14, 149–156.

    Article  Google Scholar 

  39. Greenwald, A., & O’Connor, J. J. (1971). The transmission of load through human hip joint. Journal of Biomechanics, 4, 507–528.

    Article  Google Scholar 

  40. Iglič, A., Kralj-Iglič, V., Daniel, M., & Maček-Lebar, A. (2002). Computer determination of contact stress distribution and size of weight bearing area in the human hip joint. Computer Methods in Biomechanics & Biomedical Engineering, 5, 185–192.

    Article  Google Scholar 

  41. MoWdi, A., John, S., Shields, A., & Stubbs, J. (2011). Central acetabular osteophyte (saber tooth sign), one of the earliest signs of osteoarthritis of the hip joint. European Journal of Orthopaedic Surgery & Traumatology, 21, 71–74.

    Article  Google Scholar 

  42. Johnson, K. L. (1985). Contact mechanics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  43. Naghieh, G. R., Jin, Z. M., & Rahnejat, H. (1998). Contact characteristics of viscoelastic bonded layers. Applied Mathematical Modelling, 22, 569–581.

    Article  Google Scholar 

  44. Lee, E. H., & Radok, J. R. M. (1960). The contact problems for viscoelastic bodies. Journal of Applied Mechanics, 27, 438–444.

    Article  MathSciNet  MATH  Google Scholar 

  45. Zirattu, G., Fadda, M., Manunta, A., Marras, F., Zirattu, F., & Bandiera, P. (2005). Geodes in hip arthrosis. Minerva Ortopedica Traumatolgica, 56, 115–119.

    Google Scholar 

  46. Chegini, S., Beck, M., & Ferguson, S. J. (2009). The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: A finite element analysis. Journal of Orthopaedic Research, 27, 195–201.

    Article  Google Scholar 

  47. Akiyama, K., Sakai, T., Koyanagi, J., Yoshikawa, H., & Sugamoto, K. (2013). In vivo hip joint contact distribution and bony impingement in normal and dysplastic human hips. Journal of Orthopaedic Research, 31, 1611–1619.

    Article  Google Scholar 

  48. Clohisy, J. C., Nunley, R. M., Carlisle, J. C., & Schoenecker, P. L. (2009). Incidence and characteristics of femoral deformities in the dysplastic hip. Clinical Orthopaedics and Related Research, 467, 128–134.

    Article  Google Scholar 

  49. Kaspiris, A., Khaldi, L., Grivas, T. B., Vasiliadis, E., Kouvaras, I., Dagkas, S., et al. (2013). Subchondral cyst development and MMP-1 expression during progression of osteoarthritis: An immunohistochemical study. Orthopaedics & Traumatology: Surgery & Research, 99, 523–529.

    Google Scholar 

  50. Goldring, M. B., & Goldring, S. R. (2010). Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Annals of the New York Academy of Sciences, 1192, 230–237.

    Article  Google Scholar 

  51. Dürr, H. D., Martin, H., Pellengahr, C., Schlemmer, M., Maier, M., & Jansson, V. (2004). The cause of subchondral bone cysts in osteoarthrosis: A finite element analysis. Acta Orthopaedica Scandinavica, 75, 554–558.

    Article  Google Scholar 

  52. Lagier, R. (2006). Bone eburnation in rheumatic diseases: A guiding trace in today’s radiological diagnosis and in paleopathology. Clinical Rheumatology, 25, 127–131.

    Article  Google Scholar 

  53. Marangalau, J. H., Ito, K., & Van Rietbergen, B. (2012). A new approach to determine the accuracy of morphology-elasticity relationships in continuüm FE analyses of human proximal femur. Journal of Biomechanics, 45, 2884–2892.

    Article  Google Scholar 

  54. Mullender, M. G., Huiskes, R., & Weinans, H. (1993). A physiological approach to the simulation of bone remodeling as a self-organizational control process. Journal of Biomechanics, 27, 1389–1394.

    Article  Google Scholar 

  55. Cowin, S. (1986). Fabric dependence of an anisotropic strength criterion. Mechanics of Materials, 5, 251–260.

    Article  Google Scholar 

  56. Freund, E. (1940). The pathological significance of intra-articular pressure. Edinburgh Medical Journal, 47, 192–203.

    Google Scholar 

  57. Rhaney, K., & Lamb, D. W. (1955). The cysts of osteoarthritis of the hip; a radiological and pathological study. Journal of Bone and Joint Surgery, British Volume, 37, 663–675.

    Google Scholar 

  58. Sabokbar, A., Crawford, R., Murray, D. W., & Athanasou, N. A. (2000). Macrophage-osteoclast differentiation and bone resorption in osteoarthrotic subchondral acetabular cysts. Acta Orthopaedica Scandinavica, 71, 255–261.

    Article  Google Scholar 

  59. Chiba, K., Nango, N., Kubota, S., Okazaki, N., Taguchi, K., Osaki, M., & Ito, M. (2012). Relationship between microstructure and degree of mineralization in subchondral bone of osteoarthritis: a synchrotron radiation μCT study. Journal of Bone and Mineral Research, 27, 1511–1517.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to deeply thank prof. Joseph Mizrahi for advice and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Marinozzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinozzi, F., Bini, F., De Paolis, A. et al. Effects of Hip Osteoarthritis on Mechanical Stimulation of Trabecular Bone: a Finite Element Study. J. Med. Biol. Eng. 35, 535–544 (2015). https://doi.org/10.1007/s40846-015-0061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0061-4

Keywords

Navigation