Skip to main content
Log in

Black phosphorus-hosted single-atom catalyst for electrocatalytic nitrogen reduction

黑磷负载的单原子催化剂用于电催化N2还原

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Designing highly selective and efficient single-atom electrocatalysts is essential for ammonia production under ambient conditions. This paper describes a density functional theory study on exploring the performance trends of transition metal complexes with P-based ligands in nitrogen reduction reaction (NRR) and further develops a design principle for high-performance single-atom catalysts (SACs) of NRR. Among the explored catalysts, W@BP (0.40 eV), Ta@BP (0.47 eV), and Nb@BP (0.53 eV) are identified as remarkable candidates with low free energy change in the potential-limiting step, high stability and high electrical conductivity for NRR. It is worth noting that almost all SACs with P-based ligands exhibit high NRR selectivity, due to the fact that they adsorb *N2 more strongly than *H. The adsorption free energy of *N2H can be considered as a descriptor for the intrinsic activity trends in NRR. Furthermore, by constructing a volcano plot of the activity against the electronic charge on metal centers, it is demonstrated that the metal center with a moderate amount of positive charge can promote the catalytic performance of NRR.

摘要

设计和开发高选择性、高活性的单原子电催化剂是实现在 常规环境条件下合成氨的关键. 本论文利用密度泛函理论对P配体 在N2还原反应(NRR)中的应用前景进行了预测, 并且提出了一种高 性能NRR单原子催化剂的设计准则. 理论计算结果显示, W@BP (0.40 eV)、Ta@BP(0.47 eV)和Nb@BP(0.53 eV)由于具有低反应自 由能、高稳定性和导电性, 在高效电催化NRR中潜力巨大. 特别是, 几乎所有金属中心对*N2中间体的吸附能力都比*H更强, 这表明以 P为配体的单原子催化剂具有较强的NRR选择性, 且*N2H中间体的 吸附自由能可作为描述符, 反映这一系列催化剂的催化活性. 此外, 计算结果显示, 金属中心向P配体转移的电子数目与NRR活性存在 着火山关系, 带有适度正电荷的金属中心具有优异的电催化NRR 活性. 该发现为高性能单原子催化剂的设计提供了理论指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foster SL, Bakovic SIP, Duda RD, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal, 2018, 1: 490–500

    Article  Google Scholar 

  2. Erisman JW, Sutton MA, Galloway J, et al. How a century of ammonia synthesis changed the world. Nat Geosci, 2008, 1: 636–639

    Article  CAS  Google Scholar 

  3. Chen JG, Crooks RM, Seefeldt LC, et al. Beyond fossil fuel-driven nitrogen transformations. Science, 2018, 360: eaar6611

    Article  CAS  Google Scholar 

  4. Hirakawa H, Hashimoto M, Shiraishi Y, et al. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J Am Chem Soc, 2017, 139: 10929–10936

    Article  CAS  Google Scholar 

  5. Marnellos G, Stoukides M. Ammonia synthesis at atmospheric pressure. Science, 1998, 282: 98–100

    Article  CAS  Google Scholar 

  6. Lan R, Irvine JTS, Tao S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci Rep, 2013, 3: 1145–1151

    Article  CAS  Google Scholar 

  7. Licht S, Cui B, Wang B, et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science, 2014, 345: 637–640

    Article  CAS  Google Scholar 

  8. Qiu W, Xie XY, Qiu J, et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat Commun, 2018, 9: 3485–3492

    Article  CAS  Google Scholar 

  9. Tang C, Qiao SZ. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem Soc Rev, 2019, 48: 3166–3180

    Article  CAS  Google Scholar 

  10. Singh AR, Rohr BA, Schwalbe JA, et al. Electrochemical ammonia synthesis—the selectivity challenge. ACS Catal, 2016, 7: 706–709

    Article  CAS  Google Scholar 

  11. Yang Y, Zhang L, Hu Z, et al. The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew Chem Int Ed, 2020, 59: 4525–4531

    Article  CAS  Google Scholar 

  12. Légaré MA, Bélanger-Chabot G, Dewhurst RD, et al. Nitrogen fixation and reduction at boron. Science, 2018, 359: 896–900

    Article  CAS  Google Scholar 

  13. Li L, Tang C, Xia B, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal, 2019, 9: 2902–2908

    Article  CAS  Google Scholar 

  14. Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev, 2015, 44: 2060–2086

    Article  CAS  Google Scholar 

  15. Montoya JH, Tsai C, Vojvodic A, et al. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem, 2015, 8: 2180–2186

    Article  CAS  Google Scholar 

  16. Skúlason E, Bligaard T, Gudmundsdóttir S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys, 2012, 14: 1235–1245

    Article  Google Scholar 

  17. Shi MM, Bao D, Li SJ, et al. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv Energy Mater, 2018, 8: 1800124–1800129

    Article  CAS  Google Scholar 

  18. Bao D, Zhang Q, Meng FL, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater, 2017, 29: 1604799

    Article  CAS  Google Scholar 

  19. Wang M, Liu S, Qian T, et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat Commun, 2019, 10: 341

    Article  CAS  Google Scholar 

  20. Seefeldt LC, Hoffman BM, Dean DR. Electron transfer in nitrogenase catalysis. Curr Opin Chem Biol, 2012, 16: 19–25

    Article  CAS  Google Scholar 

  21. Yandulov DV, Schrock RR. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science, 2003, 301: 76–78

    Article  CAS  Google Scholar 

  22. Liu X, Jiao Y, Zheng Y, et al. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J Am Chem Soc, 2019, 141: 9664–9672

    Article  CAS  Google Scholar 

  23. Eizawa A, Arashiba K, Tanaka H, et al. Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation. Nat Commun, 2017, 8: 1–2

    Article  CAS  Google Scholar 

  24. Kuriyama S, Arashiba K, Tanaka H, et al. Direct transformation of molecular dinitrogen into ammonia catalyzed by cobalt dinitrogen complexes bearing anionic PNP pincer ligands. Angew Chem Int Ed, 2016, 55: 14291–14295

    Article  CAS  Google Scholar 

  25. Buscagan TM, Oyala PH, Peters JC. N2-to-NH3 conversion by a triphos-iron catalyst and enhanced turnover under photolysis. Angew Chem Int Ed, 2017, 56: 6921–6926

    Article  CAS  Google Scholar 

  26. Arashiba K, Kinoshita E, Kuriyama S, et al. Catalytic reduction of dinitrogen to ammonia by use of molybdenum-nitride complexes bearing a tridentate triphosphine as catalysts. J Am Chem Soc, 2015, 137: 5666–5669

    Article  CAS  Google Scholar 

  27. Zhang L, Ding LX, Chen G, et al. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew Chem Int Ed, 2019, 58: 2612–2616

    Article  CAS  Google Scholar 

  28. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641

    Article  CAS  Google Scholar 

  29. Wei Z, Zhang Y, Wang S, et al. Fe-doped phosphorene for the nitrogen reduction reaction. J Mater Chem A, 2018, 6: 13790–13796

    Article  CAS  Google Scholar 

  30. Zhang H, Liu G, Shi L, et al. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater, 2018, 8: 1701343

    Article  CAS  Google Scholar 

  31. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem, 2018, 2: 65–81

    Article  CAS  Google Scholar 

  32. Ren S, Yu Q, Yu X, et al. Graphene-supported metal single-atom catalysts: a concise review. Sci China Mater, 2020, 63: 903–920

    Article  CAS  Google Scholar 

  33. Qin R, Liu P, Fu G, et al. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods, 2018, 2: 1700286

    Article  CAS  Google Scholar 

  34. Zhao J, Chen Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J Am Chem Soc, 2017, 139: 12480–12487

    Article  CAS  Google Scholar 

  35. Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc Chem Res, 2013, 46: 1740–1748

    Article  CAS  Google Scholar 

  36. Zhao W, Zhang L, Luo Q, et al. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal, 2019, 9: 3419–3425

    Article  CAS  Google Scholar 

  37. Geng Z, Liu Y, Kong X, et al. Achieving a record-high yield rate of \(120.0\mu\rm{g}_{\rm{NH}_{3}}\ \rm{mg}_{\rm{cat}}^{-1}\ \rm{h}^{-1}\) for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater, 2018, 30: 1803498

    Article  CAS  Google Scholar 

  38. Choi C, Back S, Kim NY, et al. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal, 2018, 8: 7517–7525

    Article  CAS  Google Scholar 

  39. Guo X, Huang S. Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: A computational study of single Fe atom supported on defective graphene. Electrochim Acta, 2018, 284: 392–399

    Article  CAS  Google Scholar 

  40. Han L, Liu X, Chen J, et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew Chem Int Ed, 2019, 58: 2321–2325

    Article  CAS  Google Scholar 

  41. He T, Matta SK, Du A. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Phys Chem Chem Phys, 2019, 21: 1546–1551

    Article  CAS  Google Scholar 

  42. Ling C, Bai X, Ouyang Y, et al. Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J Phys Chem C, 2018, 122: 16842–16847

    Article  CAS  Google Scholar 

  43. Li Q, Qiu S, Liu C, et al. Computational design of single-molybdenum catalysts for the nitrogen reduction reaction. J Phys Chem C, 2019, 123: 2347–2352

    Article  CAS  Google Scholar 

  44. Li Q, Liu C, Qiu S, et al. Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction. J Mater Chem A, 2019, 7: 21507–21513

    Article  CAS  Google Scholar 

  45. Ma X, Hu J, Zheng M, et al. N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising catalysts: A DFT study. Appl Surf Sci, 2019, 489: 684–692

    Article  CAS  Google Scholar 

  46. Wang Z, Yu Z, Zhao J. Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis. Phys Chem Chem Phys, 2018, 20: 12835–12844

    Article  CAS  Google Scholar 

  47. Chen Z, Zhao J, Cabrera CR, et al. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods, 2018, 3: 1800368

    Article  CAS  Google Scholar 

  48. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  49. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  50. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  52. Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132: 154104

    Article  CAS  Google Scholar 

  53. Dudarev SL, Botton GA, Savrasov SY, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B, 1998, 57: 1505–1509

    Article  CAS  Google Scholar 

  54. Hashmi A, Hong J. Transition metal doped phosphorene: first-principles study. J Phys Chem C, 2015, 119: 9198–9204

    Article  CAS  Google Scholar 

  55. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B, 2004, 108: 17886–17892

    Article  CAS  Google Scholar 

  56. Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 2000, 113: 9901–9904

    Article  CAS  Google Scholar 

  57. Yang B, Wan B, Zhou Q, et al. Te-doped black phosphorus field-effect transistors. Adv Mater, 2016, 28: 9408–9415

    Article  CAS  Google Scholar 

  58. Wang X, Tang C, Zhu W, et al. A new effective approach to prevent the degradation of black phosphorus: The scandium transition metal doping. J Phys Chem C, 2018, 122: 9654–9662

    Article  CAS  Google Scholar 

  59. Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater, 2018, 8: 1800369

    Article  CAS  Google Scholar 

  60. Liu X, Jiao Y, Zheng Y, et al. Isolated boron sites for electroreduction of dinitrogen to ammonia. ACS Catal, 2020, 10: 1847–1854

    Article  CAS  Google Scholar 

  61. Liu C, Li Q, Wu C, et al. Single-boron catalysts for nitrogen reduction reaction. J Am Chem Soc, 2019, 141: 2884–2888

    Article  CAS  Google Scholar 

  62. Yu X, Han P, Wei Z, et al. Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2: 1610–1622

    Article  CAS  Google Scholar 

  63. Rahman MZ, Kwong CW, Davey K, et al. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy Environ Sci, 2016, 9: 709–728

    Article  CAS  Google Scholar 

  64. Li L, Yang F, Ye GJ, et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat Nanotech, 2016, 11: 593–597

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Lyudmila Moskaleva for her valuable comments on the revision. This work was supported by the National Natural Science Foundation of China (21525626 and 21761132023), and the Program of Introducing Talents of Discipline to Universities (BP0618007).

Author information

Authors and Affiliations

Authors

Contributions

Zhao ZJ conceived and coordinated the research. Lin X designed the models and performed the calculations. Lin X and Zhao ZJ wrote the manuscript. All authors participated in the discussions of the research and the revision of manuscript.

Corresponding author

Correspondence to Zhi-Jian Zhao  (赵志坚).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Xiaoyun Lin is currently a MSc candidate at the School of Chemical Engineering and Technology, Tianjin University. She received her BSc degree from Beijing University of Chemical Technology in 2018. Her current interest lies in the molecular level understanding of electrocatalytic reactions.

Zhi-Jian Zhao received his BSc and MSc degrees in chemistry from Zhejiang University and his PhD degree from Technische Universität München in 2012. After working as a Postdoc with Prof. Greeley in Purdue University and with Dr. Studt and Prof. Nørskov at Stanford University, now he is a professor at Tianjin University. His current research focuses on mechanistic studies on heterogeneous catalysts using multi-scaling simulation methods.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Li, L., Chang, X. et al. Black phosphorus-hosted single-atom catalyst for electrocatalytic nitrogen reduction. Sci. China Mater. 64, 1173–1181 (2021). https://doi.org/10.1007/s40843-020-1522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1522-y

Keywords

Navigation