Skip to main content

Perren’s Strain Theory and Fracture Healing

  • Chapter
  • First Online:
Essential Biomechanics for Orthopedic Trauma

Abstract

The healing process of fractures depends on their biomechanical environment. The distinct knowledge and understanding of the biomechanical influence on fracture healing is the basis of the definition of the treatment strategy. The primary goal in treating a fracture is to achieve prompt and functional recovery of the injured limb. The healing process is based on the biological and mechanical situation of the fracture and its environment, defined by the interplay of rigidity and elasticity of fracture fixation. These mechanical properties directly influence the biological process of fracture healing. In cases of less rigid fixation, a callus formation can be observed that bridges the fracture gap. This healing process is supported by relative stability. Contrary to that, absolute stability aims to minimize callus formation leading to direct fracture healing. Stephan M. Perren summarized these observations in his strain theory. Strain is the deformation of elements within a material that leads to breakage if a certain degree is reached. With certain fixation methods, strain within the fracture gap can be modulated leading to different degrees of stability and different biological healing processes. Each treatment has its advantages and disadvantages that should be taken into consideration individually when defining fracture treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito K, Perren SM. Biology and biomechanics in fracture management. In: Rüedi TP, Buckley RE, Moran CG, editors. Arbeitsgemeinschaft für Osteosynthesefragen. AO principles of fracture management. 2nd ed. Stuttgart/New York: Thieme; 2007. p. 9–31.

    Google Scholar 

  2. Stephan Perren. AO principles of fracture management. Stuttgart: Thieme; 2000.

    Google Scholar 

  3. Giannoudis P, Tzioupis C, Almalki T, Buckley R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury. 2007;38(Suppl 1):S90–9.

    Article  PubMed  Google Scholar 

  4. Jagodzinski M, Krettek C. Effect of mechanical stability on fracture healing–an update. Injury. 2007;38(Suppl 1):S3–10.

    Article  PubMed  Google Scholar 

  5. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385–96.

    Article  CAS  PubMed  Google Scholar 

  6. Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–47.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36(12):1392–404.

    Article  PubMed  Google Scholar 

  8. Hoppenfeld S, DeBoer P, Buckley R. Surgical exposures in orthopaedics: the anatomic approach. 4th ed. Philadelphia: Wolters Kluwer Health; 2012.

    Google Scholar 

  9. Gautier E, Cordey J, Mathys R, Rahn BA, Perren SM. Porosity and remodelling of plated bone after internal fixation: result of stress shielding or vascular damage? In: Ducheyne P, van der Perre G, Aubert AE, editors. Biomaterials and biomechanics 1983:proceedings of the fourth European conference on biomaterials. Amsterdam: Elsevier; 1984. p. 195–200.

    Google Scholar 

  10. Gautier E, Perren S, Cordey J. Effect of plate position relative to bending direction on the rigidity of a plate osteosynthesis. A theoretical analysis. Injury. 2000;31(Suppl 3):C14–20.

    Article  PubMed  Google Scholar 

  11. Grundnes O, Reikerås O. Blood flow and mechanical properties of healing bone: femoral osteotomies studied in rats. Acta Orthop Scand. 1992;63(5):487–91.

    Article  CAS  PubMed  Google Scholar 

  12. Kelly PJ, Montgomery RJ, Bronk JT. Reaction of the circulatory system to injury and regeneration. Clin Orthop Relat Res. 1990;254:275–88.

    Google Scholar 

  13. Brookes M, Revell WJ. Blood supply of bone: scientific aspects. London: Springer; 1998.

    Book  Google Scholar 

  14. Rhinelander FW. Tibial blood supply in relation to fracture healing. Clin Orthop Relat Res. 1974;105:34-81.

    Article  Google Scholar 

  15. Eckert-Hübner K, Claes LJ. Callus tissue differentiation and vascularization under different conditions. (Abstract from Sixth Meeting of the International Society of Fracture Repair; 23–26 Sep 1998, Strasbourg, France). J Orthop Trauma. 1999;13(4):282–3.

    Article  Google Scholar 

  16. Kessler S, Hallfeldt K, Perren S, Schweiberer L. The effects of reaming and intramedullary nailing on fracture healing. Clin Orthop Relat Res. 1986;212:18–25.

    Google Scholar 

  17. Pfeifer R, Sellei R, Pape HC. The biology of intramedullary reaming. Injury. 2010;41(Suppl 2):S4–8.

    Article  PubMed  Google Scholar 

  18. Klein M, Rahn B, Frigg R, Kessler S, Perren SJ. Reaming versus non-reaming in medullary nailing: interference with cortical circulation of the canine tibia. Arch Orthop Trauma Surg. 1990;109(6):314–6.

    Article  CAS  PubMed  Google Scholar 

  19. Claes L, Heitemeyer U, Krischak G, Braun H, Hierholzer GJ. Fixation technique influences osteogenesis of comminuted fractures. Clin Orthop Relat Res. 1999;365:221–9.

    Article  Google Scholar 

  20. Perren SM, Buchanan JS. Basic concepts relevant to the design and development of the Point Contact Fixator (PC-Fix). Injury. 1995;26(Suppl 2):1–4.

    Article  Google Scholar 

  21. Tepic S, Perren SJ. The biomechanics of the PC-Fix internal fixator. Injury. 1995;26(Suppl 2):5–10.

    Article  Google Scholar 

  22. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne HJ. Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma. 1999;13(6):401–6.

    Article  CAS  PubMed  Google Scholar 

  23. McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br. 1978;60-B(2):150–62.

    Article  CAS  PubMed  Google Scholar 

  24. Allgöwer M, Perren SM, Rüedi T. Biophysikalische Aspekte der normalen und der heilenden Knochencorticalis. Langenbecks Arch für Chirurgie. 1970;328(1–2):109–14.

    Article  Google Scholar 

  25. Perren S. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res. 1979;138:175–96.

    Google Scholar 

  26. Perren SM, Huggler A, Russenberger M, Straumann F, Müller ME, Allgöwer M. A method of measuring the change in compression applied to living cortical bone. Acta Orthop Scand Suppl. 1969;125:7–16.

    CAS  PubMed  Google Scholar 

  27. Perren S, Russenberger M, Steinemann S, Müller M, Allgöwer M. A dynamic compression plate. Acta Orthop Scand Suppl. 1969;125:31–41.

    CAS  PubMed  Google Scholar 

  28. Perren SM. Optimizing the degree of fixation stability based on the strain theory. Orthopade. 2010;39(2):132–8. [Article in French].

    Article  CAS  PubMed  Google Scholar 

  29. Perren SM. Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. Bone Joint J. 2002;84(8):1093–110.

    Article  Google Scholar 

  30. Browner BD, Jupiter JB, Krettek C, Anderson PA. Skeletal trauma e-book: basic science management and reconstructions. 5th ed. Philadelphia: Elsevier Saunders; 2015.

    Google Scholar 

  31. Rüedi TP, Buckley RE, Moran CG; Arbeitsgemeinschaft für Osteosynthesefragen. AO principles of fracture management, 2nd ed. Vol 2 Specific fractures. Stuttgart/New York: Thieme; 2007.

    Google Scholar 

  32. Fleming B, Paley D, Kristiansen T, Pope MJ. A biomechanical analysis of the Ilizarov external fixator. Clin Orthop Relat Res. 1989;241:95–105.

    Google Scholar 

  33. Hildebrand F, Giannoudis P, Kretteck C, Pape HC. Damage control: extremities. Injury. 2004;35(7):678–89.

    Article  PubMed  Google Scholar 

  34. Pape H-C, Giannoudis P, Krettek C. The timing of fracture treatment in polytrauma patients: relevance of damage control orthopedic surgery. Am J Surg. 2002;183(6):622–9.

    Article  PubMed  Google Scholar 

  35. Pape H-C, Tornetta P, Tarkin I, Tzioupis C, Sabeson V, Olson SA. Timing of fracture fixation in multitrauma patients: the role of early total care and damage control surgery. J Am Acad Orthop Surg. 2009;17(9):541–9.

    Article  PubMed  Google Scholar 

  36. Hansen ST, Winquist RA. Closed intramedullary nailing of the femur. Küntscher technique with reaming. Clin Orthop Relat Res. 1979;138:56–61.

    Google Scholar 

  37. Bick EM. The intramedullary nailing of fractures by G. Küntscher. Translation of article in Archiv für Klinische Chirurgie, 200:443, 1940. Clin Orthop Relat Res. 1968;60:5–12.

    CAS  PubMed  Google Scholar 

  38. Schandelmaier P, Krettek C, Tscherne HJ. Biomechanical study of nine different tibia locking nails. J Orthop Trauma. 1996;10(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson KD, Tencer AF, Blumenthal S, August A, Johnston DJ. Biomechanical performance of locked intramedullary nail systems in comminuted femoral shaft fractures. Clin Orthop Relat Res. 1986;206:151–61.

    Google Scholar 

  40. Bong MR, Kummer FJ, Koval KJ, Egol KA. Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Res. 2007;15(2):97–106.

    Article  Google Scholar 

  41. Piątkowski K, Piekarczyk P, Kwiatkowski K, Przybycień M, Chwedczuk BJ. Comparison of different locking plate fixation methods in distal tibia fractures. Int Orthop. 2015;39(11):2245–51.

    Article  PubMed  Google Scholar 

  42. Claes L, Augat P, Suger G, Wilke HJ. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res. 1997;15(4):577–84.

    Article  CAS  PubMed  Google Scholar 

  43. Claes LJ. Dynamisierung der Osteosynthese: Zietpunkt und Methoden. Der Unfallchirurg. Ausgabe 1/2018. Dynamisierung der Ostosynthese. 2018;121(1):3–9.

    CAS  Google Scholar 

  44. Perren SM, Cordey J. The concept of interfragmentary strain. In: Uhthoff HK, Stahl E, editors. Current concepts of internal fixation of fractures. Berlin: Springer; 1980. p. 63–77.

    Google Scholar 

  45. Goodship A, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. Bone Joint J. 1985;67(4):650–5.

    Article  CAS  Google Scholar 

  46. Schenk R, Müller J, Willenegger HJ. Experimental histological contribution to the development and treatment of pseudarthrosis. Hefte Unfallheilkd. 1968;94:15–24. [Article in German].

    CAS  PubMed  Google Scholar 

  47. Perren SM, Huggler A, Russenberger M, Allgöwer M, Mathys R, Schenk R, et al. The reaction of cortical bone to compression. Acta Orthop Scand Suppl. 1969;125:19–29.

    CAS  PubMed  Google Scholar 

  48. van Frank Haasnoot E, Münch TW, Matter P, Perren SM. Radiological sequences of healing in internal plates and splints of different contact surface to bone. (DCP, LC-DCP and PC-Fix). Injury. 1995;26(Suppl 2):28–36.

    Article  Google Scholar 

  49. Schenk R, Willenegger HJ. Zum histologischen Bild der sogenannten Primärheilung der Knochenkompakta nach experimentellen Osteotomien am Hund. Experientia. 1963;19(11):593–5.

    Article  CAS  PubMed  Google Scholar 

  50. Rahn BA, Gallinaro P, Baltensperger A, Perren SM. Primary bone healing: an experimental study in the rabbit. J Bone Joint Surg Am. 1971;53(4):783–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Christoph Pape .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halvachizadeh, S., Pape, HC. (2020). Perren’s Strain Theory and Fracture Healing. In: Crist, B., Borrelli Jr., J., Harvey, E. (eds) Essential Biomechanics for Orthopedic Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-36990-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36990-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36989-7

  • Online ISBN: 978-3-030-36990-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics