Skip to main content
Log in

Graphene-supported metal single-atom catalysts: a concise review

石墨烯基金属单原子催化剂: 综述

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs) have become an emerging frontier trend in the field of heterogeneous catalysis due to their high activity, selectivity and stability. SACs could greatly increase the availabilities of the active metal atoms in many catalytic reactions by reducing the size to single atom scale. Graphene-supported metal SACs have also drawn considerable attention due to the unique lattice structure and physicochemical properties of graphene, resulting in superior activity and selectivity for several chemical reactions. In this paper, we review recent progress in the fabrications, advanced characterization tools and advantages of graphene-supported metal SACs, focusing on their applications in catalytic reactions such as CO oxidation, the oxidation of benzene to phenol, hydrogen evolution reaction, methanol oxidation reaction, oxygen reduction reaction, hydrogenation and photoelectrocatalysis. We also propose the development of SACs towards industrialization in the future.

摘要

单原子催化剂具有较高的活性、 选择性和稳定性, 已成为多相催化领域的一个新兴前沿趋势. 通过将催化反应中活性金属原子的尺寸减小到单原子尺度, 单原子催化剂可以大幅提高活性金属原子在众多催化反应中的有效性. 石墨烯基金属单原子催化剂也因其独特的晶格结构和物理化学性质而备受关注, 使其在一些化学反应中表现出了优异的活性和选择性. 本文综述了近年来石墨烯基金属单原子催化剂的制备方法、 先进表征手段及优点, 重点介绍了其在一氧化碳氧化、 苯氧化制苯酚、 析氢反应、 甲醇氧化反应、 氧还原反应、 加氢及光电催化等方面的应用. 最后, 我们对石墨烯基金属单原子催化剂未来的产业化发展提出了建议.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas JM, Saghi Z, Gai PL. Can a single atom serve as the active site in some heterogeneous catalysts? Top Catal, 2011, 54: 588–594

    Article  CAS  Google Scholar 

  2. Zhang X, Shi H, Xu BQ. Catalysis by gold: Isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew Chem Int Ed, 2010, 44: 7132–7135

    Article  CAS  Google Scholar 

  3. Vajda S, Pellin MJ, Greeley JP, et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater, 2009, 8: 213–216

    Article  CAS  Google Scholar 

  4. Turner M, Golovko VB, Vaughan OPH, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature, 2008, 454: 981–983

    Article  CAS  Google Scholar 

  5. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641

    Article  CAS  Google Scholar 

  6. Lin J, Wang A, Qiao B, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc, 2013, 135: 15314–15317

    Article  CAS  Google Scholar 

  7. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem, 2018, 2: 65–81

    Article  CAS  Google Scholar 

  8. Wang L, Huang L, Liang F, et al. Preparation, characterization and catalytic performance of single-atom catalysts. Chin J Catal, 2017, 38: 1528–1539

    Article  CAS  Google Scholar 

  9. Yang XF, Wang A, Qiao B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res, 2013, 46: 1740–1748

    Article  CAS  Google Scholar 

  10. Sahoo S, Reber AC, Khanna SN. Effect of location and filling of dstates on methane activation in single site Fe-based catalysts. Chem Phys Lett, 2016, 660: 48–54

    Article  CAS  Google Scholar 

  11. Geim AK. Graphene: status and prospects. Science, 2009, 324: 1530–1534

    Article  CAS  Google Scholar 

  12. Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics. Chem Rev, 2007, 38: 718–747

    Article  CAS  Google Scholar 

  13. Su Y, Li Z, Yu Y, et al. Composite structural modeling and tensile mechanical behavior of graphene reinforced metal matrix composites. Sci China Mater, 2018, 61: 112–124

    Article  CAS  Google Scholar 

  14. Zheng S, Zeng M, Cao H, et al. Insight into the rapid growth of graphene single crystals on liquid metal via chemical vapor deposition. Sci China Mater, 2019, 62: 1087–1095

    Article  CAS  Google Scholar 

  15. Balandin AA, Ghosh S, Bao W, et al. Superior Thermal conductivity of single-layer graphene. Nano Lett, 2008, 8: 902–907

    Article  CAS  Google Scholar 

  16. Wang L, Wu B, Liu H, et al. Low temperature growth of clean single layer hexagonal boron nitride flakes and film for graphene-based field-effect transistors. Sci China Mater, 2019, 62: 1218–1225

    Article  Google Scholar 

  17. Qin J, Zhou F, Xiao H, et al. Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci China Mater, 2018, 61: 233–242

    Article  CAS  Google Scholar 

  18. He DX, Qiu Y, Li LL, et al. Large-scale solvent-thermal synthesis of graphene/magnetite/conductive oligomer ternary composites for microwave absorption. Sci China Mater, 2015, 58: 566–573

    Article  CAS  Google Scholar 

  19. Tombros N, Veligura A, Junesch J, et al. Large yield production of high mobility freely suspended graphene electronic devices on a polydimethylglutarimide based organic polymer. J Appl Phys, 2011, 109: 093702

    Article  CAS  Google Scholar 

  20. Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162

    Article  CAS  Google Scholar 

  21. Chae HK, Siberio-Pérez DY, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427: 523–527

    Article  CAS  Google Scholar 

  22. Deng Y, Luo C, Zhang J, et al. Fast three-dimensional assembly of MoS2 inspired by the gelation of graphene oxide. Sci China Mater, 2019, 62: 745–750

    Article  Google Scholar 

  23. Ibrahim WAW, Nodeh HR, Sanagi MM. Graphene-based materials as solid phase extraction sorbent for trace metal ions, organic compounds, and biological sample preparation. Critical Rev Anal Chem, 2016, 46: 267–283

    Article  CAS  Google Scholar 

  24. Jin L, Huang L, Ren L, et al. Preparation of stable and high-efficient poly(m-phenylenediamine)/reduced graphene oxide composites for hexavalent chromium removal. J Mater Sci, 2019, 54: 383–395

    Article  CAS  Google Scholar 

  25. Park S, Lee KS, Bozoklu G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano, 2008, 2: 572–578

    Article  CAS  Google Scholar 

  26. Molina-García MA, Rees NV. “Metal-free” electrocatalysis: Quaternary-doped graphene and the alkaline oxygen reduction reaction. Appl Catal A-General, 2018, 553: 107–116

    Article  CAS  Google Scholar 

  27. Chen F, Yang Q, Li X, et al. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Appl Catal B-Environ, 2017, 200: 330–342

    Article  CAS  Google Scholar 

  28. Chen X, Yu L, Wang S, et al. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy, 2016, 32: 353–358

    Article  CAS  Google Scholar 

  29. Guo S, Yuan N, Zhang G, et al. Graphene modified iron sludge derived from homogeneous fenton process as an efficient heterogeneous fenton catalyst for degradation of organic pollutants. Microporous Mesoporous Mater, 2017, 238: 62–68

    Article  CAS  Google Scholar 

  30. Sun S, Zhang G, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep, 2013, 3: 1775

    Article  CAS  Google Scholar 

  31. Ta HQ, Zhao L, Yin W, et al. Single Cr atom catalytic growth of graphene. Nano Res, 2018, 11: 2405–2411

    Article  CAS  Google Scholar 

  32. Yan H, Cheng H, Yi H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc, 2015, 137: 10484–10487

    Article  CAS  Google Scholar 

  33. Ye H, Li Y, Chen J, et al. PdCu alloy nanoparticles supported on reduced graphene oxide for electrocatalytic oxidation of methanol. J Mater Sci, 2018, 53: 15871–15881

    Article  CAS  Google Scholar 

  34. Zhao J, Deng Q, Avdoshenko SM, et al. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc Natl Acad Sci USA, 2014, 111: 15641–15646

    Article  CAS  Google Scholar 

  35. Liang Y, Li Y, Wang H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater, 2011, 10: 780–786

    Article  CAS  Google Scholar 

  36. Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc, 2011, 133: 7296–7299

    Article  CAS  Google Scholar 

  37. Scholz D, Kröcher O, Vogel F. Deactivation and regeneration of sulfonated carbon catalysts in hydrothermal reaction environments. ChemSusChem, 2018, 11: 2189–2201

  38. Wu P, Du P, Zhang H, et al. Graphyne-supported single Fe atom catalysts for CO oxidation. Phys Chem Chem Phys, 2015, 17: 1441–1449

    Article  CAS  Google Scholar 

  39. Liu X, Sui Y, Duan T, et al. CO oxidation catalyzed by Pt-embedded graphene: a first-principles investigation. Phys Chem Chem Phys, 2014, 16: 23584–23593

    Article  CAS  Google Scholar 

  40. Zhang X, Lu Z, Xu G, et al. Single Pt atom stabilized on nitrogen doped graphene: CO oxidation readily occurs via the tri-molecular Eley-Rideal mechanism. Phys Chem Chem Phys, 2015, 17: 20006–20013

    Article  CAS  Google Scholar 

  41. Deng D, Chen X, Yu L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv, 2015, 1: e1500462

    Article  Google Scholar 

  42. Yan M, Hua Y, Zhu F, et al. Constructing nitrogen doped graphene quantum dots-ZnNb2O6/g-C3N4 catalysts for hydrogen production under visible light. Appl Catal B-Environ, 2017, 206: 531–537

    Article  CAS  Google Scholar 

  43. Fei H, Dong J, Arellano-Jiménez MJ, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun, 2015, 6: 8668

    Article  CAS  Google Scholar 

  44. Yoo EJ, Okata T, Akita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett, 2009, 9: 2255–2259

    Article  CAS  Google Scholar 

  45. Li Y, Gao W, Ci L, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 2010, 48: 1124–1130

    Article  CAS  Google Scholar 

  46. Zhao Y, Zhan L, Tian J, et al. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium. Electrochim Acta, 2011, 56: 1967–1972

    Article  CAS  Google Scholar 

  47. Lefèvre M, Proietti E, Jaouen F, et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science, 2009, 324: 71–74

    Article  CAS  Google Scholar 

  48. Stambula S, Gauquelin N, Bugnet M, et al. Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J Phys Chem C, 2014, 118: 3890–3900

    Article  CAS  Google Scholar 

  49. Lu Y, Liu M, Nie H, et al. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell. J Nanopart Res, 2016, 18: 160

    Article  CAS  Google Scholar 

  50. Shao Y, Zhang S, Kou R, et al. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. J Power Sources, 2010, 195: 1805–1811

    Article  CAS  Google Scholar 

  51. Nie R, Miao M, Du W, et al. Selective hydrogenation of C-C bond over N-doped reduced graphene oxides supported Pd catalyst. Appl Catal B-Environ, 2016, 180: 607–613

    Article  CAS  Google Scholar 

  52. Ahmed SN, Haider W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology, 2018, 29: 342001

    Article  CAS  Google Scholar 

  53. Prasad M, Sharma V, Aher R, et al. Synergistic effect of Ag plasmon- and reduced graphene oxide-embedded ZnO nanorod-based photoanodes for enhanced photoelectrochemical activity. J Mater Sci, 2017, 52: 13572–13585

    Article  CAS  Google Scholar 

  54. Song X, Shi Q, Wang H, et al. Preparation of Pd-Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation-reduction properties for chlorophenols. Appl Catal B-Environ, 2017, 203: 442–451

    Article  CAS  Google Scholar 

  55. Cheng J, Zhang M, Wu G, et al. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes. Environ Sci Technol, 2014, 48: 7076–7084

    Article  CAS  Google Scholar 

  56. Yoshitake T, Shimakawa Y, Kuroshima S, et al. Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B-Condensed Matter, 2002, 323: 124–126

    Article  CAS  Google Scholar 

  57. Jones J, Xiong H, DeLaRiva AT, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353: 150–154

    Article  CAS  Google Scholar 

  58. Allen JE, Hemesath ER, Perea DE, et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat Nanotech, 2008, 3: 168–173

    Article  CAS  Google Scholar 

  59. Kolmakov A, Klenov DO, Lilach Y, et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett, 2005, 5: 667–673

    Article  CAS  Google Scholar 

  60. Kim HM, Kim K, Lee CY, et al. Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett, 2004, 84: 589–591

    Article  CAS  Google Scholar 

  61. Blomquist J, Lång H, Larsson R, et al. Pyrolysis behaviour of metalloporphyrins. Part 2-A Mössbauer study of pyrolysed FeIII tetraphenylporphyrin chloride. J Chem Soc Faraday Trans, 1992, 88: 2007–2011

    Article  CAS  Google Scholar 

  62. Jiao L, Wan G, Zhang R, et al. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew Chem Int Ed, 2018, 57: 8525–8529

    Article  CAS  Google Scholar 

  63. Liu W, Zhang L, Yan W, et al. Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem Sci, 2016, 7: 5758–5764

    Article  CAS  Google Scholar 

  64. Wan G, Yang C, Zhao W, et al. Anion-regulated selective generation of cobalt sites in carbon: Toward superior bifunctional electrocatalysis. Adv Mater, 2017, 29: 1703436–1703443

    Article  CAS  Google Scholar 

  65. Zhu C, Shi Q, Xu BZ, et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv Energy Mater, 2018, 8: 1801956–1801963

    Article  CAS  Google Scholar 

  66. Xu BQ, Wei JM, Wang HY, et al. Nano-MgO: novel preparation and application as support of Ni catalyst for CO2 reforming of methane. Catal Today, 2001, 68: 217–225

    Article  CAS  Google Scholar 

  67. Jabri A, Temple C, Crewdson P, et al. Role of the metal oxidation state in the SNS-Cr catalyst for ethylene trimerization: isolation of di- and trivalent cationic intermediates. J Am Chem Soc, 2006, 128: 9238–9247

    Article  CAS  Google Scholar 

  68. Sakthivel S, Shankar MV, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res, 2004, 38: 3001–3008

    Article  CAS  Google Scholar 

  69. Stagg-Williams SM, Noronha FB, Fendley G, et al. CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. J Catal, 2000, 194: 240–249

    Article  CAS  Google Scholar 

  70. Llorca J, de la Piscina PRı, Dalmon JA, et al. CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts. Appl Catal B-Environ, 2003, 43: 355–369

    Article  CAS  Google Scholar 

  71. Abbet S, Sanchez A, Heiz U, et al. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): One atom is enough! J Am Chem Soc, 2000, 122: 3453–3457

    Article  CAS  Google Scholar 

  72. Qiao B, Liu J, Wang YG, et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal, 2015, 5: 6249–6254

    Article  CAS  Google Scholar 

  73. Zhang H, Kawashima K, Okumura M, et al. Colloidal Au single-atom catalysts embedded on Pd nanoclusters. J Mater Chem A, 2014, 2: 13498–13508

    Article  CAS  Google Scholar 

  74. Guo X, Fang G, Li G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science, 2014, 344: 616–619

    Article  CAS  Google Scholar 

  75. Guo S, Ma L, Song G, et al. Covalent grafting of triazine derivatives onto graphene oxide for preparation of epoxy composites with improved interfacial and mechanical properties. J Mater Sci, 2018, 53: 16318–16330

    Article  CAS  Google Scholar 

  76. Li J, Tang X, Yi H, et al. Effects of copper-precursors on the catalytic activity of Cu/graphene catalysts for the selective catalytic oxidation of ammonia. Appl Surf Sci, 2017, 412: 37–44

    Article  CAS  Google Scholar 

  77. Niu Y, Huang X, Wu X, et al. One-pot synthesis of Co/N-doped mesoporous graphene with embedded Co/CoOx nanoparticles for efficient oxygen reduction reaction. Nanoscale, 2017, 9: 10233–10239

    Article  CAS  Google Scholar 

  78. Primo A, Atienzar P, Sanchez E, et al. From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem Commun, 2012, 48: 9254–9256

    Article  CAS  Google Scholar 

  79. Ren X, Liao B, Li Y, et al. Facile synthesis of PdSnCo/nitrogen-doped reduced graphene as a highly active catalyst for lithium-air batteries. Electrochim Acta, 2017, 228: 36–44

    Article  CAS  Google Scholar 

  80. Wang H, Xiao H, Lu Y, et al. The catalytic effect of boron nitride on the mechanical properties of polyacrylonitrile-based carbon fiber. J Mater Sci, 2016, 51: 10690–10700

    Article  CAS  Google Scholar 

  81. Wang H, Zhang X, Takamatsu H. Ultraclean suspended monolayer graphene achieved by in situ current annealing. Nanotechnology, 2017, 28: 045706

    Article  CAS  Google Scholar 

  82. Yan H, Lin Y, Wu H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun, 2017, 8: 1070–1081

    Article  CAS  Google Scholar 

  83. Wang T, Wang J, Wang X, et al. Graphene-templated synthesis of sandwich-like porous carbon nanosheets for efficient oxygen reduction reaction in both alkaline and acidic media. Sci China Mater, 2018, 61: 915–925

    Article  CAS  Google Scholar 

  84. Sahoo S, Suib SL, Alpay SP. Graphene supported single atom transition metal catalysts for methane activation. ChemCatChem, 2018, 10: 3229–3235

    Article  CAS  Google Scholar 

  85. Robertson AW, Montanari B, He K, et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett, 2013, 13: 1468–1475

    Article  CAS  Google Scholar 

  86. Zhang X, Guo J, Guan P, et al. Catalytically active single-atom niobium in graphitic layers. Nat Commun, 2013, 4: 1924

    Article  CAS  Google Scholar 

  87. Wang WL, Santos EJG, Jiang B, et al. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett, 2016, 14: 450–455

    Article  CAS  Google Scholar 

  88. Yang HB, Hung SF, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy, 2018, 3: 140–147

    Article  CAS  Google Scholar 

  89. Huang ML, Chang YC, Chang CH, et al. Surface passivation of III–V compound semiconductors using atomic-layer-deposition-grown Al2O3. Appl Phys Lett, 2005, 87: 252104–252107

    Article  CAS  Google Scholar 

  90. Kim H. Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing. J Vac Sci Technol B, 2003, 21: 2231–2261

    Article  CAS  Google Scholar 

  91. Sneh O, Clark-Phelps RB, Londergan AR, et al. Thin film atomic layer deposition equipment for semiconductor processing. Thin Solid Films, 2002, 402: 248–261

    Article  CAS  Google Scholar 

  92. Ahn KY, Forbes L. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics. US Patent, 20040023461, 2007

    Google Scholar 

  93. Elam JW, Sechrist ZA, George SM. ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: growth and surface roughness measurements. Thin Solid Films, 2002, 414: 43–55

    Article  CAS  Google Scholar 

  94. Lim BS, Rahtu A, de Rouffignac P, et al. Atomic layer deposition of lanthanum aluminum oxide nano-laminates for electrical applications. Appl Phys Lett, 2004, 84: 3957–3959

    Article  CAS  Google Scholar 

  95. Shao Y, Zhang S, Wang C, et al. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J Power Sources, 2010, 195: 4600–4605

    Article  CAS  Google Scholar 

  96. Li W, Liang C, Zhou W, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B, 2003, 107: 6292–6299

    Article  CAS  Google Scholar 

  97. Koningsberger DC, Mojet BL, van Dorssen GE, et al. XAFS spectroscopy; fundamental principles and data analysis. Top Catal, 2000, 10: 143–155

    Article  CAS  Google Scholar 

  98. Browning ND, Chisholm MF, Pennycook SJ. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature, 1993, 366: 143–146

    Article  CAS  Google Scholar 

  99. Li C, Yang G. The principle and applications of STEM and EELS. Physics, 2014, 43: 597–605

    Google Scholar 

  100. Zhao W, Wan G, Peng C, et al. Key single-atom electrocatalysis in metal-organic framework (MOF)-derived bifunctional catalysts. ChemSusChem, 2018, 11: 3473–3479

    Article  CAS  Google Scholar 

  101. Greca F, Hares MM, Nevah E, et al. A randomized trial to compare rubber band ligation with phenol injection for treatment of hemorrhoids. Br J Surg, 1981, 68: 250–252

    Article  CAS  Google Scholar 

  102. Rengaraj S. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste: rubber seed coat. J Hazard Mater, 2002, 89: 185–196

    Article  CAS  Google Scholar 

  103. El-Naas MH, Al-Zuhair S, Alhaija MA. Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chem Eng J, 2010, 162: 997–1005

    Article  CAS  Google Scholar 

  104. Wagner M, Nicell JA. Peroxidase-catalyzed removal of phenols from a petroleum refinery wastewater. Water Sci Tech, 2001, 43: 253–260

    Article  CAS  Google Scholar 

  105. Lai TL, Lai YL, Lee CC, et al. Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol. Catal Today, 2008, 131: 105–110

    Article  CAS  Google Scholar 

  106. Pradhan GK, Padhi DK, Parida KM. Fabrication of a-Fe2O3 nanorod/RGO composite: A novel hybrid photocatalyst for phenol degradation. ACS Appl Mater Interfaces, 2013, 5: 9101–9110

    Article  CAS  Google Scholar 

  107. Iwamoto M, Hirata J, Matsukami K, et al. Catalytic oxidation by oxide radical ions. 1. One-step hydroxylation of benzene to phenol over group 5 and 6 oxides supported on silica gel. J Phys Chem, 1983, 87: 903–905

    Article  CAS  Google Scholar 

  108. Bak T, Nowotny J, Rekas M, et al. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrogen Energy, 2002, 27: 991–1022

    Article  CAS  Google Scholar 

  109. O’M Bockris J. On hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy, 2003, 28: 131–133

    Article  Google Scholar 

  110. Turner JA. Sustainable hydrogen production. Science, 2004, 305: 972–974

    Article  CAS  Google Scholar 

  111. Cao Y, Hu P, Pan W, et al. Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction. Sens Actuat B-Chem, 2008, 134: 462–466

    Article  CAS  Google Scholar 

  112. Watanabe M, Motoo S. Electrocatalysis by ad-atoms. J Electroanal Chem Interfacial Electrochem, 1975, 60: 267–273

    Article  CAS  Google Scholar 

  113. Liu H, Song C, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell. J Power Sources, 2006, 155: 95–110

    Article  CAS  Google Scholar 

  114. Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414: 345–352

    Article  CAS  Google Scholar 

  115. Proietti E, Jaouen F, Lefèvre M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun, 2011, 2: 416–425

    Article  CAS  Google Scholar 

  116. Kramm UI, Herrmann-Geppert I, Behrends J, et al. On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J Am Chem Soc, 2016, 138: 635–640

    Article  CAS  Google Scholar 

  117. Wan G, Lin XM, Wen J, et al. Tuning the performance of single-atom electrocatalysts: support-induced structural reconstruction. Chem Mater, 2018, 30: 7494–7502

    Article  CAS  Google Scholar 

  118. Wan G, Yu P, Chen H, et al. Engineering single-atom cobalt catalysts toward improved electrocatalysis. Small, 2018, 14: 1704319–1704325

    Article  CAS  Google Scholar 

Download references

Acknowledgements This work was financially supported by the National Natural Science Foundation of China (51502166 and 51881220658), and the Scientific Research Program Funded by Shaanxi Provincial Department (17JK0130).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Ren S wrote and revised the manuscript with support from Yu Q; Yu X, Rong P, Jiang L and Jiang J actively discussed the original idea of this review, polished the manuscript and organized the references. All authors contributed to the general discussion.

Corresponding author

Correspondence to Qi Yu  (于琦).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Shuai Ren was born in 1994. He is now pursuing his Master degree in the School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong, China. His research interest is the preparation of graphene materials and the development of functional devices.

Qi Yu obtained her BSc, MSc and PhD degrees from Jilin University. Now she is an associate professor at the Institute of Graphene at Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology. Her research interests include fabrication, characterization and properties of nanomaterials, including ZnO/PET-ITO, ZnO/diamond, and graphene composite structures fabricated by magnetron sputtering or hydrothermal technique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Yu, Q., Yu, X. et al. Graphene-supported metal single-atom catalysts: a concise review. Sci. China Mater. 63, 903–920 (2020). https://doi.org/10.1007/s40843-019-1286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1286-1

Keywords

Navigation