Skip to main content
Log in

Borophene−supported single transition metal atoms as potential oxygen evolution/reduction electrocatalysts: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Due to the maximal atom utilization, high activity, and selectivity, the two-dimensional (2D) matrix supported single-atom catalysts (SACs) have attracted substantial research interests. In this work, we carried out the theoretical study on the stability, activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), and its dependence on the electronic structure of transition metal (TM) anchored on two types of borophene (called β12 and χ3) by density functional theory (DFT) calculations. The results show that the early− and VIII−TM anchored β12 and χ3 borophenes are structurally and thermodynamically stable. The overpotentials of OER (ηOER) over the Ni supported on β12 and χ3 borophene SACs, designated as β12−Ni and χ3−Ni, are 0.38 and 0.35 V, respectively. The ηORR of β12−Ni and χ3−Ni are estimated to be as low as 0.34 and 0.39 V, respectively. The OER/ORR activity of the SACs can be well correlated with their electronic structures. The high ηOER values of early TM supported on borophene SACs correspond to high d-band center of TM. Both β12−Ni and χ3−Ni have a moderate d-band center. Since the overpotentials for OER and ORR on β12−Ni and χ3−Ni are comparable to those of Pt group metals and their oxides, β12−Ni and χ3−Ni can be considered as the promising bifunctional catalysts for OER and ORR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao GQ, Rui K, Dou SX, Sun WP (2018) Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28:1803291

    Article  CAS  Google Scholar 

  2. Shao MH, Chang QW, Dodelet J−P, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116: 3594–3657

  3. You B, Sun YJ (2018) Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51:1571–1580

    Article  CAS  PubMed  Google Scholar 

  4. Marković NM, Schmidt TJ, Stamenković V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1:105–116

    Article  Google Scholar 

  5. Antolini E (2014) Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 4:1426–1440

    Article  CAS  Google Scholar 

  6. Paoli EA, Masini F, Frydendal R, Deiana D, Schlaup C, Malizia M, Hansen TW, Horch S, Chorkendorff IELSI (2015) Oxygen evolution on well−characterized mass−selected Ru and RuO2 nanoparticles. Chem. Sci. 6:190–196

    Article  CAS  PubMed  Google Scholar 

  7. Zhang YL, Luo MC, Yang Y, Li YJ, Guo SJ (2019) Advanced multifunctional electrocatalysts for energy conversion. ACS Energy Lett 4:1672–1680

    Article  CAS  Google Scholar 

  8. Kibsgaard J, Chen ZB, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11:963–969

    Article  CAS  PubMed  Google Scholar 

  9. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li LS, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135:10274–10277

    Article  CAS  PubMed  Google Scholar 

  10. Chen ZB, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 11:4168–4175

    Article  CAS  PubMed  Google Scholar 

  11. Han L, Dong S, Wang EK (2016) Transition−metal (Co, Ni, and Fe)−based electrocatalysts for the water oxidation reaction. Adv. Mater. 28:9266–9291

    Article  CAS  PubMed  Google Scholar 

  12. Vojvodic A, Norskov JK (2011) Optimizing perovskites for the water−splitting reaction. Science 334:1355–1356

    Article  CAS  PubMed  Google Scholar 

  13. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135:9267–9270

    Article  CAS  PubMed  Google Scholar 

  14. Pu ZH, Zhao JH, Amiinu IS, Li WQ, Wang M, He DP, Mu SC (2019) A universal synthesis strategy for P−rich noble metal diphosphide−based electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 12:952–957

    Article  CAS  Google Scholar 

  15. Ma FX, Wu HB, Xia BY, Xu CY, Lou XW (2015) Hierarchical β−Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew. Chem. Int. Ed. 127:15615–15619

    Article  Google Scholar 

  16. Ling C, Shi L, Ouyang Y, Chen Q, Wang J (2016) Transition metal−promoted V2CO2 (MXenes): a new and highly active catalyst for hydrogen evolution reaction. Adv Sci 3:1600180

    Article  CAS  Google Scholar 

  17. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Ib C (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  CAS  PubMed  Google Scholar 

  18. Zhou BZ, Wang XC, Mi WB (2018) Superior electronic structure of two-dimensional 3d transition metal dicarbides for applications in spintronics. J. Mater. Chem. C 6:4290–4299

    Article  CAS  Google Scholar 

  19. Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW (2015) Cobalt−iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137:3638–3648

    Article  CAS  PubMed  Google Scholar 

  20. Xiu LY, Wang ZY, Yu MZ, Wu XH, Qiu JS (2018) Aggregation−resistant 3D MXene−based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12:8017–8028

    Article  CAS  PubMed  Google Scholar 

  21. Yue Q, Sun J, Chen S, Zhou Y, Li HJ, Chen Y, Zhang RY, Wei GF, Kang YJ (2020) Hierarchical mesoporous MXene−NiCoP electrocatalyst for water−splitting. ACS Appl. Mater. Interfaces 12:18570–18577

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Zhang QY, Feng XL (2019) Support and interface effects in water−splitting electrocatalysts. Adv. Mater. 31:1808167

    Article  CAS  Google Scholar 

  23. Lu BZ, Liu QM, Chen SW (2020) Electrocatalysis of single−atom sites: impacts of atomic coordination. ACS Catal. 10:7584–7618

    Article  CAS  Google Scholar 

  24. Zhu CZ, Shi QR, Feng S, Du D, Lin YH (2018) Single−atom catalysts for electrochemical water splitting. ACS Energy Lett 3:1713–1721

    Article  CAS  Google Scholar 

  25. Chen YJ, Ji SF, Wang YG, Dong JC, Chen WX, Li Z, Shen RG, Zheng LR, Zhuang ZG, Wang DS, Li YD (2017) Isolated single iron atoms anchored on N−doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56:6937–6941

    Article  CAS  Google Scholar 

  26. Fei HL, Dong JC, Feng YX, Allen CS, Wan CZ, Volosskiy B, Li MF, Zhao ZP, Wang YL, Sun HT, An PF, Chen WX, Guo ZY, Lee C, Chen DL, Shakir I, Liu MJ, Hu TD, Li YD, Kirkland AI, Duan XF, Huang Y (2018) General synthesis and definitive structural identification of MN4C4 single−atom catalysts with tunable electrocatalytic activities. Nature Catal 1:63–72

    Article  CAS  Google Scholar 

  27. Jones J, Xiong HF, DeLaRiva AT, Peterson EJ, Pham H, Challa SR, Qi GS, Oh S, Wiebenga MH, Hernández XIP, Wang Y, Datye AK (2016) Thermally stable single−atom platinum−on−ceria catalysts via atom trapping. Science 353:150–154

    Article  CAS  PubMed  Google Scholar 

  28. Liu PX, Zhao Y, Qin RX, Mo SG, Chen GX, Gu L, Chevrier DM, Zhang P, Guo Q, Zang DD, Wu BH, Fu G, Zheng NF (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–800

    Article  CAS  PubMed  Google Scholar 

  29. Lin LL, Zhou W, Gao R, Yao SY, Zhang X, Xu WQ, Zheng SJ, Jiang Z, Yu QL, Li YW, Shi C, Wen XD, Ma D (2017) Low−temperature hydrogen production from water and methanol using Pt/α−MoC catalysts. Nature 544:80–83

    Article  CAS  PubMed  Google Scholar 

  30. Zhang JQ, Zhao YF, Guo X, Chen C, Dong CL, Liu RS, Han CP, Li YD, Gogotsi Y, Wang GX (2018) Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catal 1:985–992

    Article  CAS  Google Scholar 

  31. Liu GL, Robertson AW, Li MMJ, Kuo WCH, Darby MT, Muhieddine MH, Lin YC, Suenaga K, Stamatakis M, Warner JH, Tsang SCE (2017) MoS2 monolayer catalyst doped with isolated co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9:810–816

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Wang ZJ, Zhu ZP (2013) A density functional theory study on oxygen reduction reaction on nitrogen-doped graphene. J. Mol. Model. 19:5515–5521

    Article  CAS  PubMed  Google Scholar 

  33. Li DF, Gao JF, Cheng P, He J, Yin Y, Hu YX, Chen L, Cheng Y, Zhao JJ (2019) 2D boron sheets: structure, growth, and electronic and thermal transport properties. Adv. Funct. Mater. 30:1904349

    Article  CAS  Google Scholar 

  34. Rubab A, Baig N, Sher M, Sohail M (2020) Advances in ultrathin borophene materials. Chem. Eng. J. 401:126109

    Article  CAS  Google Scholar 

  35. Xie SY, Wang YL, Li XB (2019) Flat boron: a new cousin of graphene. Adv. Mater. 31:1900392

    Article  CAS  Google Scholar 

  36. Penev ES, Bhowmick S, Sadrzadeh A, Yakobson BI (2012) Polymorphism of two−dimensional boron. Nano Lett. 12:2441–2445

    Article  CAS  PubMed  Google Scholar 

  37. Yue CG, Luo K, Xu B (2019) Two−dimensional antiferromagnetic boron form first principles. AIP Adv. 9:055211

    Article  CAS  Google Scholar 

  38. Wu XJ, Dai J, Zhao Y, Zhuo ZW, Yang JL, Zeng XC (2012) Two−dimensional boron monolayer sheets. ACS Nano 6:7443–7453

    Article  CAS  PubMed  Google Scholar 

  39. Yu X, Li L, Xu XW, Tang CC (2012) Prediction of two−dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C 116:20075–20079

    Article  CAS  Google Scholar 

  40. Mannix AJ, Zhou XF, Kiraly B, Wood JD, Alducin D, Myers BD, Liu XL, Fisher BL, Santiago U, Guest JR, Yacaman MJ, Ponce A, Oganov AR, Hersam MC, Guisinger NP (2015) Synthesis of borophenes: anisotropic, two−dimensional boron polymorphs. Science 350:1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng BJ, Zhang J, Zhong Q, Li WB, Li S, Li H, Cheng P, Meng S, Chen L, Wu KH (2016) Experimental realization of two−dimensional boron sheets. Nat. Chem. 8:564

    Article  CAS  Google Scholar 

  42. Wu RT, Drozdov IK, Eltinge S, Zahl P, Ismail−Beigi S, Bozovic I, Gozar (2019) A large−area single−crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 14: 44

  43. Kiraly B, Liu X, Wang L, Zhang Z, Mannix AJ, Fisher BL, Yakobson BI, Hersam MC, Guisinger NP (2019) Borophene synthesis on Au(111). ACS Nano 13:3816

    Article  CAS  PubMed  Google Scholar 

  44. Zhou XF, Dong X, Oganov AR, Zhu Q, Tian Y, Wang HT (2014) Semimetallic two−dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112:085502

    Article  CAS  Google Scholar 

  45. Cai H, Ye JJ, Wang YW, Saafi M, Huang B, Yang DM, Ye JQ (2020) An effective microscale approach for determining the anisotropy of polymer composites reinforced with randomly distributed short fibers. Compos. Struct. 240:112087

    Article  Google Scholar 

  46. Meng F, Chen X, Sun S, He J (2017) Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons. Phys E Low Dimens Syst Nanostruct 91:106–112

    Article  CAS  Google Scholar 

  47. Zhang XM, Hu JP, Cheng YC, Yang HY, Yao YG, Yang SYA (2016) Borophene as an extremely high capacity electrode material for Li−ion and Na−ion batteries. Nanoscale 8:15340–15347

    Article  CAS  PubMed  Google Scholar 

  48. Mortazavi B, Rahaman O, Ahzi S, Rabczuk T (2017) Flat borophene films as anode materials for Mg, Na or Li−ion batteries with ultrahigh capacities: a first−principles study. Appl. Mater. Today 8:60–67

    Article  Google Scholar 

  49. Liu C, Dai Z, Zhang J, Jin Y, Li D, Sun C (2018) Two−dimensional boron sheets as metal−free catalysts for hydrogen evolution reaction. J. Phys. Chem. C 122:19051–19055

    Article  CAS  Google Scholar 

  50. Banerjee A, Chakraborty S, Jena NK, Ahuja R (2018) Scrupulous probing of bifunctional catalytic activity of borophene monolayer: mapping reaction coordinate with charge transfer. ACS Appl Energy Mater 1:3571–3576

    Article  CAS  Google Scholar 

  51. Singh Y, Back S, Jung YS (2018) Computational exploration of borophane−supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. Phys. Chem. Chem. Phys. 20:21095–21104

    Article  CAS  PubMed  Google Scholar 

  52. Shen HM, Li YW, Sun Q (2018) Cu atomic chains supported on β−borophene sheets for effective CO2 electroreduction. Nanoscale 10:11064–11071

    Article  CAS  PubMed  Google Scholar 

  53. Kresse G, Furthmüller J (1996) Efficiency of ab−initio total energy calculations for metals and semiconductors using a plane−wave basis set. Comput. Mater. Sci. 6:15–50

    Article  CAS  Google Scholar 

  54. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented−wave method. Phys. Rev. B 59:1758–1775

    Article  CAS  Google Scholar 

  55. Blöchl PE (1994) Projector augmented−wave method. Phys. Rev. B 50:17953–17979

    Article  Google Scholar 

  56. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–3868

    CAS  PubMed  Google Scholar 

  57. Grimme SJ (2006) GGA−type density functional constructed with a long−range dispersion correction. Comput. Chem. 27:1787–1799

    Article  CAS  Google Scholar 

  58. Fishman M, Zhuang HL, Mathew K, Dirschka W, Hennig RG (2013) Accuracy of exchange correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B 87:245402

    Article  CAS  Google Scholar 

  59. Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  60. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607:83

    Article  CAS  Google Scholar 

  61. Nørskov JK, Ressmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel cell cathode. J. Phys. Chem. B 108:17886–17892

    Google Scholar 

  62. Zhang ZH, Yang Y, Gao GY, Yakobson BI (2015) Two−dimensional boron monolayers mediated by metal substrates. Angew. Chem. Int. Ed. 127:13214–13218

    Article  Google Scholar 

  63. Xu XW, Fu K, Yu M, Lu ZM, Zhang XH, Liu GD, Tang CC (2014) The thermodynamic, electronic and elastic properties of the early−transition−metal diborides with AlB2−type structure: a density functional theory study. J Alloys Comp 607:198–206

    Article  CAS  Google Scholar 

  64. Man IC, Su HY, Calle−Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3: 1159

  65. Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 14:397–426

    Article  CAS  Google Scholar 

  66. Calle−Vallejo F, Krabbe A, Carcía−Lastra JM (2017) How covalence breaks adsorption−energy scaling relations and salvation restores them. Chem. Sci. 8: 124–130

  67. Darby MT, Stamatakis M, Michaelides A, Charles E, Sykes H (2018) Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single−atom alloys. J. Phys. Chem. Lett. 9:5636–5646

    Article  CAS  PubMed  Google Scholar 

  68. Hammer B, Nørskov JK (1995) Why gold is the noblest of all the metals? Nature 376:238–240

    Article  CAS  Google Scholar 

Download references

Availability of data and material

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

N/A.

Funding

This work was supported by the Science and Technology Innovation Fund for Outstanding Youth in Hebei University of Technology (No. 2013006), the Natural Science Foundation of Hebei Province (No. E2018202085 and E2014202155), and college students’ innovation and entrepreneurship projects. X.W. Xu would like to thank the support of LvLiang Cloud Computing Center of China.

Author information

Authors and Affiliations

Authors

Contributions

X.W. Xu: Conceptualization, calculation, and writing. R.H. Si: Calculation and discussion. Y. Dong and K. Fu: Software and methodology. L.L. Li: Discussion and writing. M.H. Zhang: Calculation and discussion. X.Y. Wu: Discussion. J. Zhang: Reviewing. Y. Guo and Y.Y. He: Discussion.

Corresponding author

Correspondence to Xuewen Xu.

Ethics declarations

Ethics approval

N/A.

Consent to participate

N/A.

Consent for publication

N/A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1880 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Si, R., Dong, Y. et al. Borophene−supported single transition metal atoms as potential oxygen evolution/reduction electrocatalysts: a density functional theory study. J Mol Model 27, 67 (2021). https://doi.org/10.1007/s00894-021-04693-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04693-5

Keywords

Navigation