R. Jamaledin, P. Makvandi, C.K.Y. Yiu, T. Agarwal, R. Vecchione et al., Engineered microneedle patches for controlled release of active compounds: recent advances in release profile tuning. Adv. Ther. 3, 2000171 (2020). https://doi.org/10.1002/adtp.202000171
Article
Google Scholar
A. Patzelt, W.C. Mak, S. Jung, F. Knorr, M.C. Meinke et al., Do nanoparticles have a future in dermal drug delivery? J. Control. Release 246, 174–182 (2017). https://doi.org/10.1016/j.jconrel.2016.09.015
Article
Google Scholar
R. Jamaledin, C. Di Natale, V. Onesto, Z.B. Taraghdari, E.N. Zare et al., Progress in microneedle-mediated protein delivery. J. Clin. Med. 9, 542 (2020). https://doi.org/10.3390/jcm9020542
Article
Google Scholar
Z. Baghban-Taraghdari, R. Imani, F. Mohabatpour, A review on bioengineering approaches to insulin delivery: a pharmaceutical and engineering perspective. Macromol. Biosci. 19, 1800458 (2019). https://doi.org/10.1002/mabi.201800458
Article
Google Scholar
M. Battisti, R. Vecchione, C. Casale, F.A. Pennacchio, V. Lettera et al., Non-invasive production of multi-compartmental biodegradable polymer microneedles for controlled intradermal drug release of labile molecules. Front. Bioeng. Biotechnol. 7, 296 (2019). https://doi.org/10.3389/fbioe.2019.00296
Article
Google Scholar
R. Jamaledin, C.K.Y. Yiu, E.N. Zare, L. Niu, R. Vecchione et al., Advances in antimicrobial microneedle patches for combating infections. Adv. Mater. 32, 2002129 (2020). https://doi.org/10.1002/adma.202002129
Article
Google Scholar
Y.H. Feng, X.P. Zhang, Y.Y. Hao, G.Y. Ren, X.D. Guo, Simulation study of the pH sensitive directed self-assembly of rheins for sustained drug release hydrogel. Colloids Surf. B: Biointerfaces 195, 111260 (2020). https://doi.org/10.1016/j.colsurfb.2020.111260
Article
Google Scholar
S. Bhatnagar, K. Dave, V.V.K. Venuganti, Microneedles in the clinic. J. Control. Release 260, 164–182 (2017). https://doi.org/10.1016/j.jconrel.2017.05.029
Article
Google Scholar
X. Jin, D.D. Zhu, B.Z. Chen, M. Ashfaq, X.D. Guo, Insulin delivery systems combined with microneedle technology. Adv. Drug Deliv. Rev. 127, 119–137 (2018). https://doi.org/10.1016/j.addr.2018.03.011
Article
Google Scholar
M. Leone, J. Mönkäre, J.A. Bouwstra, G. Kersten, Dissolving microneedle patches for dermal vaccination. Pharm. Res. 34, 2223–2240 (2017). https://doi.org/10.1007/s11095-017-2223-2
Article
Google Scholar
Y. Zhang, P. Feng, J. Yu, J. Yang, J. Zhao et al., ROS-responsive microneedle patch for acne vulgaris treatment. Adv. Ther. 1, 1870006 (2018). https://doi.org/10.1002/adtp.201870006
Article
Google Scholar
R. Ali, P. Mehta, M.S. Arshad, I. Kucuk, M.W. Chang et al., Transdermal microneedles—a materials perspective. AAPS PharmSciTech 21, 12 (2020). https://doi.org/10.1208/s12249-019-1560-3
Article
Google Scholar
S. Dharadhar, A. Majumdar, S. Dhoble, V. Patravale, Microneedles for transdermal drug delivery: a systematic review. Drug Dev. Ind. Pharm. 45, 188–201 (2019). https://doi.org/10.1080/03639045.2018.1539497
Article
Google Scholar
T. Waghule, G. Singhvi, S.K. Dubey, M.M. Pandey, G. Gupta et al., Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 109, 1249–1258 (2019). https://doi.org/10.1016/j.biopha.2018.10.078
Article
Google Scholar
C. Pan, K. Chen, L. Jiang, Z. Chen, L. Ren et al., Magnetization-induced self-assembly method: Micro-needle array fabrication. J. Mater. Process. Technol. 227, 251–258 (2016). https://doi.org/10.1016/j.jmatprotec.2015.08.025
Article
Google Scholar
K. Moussi, A. Bukhamsin, T. Hidalgo, J. Kosel, Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. Adv. Eng. Mater. 22, 1901358 (2020). https://doi.org/10.1002/adem.201901358
Article
Google Scholar
B.Z. Chen, M. Ashfaq, D.D. Zhu, X.P. Zhang, X.D. Guo, Controlled delivery of insulin using rapidly separating microneedles fabricated from genipin-crosslinked gelatin. Macromol. Rapid Commun. (2018). https://doi.org/10.1002/marc.201800075
Article
Google Scholar
E.L. Zoudani, M. Soltani, A new computational method of modeling and evaluation of dissolving microneedle for drug delivery applications: Extension to theoretical modeling of a novel design of microneedle (array in array) for efficient drug delivery. Eur. J. Pharm. Sci. 150, 105339 (2020). https://doi.org/10.1016/j.ejps.2020.105339
Article
Google Scholar
S.P. Davis, M.R. Prausnitz, M.G. Allen, Fabrication and characterization of laser micromachined hollow microneedles, in: TRANSDUCERS 2003—12th International Conference on Solid-State Sensors, Actuators Microsystems (Digest of Technical Papers, Institute of Electrical and Electronics Engineers Inc., 2003), pp. 1435–1438. doi: https://doi.org/10.1109/SENSOR.2003.1217045
M.N. Abser, M. Gaffar, M.S. Islam, Mechanical feasibility analysis of process optimized silicon microneedle for biomedical applications, in: ICECE 2010—6th International Conference on Electrical and Computer Engineering (2010), pp. 222–225. doi: https://doi.org/10.1109/ICELCE.2010.5700668
P. Aggarwal, C.R. Johnston, Geometrical effects in mechanical characterizing of microneedle for biomedical applications. Sens. Actuat. B: Chem. 102, 226–234 (2004). https://doi.org/10.1016/j.snb.2004.04.024
Article
Google Scholar
B. Al-Qallaf, D.B. Das, A. Davidson, Transdermal drug delivery by coated microneedles: geometry effects on drug concentration in blood. Asia-Pacific J. Chem. Eng. 4, 845–857 (2009). https://doi.org/10.1002/apj.353
Article
Google Scholar
M. Kirkby, A.R.J. Hutton, R.F. Donnelly, Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: current status and future considerations. Pharm. Res. (2020). https://doi.org/10.1007/s11095-020-02844-6
Article
Google Scholar
D.L. Ellison, Physiology of Pain. Crit. Care Nurs. Clin. N. Am. 29, 397–406 (2017). https://doi.org/10.1016/j.cnc.2017.08.001
Article
Google Scholar
M.S. Gold, G.F. Gebhart, Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010). https://doi.org/10.1038/nm.2235
Article
Google Scholar
A.I. Basbaum, D.M. Bautista, G. Scherrer, D. Julius, Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009). https://doi.org/10.1016/j.cell.2009.09.028
Article
Google Scholar
C.E. Steeds, The anatomy and physiology of pain. Surgery (Oxford) 34, 55–59 (2016). https://doi.org/10.1016/j.mpsur.2015.11.005
Article
Google Scholar
S. Bourne, A.G. Machado, S.J. Nagel, Basic anatomy and physiology of pain pathways. Neurosurg. Clin. North Am. 25, 629–638 (2014). https://doi.org/10.1016/j.nec.2014.06.001
Article
Google Scholar
M.J. Hudspith, Anatomy, physiology and pharmacology of pain. Anaesth. Intensive Care Med. 20, 419–425 (2019). https://doi.org/10.1016/j.mpaic.2019.05.008
Article
Google Scholar
D. Ignatavicius, M.L. Workman, Assessment and care of patients with pain, in Medical-Surgical Nursing: Patient-Centered Collaborative Care, 8th ed. (Elsevier, St Louis, MO, 2016). doi: https://doi.org/10.1016/j.ejps.2008.06.016
H.S. Gill, D.D. Denson, B.A. Burris, M.R. Prausnitz, Effect of microneedle design on pain in human volunteers. Clin. J. Pain 24, 585–594 (2008). https://doi.org/10.1097/AJP.0b013e31816778f9
Article
Google Scholar
J. Gupta, D.D. Denson, E.I. Felner, M.R. Prausnitz, Rapid local anesthesia in human subjects using minimally invasive microneedles. Clin. J. Pain 28, 129 (2012). https://doi.org/10.1097/AJP.0b013e318225dbe9
Article
Google Scholar
J. Gupta, S.S. Park, B. Bondy, E.I. Felner, M.R. Prausnitz, Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials 32, 6823–6831 (2011). https://doi.org/10.1016/j.biomaterials.2011.05.061
Article
Google Scholar
M.I. Haq, E. Smith, D.N. John, M. Kalavala, C. Edwards et al., Clinical administration of microneedles: Skin puncture, pain and sensation. Biomed. Microdevices 11, 35–47 (2009). https://doi.org/10.1007/s10544-008-9208-1
Article
Google Scholar
S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra et al., Lack of pain associated with microfabricated microneedles. Anesth. Analg. 92, 502–504 (2001). https://doi.org/10.1213/00000539-200102000-00041
Article
Google Scholar
B. Sezgin, B. Ozel, H. Bulam, K. Guney, S. Tuncer et al., The effect of microneedle thickness on pain during minimally invasive facial procedures: A clinical study. Aesthetic Surg. J. 34, 757–765 (2014). https://doi.org/10.1177/1090820X14532941
Article
Google Scholar
C. Griffiths, J. Barker, T.O. Bleiker, R. Chalmers, D. Creamer, Rook’s Textbook of Dermatology (Wiley, Hoboken, 2016).
Book
Google Scholar
M.D. Shoulders, R.T. Raines, Collagen structure and stability. Annu. Rev. Biochem. 78, 929–958 (2009). https://doi.org/10.1146/annurev.biochem.77.032207.120833
Article
Google Scholar
J.M. Benítez, F.J. Montáns, The mechanical behavior of skin: Structures and models for the finite element analysis. Comput. Struct. 190, 75–107 (2017). https://doi.org/10.1016/j.compstruc.2017.05.003
Article
Google Scholar
J. Kim, S. Park, G. Nam, Y. Choi, S. Woo et al., Bioinspired microneedle insertion for deep and precise skin penetration with low force: Why the application of mechanophysical stimuli should be considered. J. Mech. Behav. Biomed. Mater. 78, 480–490 (2018). https://doi.org/10.1016/j.jmbbm.2017.12.006
Article
Google Scholar
J.G. Murphy, Evolution of anisotropy in soft tissue. Proc. R. Soc. A Math. Phys. Eng. Sci. 470, 20130548 (2014)
Google Scholar
T. Walimbe, A. Panitch, Proteoglycans in biomedicine: resurgence of an underexploited class of ECM molecules. Front. Pharmacol. 10, 1661 (2020)
Article
Google Scholar
W. Montagna, The Structure and Function of Skin (Elsevier, Amsterdam, 2012).
Google Scholar
M.B. Murphrey, J.H. Miao, P.M. Zito, Histology, stratum corneum, in: StatPearls [Internet] (StatPearls Publishing, 2020)
Y. Har-Shai, I. Zilinsky, R. Ogawa, C. Huang, Bio-mechanical stimulation of skin fibroblasts. Mesenchymal Cell Act. by Biomech. Stimul. Its Clin. Prospect. 35 (2016)
A.M. Zöllner, M.A. Holland, K.S. Honda, A.K. Gosain, E. Kuhl, Growth on demand: reviewing the mechanobiology of stretched skin. J. Mech. Behav. Biomed. Mater. 28, 495–509 (2013). https://doi.org/10.1016/j.jmbbm.2013.03.018
Article
Google Scholar
F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, K. Schenke-Layland, Skin tissue engineering—in vivo and in vitro applications. Adv. Drug Deliv. Rev. 63, 352–366 (2011). https://doi.org/10.1016/j.addr.2011.01.005
Article
Google Scholar
Y. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, Berlin, 2013).
Google Scholar
L.B. Sandberg, Elastin structure in health and disease. in: International Review of Connective Tissue Research (Elsevier, 1976), pp. 159–210. doi: https://doi.org/10.1016/B978-0-12-363707-9.50010-1
F. Xu, T. Lu, Introduction to Skin Biothermomechanics and Thermal Pain (Springer, Berlin, 2011).
Book
Google Scholar
J.W.Y. Jor, M.D. Parker, A.J. Taberner, M.P. Nash, P.M.F. Nielsen, Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 539–556 (2013). https://doi.org/10.1002/wsbm.1228
Article
Google Scholar
R.H. Nygaard, S. Maynard, P. Schjerling, M. Kjær, K. Qvortrup et al., Acquired localized cutis laxa due to increased elastin turnover. Case Rep. Dermatol. 8, 42–51 (2016). https://doi.org/10.1159/000443696
Article
Google Scholar
J. Gosline, M. Lillie, E. Carrington, P. Guerette, C. Ortlepp et al., Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 357, 121–132 (2002). https://doi.org/10.1098/rstb.2001.1022
Article
Google Scholar
A.J. Schriefl, G. Zeindlinger, D.M. Pierce, P. Regitnig, G.A. Holzapfel, Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface 9, 1275–1286 (2012). https://doi.org/10.1098/rsif.2011.0727
Article
Google Scholar
L. Nuytinck, M. Freund, L. Lagae, G.E. Pierard, T. Hermanns-Le et al., Classical Ehlers–Danlos syndrome caused by a mutation in type I collagen. Am. J. Hum. Genet. 66, 1398–1402 (2000). https://doi.org/10.1086/302859
Article
Google Scholar
V.R. Sherman, Y. Tang, S. Zhao, W. Yang, M.A. Meyers, Structural characterization and viscoelastic constitutive modeling of skin. Acta Biomater. 53, 460–469 (2017). https://doi.org/10.1016/j.actbio.2017.02.011
Article
Google Scholar
S.H. Hussain, B. Limthongkul, T.R. Humphreys, The biomechanical properties of the skin. Dermatol. Surg. 39, 193–203 (2013). https://doi.org/10.1111/dsu.12095
Article
Google Scholar
J.T.J. Huang, C.E. Bolton, B.E. Miller, R. Tal-Singer, R.A. Rabinovich et al., Age-dependent elastin degradation is enhanced in chronic obstructive pulmonary disease. Eur. Respir. J. 48, 1215–1218 (2016). https://doi.org/10.1183/13993003.01125-2016
Article
Google Scholar
V. Marcos-Garcés, P. Molina-Aguilar, C. Bea-Serrano, V. García-sssBustos, J. Benavent-Seguí et al., Age-related dermal collagen changes during development, maturation and ageing—a morphometric and comparative study. J. Anat. 225, 98–108 (2014). https://doi.org/10.1111/joa.12186
Article
Google Scholar
M. Tronnier, Cutaneous disorders characterized by elastolysis or loss of elastic tissue. JDDG J. Der Dtsch. Dermatologischen Gesellschaft. 16, 183–191 (2018). https://doi.org/10.1111/ddg.13430
Article
Google Scholar
E. Berardesca, J. de Rigal, J.L. Leveque, H.I. Maibach, In vivo biophysical characterization of skin physiological differences in races. Dermatology 182, 89–93 (1991). https://doi.org/10.1159/000247752
Article
Google Scholar
M.F. Leyva-Mendivil, A. Page, N.W. Bressloff, G. Limbert, A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J. Mech. Behav. Biomed. Mater. 49, 197–219 (2015). https://doi.org/10.1016/j.jmbbm.2015.05.010
Article
Google Scholar
P.P. Purslow, T.J. Wess, D.W. Hukins, Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J. Exp. Biol. 201, 135–142 (1998)
Article
Google Scholar
K.D. Butz, A.J. Griebel, T. Novak, K. Harris, A. Kornokovich et al., Prestress as an optimal biomechanical parameter for needle penetration. J. Biomech. 45, 1176–1179 (2012). https://doi.org/10.1016/j.jbiomech.2012.01.049
Article
Google Scholar
M.T. Hoang, K.B. Ita, D.A. Bair, Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics 7, 379–396 (2015). https://doi.org/10.3390/pharmaceutics7040379
Article
Google Scholar
E. Larrañeta, M.T.C. McCrudden, A.J. Courtenay, R.F. Donnelly, Microneedles: a new frontier in nanomedicine delivery. Pharm. Res. 33, 1055–1073 (2016). https://doi.org/10.1007/s11095-016-1885-5
Article
Google Scholar
J. Gupta, H.S. Gill, S.N. Andrews, M.R. Prausnitz, Kinetics of skin resealing after insertion of microneedles in human subjects. J. Control. Release 154, 148–155 (2011). https://doi.org/10.1016/j.jconrel.2011.05.021
Article
Google Scholar
G.K. Menon, K.R. Feingold, P.M. Elias, Lamellar body secretory response to barrier disruption. J. Invest. Dermatol. 98, 279–289 (1992). https://doi.org/10.1111/1523-1747.ep12497866
Article
Google Scholar
C. Curdy, A. Naik, Y.N. Kalia, I. Alberti, R.H. Guy, Non-invasive assessment of the effect of formulation excipients on stratum corneum barrier function in vivo. Int. J. Pharm. 271, 251–256 (2004). https://doi.org/10.1016/j.ijpharm.2003.11.016
Article
Google Scholar
L. Daugimont, N. Baron, G. Vandermeulen, N. Pavselj, D. Miklavcic et al., Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J. Membr. Biol. 236, 117–125 (2010). https://doi.org/10.1007/s00232-010-9283-0
Article
Google Scholar
N.N. Aung, T. Ngawhirunpat, T. Rojanarata, P. Patrojanasophon, P. Opanasopit et al., HPMC/PVP Dissolving microneedles: a promising delivery platform to promote trans-epidermal delivery of alpha-arbutin for skin lightening. AAPS PharmSciTech 21, 25 (2020). https://doi.org/10.1208/s12249-019-1599-1
Article
Google Scholar
G. Kang, S. Kim, H. Yang, M. Jang, L. Chiang et al., Combinatorial application of dissolving microneedle patch and cream for improvement of skin wrinkles, dermal density, elasticity, and hydration. J. Cosmet. Dermatol. 18, 1083–1091 (2019). https://doi.org/10.1111/jocd.12807
Article
Google Scholar
R. Al-Kasasbeh, A.J. Brady, A.J. Courtenay, E. Larrañeta, M.T.C. McCrudden et al., Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv. Transl. Res. 10, 690–705 (2020). https://doi.org/10.1007/s13346-020-00727-2
Article
Google Scholar
E.M. Vicente-Perez, E. Larrañeta, M.T.C. McCrudden, A. Kissenpfennig, S. Hegarty et al., Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo. Eur. J. Pharm. Biopharm. 117, 400–407 (2017). https://doi.org/10.1016/j.ejpb.2017.04.029
Article
Google Scholar
A.P. Sgouros, G. Kalosakas, K. Papagelis, C. Galiotis, Compressive response and buckling of graphene nanoribbons. Sci. Rep. 8, 9593 (2018). https://doi.org/10.1038/s41598-018-27808-0
Article
Google Scholar
M.R. Maschmann, Q. Zhang, R. Wheeler, F. Du, L. Dai et al., In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl. Mater. Interfaces 3, 648–653 (2011). https://doi.org/10.1021/am101262g
Article
Google Scholar
F.P. Beer, Mechanics of Materials (McGraw-Hill, New York, 2012).
Google Scholar
E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald, Bulk micromachined titanium microneedles. J. Microelectromech. Syst. 16, 289–295 (2007). https://doi.org/10.1109/JMEMS.2007.892909
Article
Google Scholar
J.-H. Park, M.R. Prausnitz, Analysis of mechanical failure of polymer microneedles by axial force. J. Korean Phys. Soc. 56, 1223–1227 (2010). https://doi.org/10.3938/jkps.56.1223
Article
Google Scholar
S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. 37, 1155–1163 (2004). https://doi.org/10.1016/j.jbiomech.2003.12.010
Article
Google Scholar
J.H. Park, M.G. Allen, M.R. Prausnitz, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control Release 104, 51–66 (2005). https://doi.org/10.1016/j.jconrel.2005.02.002
Article
Google Scholar
E. Forvi, M. Soncini, M. Bedoni, F. Rizzo, M. Casella et al., A method to determine the margin of safety for microneedles arrays, in: Proceedings of the World Congress on Engineering (2010)
Y.K. Demir, Z. Akan, O. Kerimoglu, Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS ONE 8, e77289 (2013). https://doi.org/10.1371/journal.pone.0077289
Article
Google Scholar
S.C. Park, M.J. Kim, S.-K. Baek, J.-H. Park, S.-O. Choi, Spray-formed layered polymer microneedles for controlled biphasic drug delivery. Polymers 11, 369 (2019). https://doi.org/10.3390/polym11020369
Article
Google Scholar
S. Lin, G. Quan, A. Hou, P. Yang, T. Peng et al., Strategy for hypertrophic scar therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Control Release 306, 69–82 (2019). https://doi.org/10.1016/j.jconrel.2019.05.038
Article
Google Scholar
K. Saraswathy, G. Agarwal, A. Srivastava, Hyaluronic acid microneedles-laden collagen cryogel plugs for ocular drug delivery. J. Appl. Polym. Sci. 137, 49285 (2020). https://doi.org/10.1002/app.49285
Article
Google Scholar
E. Larrañeta, R.E.M. Lutton, A.D. Woolfson, R.F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater. Sci. Eng. R Reports 104, 1–32 (2016). https://doi.org/10.1016/j.mser.2016.03.001
Article
Google Scholar
A.C. Anselmo, Y. Gokarn, S. Mitragotri, Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18, 19–40 (2019). https://doi.org/10.1038/nrd.2018.183
Article
Google Scholar
E. Abd, S.A. Yousef, M.N. Pastore, K. Telaprolu, Y.H. Mohammed et al., Skin models for the testing of transdermal drugs. Clin. Pharmacol. Adv. Appl. 8, 163 (2016). https://doi.org/10.2147/CPAA.S64788
Article
Google Scholar
G.E. Flaten, Z. Palac, A. Engesland, J. Filipović-Grčić, Ž Vanić et al., In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci. 75, 10–24 (2015). https://doi.org/10.1016/j.ejps.2015.02.018
Article
Google Scholar
L.Y. Dong, Y. Li, Z. Li, N. Xu, P. Liu et al., Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors. ACS Appl. Mater. Interfaces 10, 9247–9256 (2018). https://doi.org/10.1021/acsami.7b18293
Article
Google Scholar
H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari et al., A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566 (2016). https://doi.org/10.1038/nnano.2016.38
Article
Google Scholar
W. Li, R.N. Terry, J. Tang, M.R. Feng, S.P. Schwendeman et al., Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3, 220 (2019). https://doi.org/10.1038/s41551-018-0337-4
Article
Google Scholar
H. Todo, Transdermal permeation of drugs in various animal species. Pharmaceutics 9, 33 (2017). https://doi.org/10.3390/pharmaceutics9030033
Article
Google Scholar
J.C.J. Wei, G.A. Edwards, D.J. Martin, H. Huang, M.L. Crichton et al., Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. Sci. Rep. 7, 15885 (2017). https://doi.org/10.1038/s41598-017-15830-7
Article
Google Scholar
E. Larraneta, J. Moore, E.M. Vicente-Perez, P. Gonzalez-Vazquez, R. Lutton et al., A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 472, 65–73 (2014). https://doi.org/10.1016/j.ijpharm.2014.05.042
Article
Google Scholar
A.D. Permana, M. Mir, E. Utomo, R.F. Donnelly, Bacterially sensitive nanoparticle-based dissolving microneedles of doxycycline for enhanced treatment of bacterial biofilm skin infection: A proof of concept study. Int. J. Pharm. X. 2, 100047 (2020). https://doi.org/10.1016/j.ijpx.2020.100047
Article
Google Scholar
A.D. Permana, A.J. Paredes, F. Volpe-Zanutto, Q.K. Anjani, E. Utomo et al., Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. Eur. J. Pharm. Biopharm. 154, 50–61 (2020). https://doi.org/10.1016/j.ejpb.2020.06.025
Article
Google Scholar
M.-C. Chen, M.-H. Ling, K.-W. Wang, Z.-W. Lin, B.-H. Lai et al., Near-infrared light-responsive composite microneedles for on-demand transdermal drug delivery. Biomacromol 16, 1598–1607 (2015). https://doi.org/10.1021/acs.biomac.5b00185
Article
Google Scholar
A. Arora, I. Hakim, J. Baxter, R. Rathnasingham, R. Srinivasan et al., Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc. Natl. Acad. Sci. 104, 4255–4260 (2007). https://doi.org/10.1073/pnas.0700182104
Article
Google Scholar
D.F.S. Fonseca, P.C. Costa, I.F. Almeida, P. Dias-Pereira, I. Correia-Sá et al., Swellable gelatin methacryloyl microneedles for extraction of interstitial skin fluid toward minimally invasive monitoring of urea. Macromol. Biosci. 20, 2000195 (2020). https://doi.org/10.1002/mabi.202000195
Article
Google Scholar
V.V.T. Padil, J.Y. Cheong, K. Akshaykumar, R. Torres-Mendieta, E.N. Zareh et al., Electrospun fibers from natural carbohydrate polymers and their multidimensional applications. ACS Appl. Polym. Mater. 247, 116705 (2020). https://doi.org/10.1016/j.carbpol.2020.116705
Article
Google Scholar
T. Salzano, Biodegradable Polymeric Microneedle Patches for Transdermal and Controlled Drug Delivery. Thesis (2016)
M. Shabani, K. Jahani, M. Di Paola, M.H. Sadeghi, Frequency domain identification of the fractional Kelvin-Voigt’s parameters for viscoelastic materials. Mech. Mater. 137, 103099 (2019). https://doi.org/10.1016/J.MECHMAT.2019.103099
Article
Google Scholar
S. Aoyagi, H. Izumi, M. Fukuda, Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens. Actuat. A Phys. 143, 20–28 (2008). https://doi.org/10.1016/j.sna.2007.06.007
Article
Google Scholar
I. Xenikakis, M. Tzimtzimis, K. Tsongas, D. Andreadis, E. Demiri et al., Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur. J. Pharm. Sci. 137, 104976 (2019). https://doi.org/10.1016/j.ejps.2019.104976
Article
Google Scholar
X.Q. Kong, P. Zhou, C.W. Wu, Numerical simulation of microneedles’ insertion into skin. Comput. Methods Biomech. Biomed. Eng. 14, 827–835 (2011). https://doi.org/10.1080/10255842.2010.497144
Article
Google Scholar
M.F. Leyva-Mendivil, J. Lengiewicz, A. Page, N.W. Bressloff, G. Limbert, Skin microstructure is a key contributor to its friction behaviour. Tribol. Lett. 65, 12 (2016). https://doi.org/10.1007/s11249-016-0794-4
Article
Google Scholar
E.Z. Loizidou, N.A. Williams, D.A. Barrow, M.J. Eaton, J. McCrory et al., Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses. Eur. J. Pharm. Biopharm. 89, 224–231 (2015). https://doi.org/10.1016/j.ejpb.2014.11.023
Article
Google Scholar
O. Olatunji, D.B. Das, M.J. Garland, L. Belaid, R.F. Donnelly, Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J. Pharm. Sci. 102, 1209–1221 (2013). https://doi.org/10.1002/jps.23439
Article
Google Scholar
E.Z. Loizidou, N.T. Inoue, J. Ashton-Barnett, D.A. Barrow, C.J. Allender, Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur. J. Pharm. Biopharm. 107, 1–6 (2016). https://doi.org/10.1016/j.ejpb.2016.06.023
Article
Google Scholar
O. Olatunji, C.C. Igwe, A.S. Ahmed, D.O.A. Alhassan, G.O. Asieba et al., Microneedles from fish scale biopolymer. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40377
Article
Google Scholar
A. Boonma, R. Narayan, Y.-S. Lee, Analytical modeling and evaluation of microneedles apparatus with deformable soft tissues for biomedical applications. Comput. Aided. Des. Appl. 10, 139–157 (2013). https://doi.org/10.3722/cadaps.2013.139-157
Article
Google Scholar
S. Song, J.D. Kim, J. Bae, S. Chang, S. Kim et al., In vivo optical coherence tomography imaging of dissolution of hyaluronic acid microneedles in human skin (Conference Presentation), in Visualizing and Quantifying Drug Distribution in Tissue. ed. by C.L. Evans, K.F. Chan (SPIE, Bellingham, 2017), p. 17. https://doi.org/10.1117/12.2251772
Chapter
Google Scholar
M. Pearton, C. Allender, K. Brain, A. Anstey, C. Gateley et al., Gene delivery to the epidermal cells of human skin explants using microfabricated microneedles and hydrogel formulations. Pharm. Res. 25, 407–416 (2008). https://doi.org/10.1007/s11095-007-9360-y
Article
Google Scholar
C.S. Kolli, A.K. Banga, Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm. Res. 25, 104–113 (2008). https://doi.org/10.1007/s11095-007-9350-0
Article
Google Scholar
S.M. Bal, A.C. Kruithof, R. Zwier, E. Dietz, J.A. Bouwstra et al., Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. J. Control. Release 147, 218–224 (2010). https://doi.org/10.1016/j.jconrel.2010.07.104
Article
Google Scholar
M.-T. Tsai, I.-C. Lee, Z.-F. Lee, H.-L. Liu, C.-C. Wang et al., In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography. Biomed. Opt. Express 7, 1865 (2016). https://doi.org/10.1364/boe.7.001865
Article
Google Scholar
Y. Ye, J. Wang, Q. Hu, G.M. Hochu, H. Xin et al., Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano 10, 8956–8963 (2016). https://doi.org/10.1021/acsnano.6b04989
Article
Google Scholar
S. Bal, A.C. Kruithof, H. Liebl, M. Tomerius, J. Bouwstra et al., In vivo visualization of microneedle conduits in human skin using laser scanning microscopy. Laser Phys. Lett. 7, 242–246 (2010). https://doi.org/10.1002/lapl.200910134
Article
Google Scholar
F.J. Verbaan, S.M. Bal, D.J. van den Berg, J.A. Dijksman, M. van Hecke et al., Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J. Control. Release 128, 80–88 (2008). https://doi.org/10.1016/j.jconrel.2008.02.009
Article
Google Scholar
I. Abiandu, K. Ita, Transdermal delivery of potassium chloride with solid microneedles. J. Drug Deliv. Sci. Technol. 53, 101216 (2019). https://doi.org/10.1016/j.jddst.2019.101216
Article
Google Scholar
N. El-Sayed, L. Vaut, M. Schneider, Customized fast-separable microneedles prepared with the aid of 3D printing for nanoparticle delivery. Eur. J. Pharm. Biopharm. 154, 166–174 (2020). https://doi.org/10.1016/j.ejpb.2020.07.005
Article
Google Scholar
M.A. Khalil, A.A. Saleh, S.M. Gohar, D.H. Khalil, M. Said, Optical coherence tomography findings in patients with bipolar disorder. J. Affect. Disord. 218, 115–122 (2017). https://doi.org/10.1016/j.jad.2017.04.055
Article
Google Scholar
R.F. Donnelly, R. Majithiya, T.R.R. Singh, D.I.J. Morrow, M.J. Garland et al., Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 28, 41–57 (2011). https://doi.org/10.1007/s11095-010-0169-8
Article
Google Scholar
W. Yu, G. Jiang, Y. Zhang, D. Liu, B. Xu et al., Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats. J. Mater. Chem. B 5, 9507–9513 (2017). https://doi.org/10.1039/C7TB02236K
Article
Google Scholar
A.S. Cordeiro, I.A. Tekko, M.H. Jomaa, L. Vora, E. McAlister et al., Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: application in the development of polymeric drug delivery systems. Pharm. Res. 37, 174 (2020). https://doi.org/10.1007/s11095-020-02887-9
Article
Google Scholar
E. Larrañeta, J. Moore, E.M. Vicente-Pérez, P. González-Vázquez, R. Lutton et al., A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 472, 65–73 (2014). https://doi.org/10.1016/J.IJPHARM.2014.05.042
Article
Google Scholar
G. Wang, N. Fang, Detecting and tracking nonfluorescent nanoparticle probes in live cells, in: Methods Enzymol (Elsevier, 2012), pp. 83–108. doi: https://doi.org/10.1016/B978-0-12-391857-4.00004-5
L.L. Drey, M.C. Graber, J. Bieschke, Counting unstained, confluent cells by modified bright-field microscopy. Biotechniques 55, 28–33 (2013). https://doi.org/10.2144/000114056
Article
Google Scholar
M. Pearton, V. Saller, S.A. Coulman, C. Gateley, A.V. Anstey et al., Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J. Control. Release 160, 561–569 (2012). https://doi.org/10.1016/j.jconrel.2012.04.005
Article
Google Scholar
Y.A. Gomaa, D.I.J. Morrow, M.J. Garland, R.F. Donnelly, L.K. El-Khordagui et al., Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function: assessments by transepidermal water loss. Toxicol. Vitr. 24, 1971–1978 (2010). https://doi.org/10.1016/j.tiv.2010.08.012
Article
Google Scholar
J.S. Kochhar, T.C. Quek, W.J. Soon, J. Choi, S. Zou et al., Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J. Pharm. Sci. 102, 4100–4108 (2013). https://doi.org/10.1002/jps.23724
Article
Google Scholar
S.D. Gittard, B. Chen, H. Xu, A. Ovsianikov, B.N. Chichkov et al., The effects of geometry on skin penetration and failure of polymer microneedles. J. Adhes. Sci. Technol. 27, 227–243 (2013). https://doi.org/10.1080/01694243.2012.705101
Article
Google Scholar
A.R. Johnson, C.L. Caudill, J.R. Tumbleston, C.J. Bloomquist, K.A. Moga et al., Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLOS ONE 11, e0162518 (2016). https://doi.org/10.1371/journal.pone.0162518
Article
Google Scholar
H.-R. Jeong, H.-S. Lee, I.-J. Choi, J.-H. Park, Considerations in the use of microneedles: pain, convenience, anxiety and safety. J. Drug Target 25, 29–40 (2017). https://doi.org/10.1080/1061186X.2016.1200589
Article
Google Scholar
A.R. Johnson, A.T. Procopio, Low cost additive manufacturing of microneedle masters. 3D Print Med 5, 2 (2019). https://doi.org/10.1186/s41205-019-0039-x
Article
Google Scholar
B.Z. Chen, L.Q. Zhang, Y.Y. Xia, X.P. Zhang, X.D. Guo, A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 6, eaba7260 (2020). https://doi.org/10.1126/sciadv.aba7260
Article
Google Scholar
D.V. McAllister, P.M. Wang, S.P. Davis, J.-H.J.-H. Park, P.J. Canatella et al., Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. 100, 13755–13760 (2003). https://doi.org/10.1073/pnas.2331316100
Article
Google Scholar
H.S. Gill, M.R. Prausnitz, Coated microneedles for transdermal delivery. J. Control. Release 117, 227–237 (2007). https://doi.org/10.1016/j.jconrel.2006.10.017
Article
Google Scholar
A. Davidson, B. Al-Qallaf, D.B. Das, Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chem. Eng. Res. Des. 86, 1196–1206 (2008). https://doi.org/10.1016/j.cherd.2008.06.002
Article
Google Scholar
C. Wang, Y. Ye, G.M. Hochu, H. Sadeghifar, Z. Gu, Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16, 2334–2340 (2016). https://doi.org/10.1021/acs.nanolett.5b05030
Article
Google Scholar
Y. Li, X. Hu, Z. Dong, Y. Chen, W. Zhao et al., Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur. J. Pharm. Sci. 151, 105361 (2020). https://doi.org/10.1016/j.ejps.2020.105361
Article
Google Scholar
Technavio, Transdermal Drug Delivery Market, 2019.
A.M. Römgens, D.L. Bader, J.A. Bouwstra, C.W.J. Oomens, Predicting the optimal geometry of microneedles and their array for dermal vaccination using a computational model. Comput. Methods Biomech. Biomed. Eng. 19, 1599–1609 (2016). https://doi.org/10.1080/10255842.2016.1173684
Article
Google Scholar
B. Ahn, Optimal microneedle design for drug delivery based on insertion force experiments with variable geometry. Int. J. Control. Autom. Syst. 18, 143–149 (2020). https://doi.org/10.1007/s12555-019-0220-8
Article
Google Scholar
A.L. Teo, C. Shearwood, K.C. Ng, J. Lu, S. Moochhala, Transdermal microneedles for drug delivery applications. Mater. Sci. Eng. B 132, 151–154 (2006). https://doi.org/10.1016/J.MSEB.2006.02.008
Article
Google Scholar
J.A. Mikszta, J.B. Alarcon, J.M. Brittingham, D.E. Sutter, R.J. Pettis et al., Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8, 415–419 (2002). https://doi.org/10.1038/nm0402-415
Article
Google Scholar
G. Yan, K.S. Warner, J. Zhang, S. Sharma, B.K. Gale, Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm. 391, 7–12 (2010). https://doi.org/10.1016/j.ijpharm.2010.02.007
Article
Google Scholar
Y.H. Zhang, S.A. Campbell, S. Karthikeyan, Finite element analysis of hollow out-of-plane HfO2 microneedles for transdermal drug delivery applications. Biomed. Microdevices 20, 1–7 (2018). https://doi.org/10.1007/s10544-018-0262-z
Article
Google Scholar
P. Khanna, K. Luongo, J.A. Strom, S. Bhansali, Axial and shear fracture strength evaluation of silicon microneedles. Microsyst. Technol. 16, 973–978 (2010). https://doi.org/10.1007/s00542-010-1070-4
Article
Google Scholar
P. Khanna, B.R. Flam, B. Osborn, J.A. Strom, S. Bhansali, Skin penetration and fracture strength testing of silicon dioxide microneedles. Sens. Actuat. A Phys. 170, 180–186 (2011). https://doi.org/10.1016/j.sna.2010.09.024
Article
Google Scholar
H.E. Zainal-Abidin, P.C. Ooi, T.Y. Tiong, N. Marsi, A. Ismardi et al., Stress and deformation of optimally shaped silicon microneedles for transdermal drug delivery. J. Pharm. Sci. 109, 2485–2492 (2020). https://doi.org/10.1016/j.xphs.2020.04.019
Article
Google Scholar
C. O’Mahony, Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed. Microdevices 16, 333–343 (2014). https://doi.org/10.1007/s10544-014-9836-6
Article
Google Scholar
S. Pradeep-Narayanan, S. Raghavan, Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol. 93, 407–422 (2017). https://doi.org/10.1007/s00170-016-9698-6
Article
Google Scholar
N. Bouras, M.A. Madjoubi, M. Kolli, S. Benterki, M. Hamidouche, Thermal and mechanical characterization of borosilicate glass. Phys. Procedia. 2, 1135–1140 (2009). https://doi.org/10.1016/j.phpro.2009.11.074
Article
Google Scholar
P.M. Wang, M. Cornwell, J. Hill, M.R. Prausnitz, Precise microinjection into skin using hollow microneedles. J. Invest. Dermatol. 126, 1080–1087 (2006). https://doi.org/10.1038/sj.jid.5700150
Article
Google Scholar
G. Wypych, PGA poly(glycolic acid), in: Handbook of Polymers (Elsevier, 2016), pp. 419–421. doi: https://doi.org/10.1016/B978-1-895198-92-8.50128-2
S.H. Choi, T.G. Park, Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers. J. Biomater. Sci. Polym. Ed. 13, 1163–1173 (2002). https://doi.org/10.1163/156856202320813864
Article
Google Scholar
B. Tavsanli, O. Okay, Mechanically strong hyaluronic acid hydrogels with an interpenetrating network structure. Eur. Polym. J. 94, 185–195 (2017). https://doi.org/10.1016/j.eurpolymj.2017.07.009
Article
Google Scholar
P. Gentile, V. Chiono, I. Carmagnola, P.V. Hatton, An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15, 3640–3659 (2014). https://doi.org/10.3390/ijms15033640
Article
Google Scholar
T. Michinobu, M. Bito, M. Tanimura, Y. Katayama, E. Masai et al., Mechanical properties of poly(l-lactide) films controlled by blending with polyesters of lignin-derived stable metabolic intermediate. 2-pyrone-4,6-dicarboxylic acid (PDC). Polym. J. 41, 843–848 (2009). https://doi.org/10.1295/polymj.PJ2009133
Article
Google Scholar
S.D. Gittard, R.J. Narayan, Applications of microneedle technology to transdermal drug delivery, in Toxicology of the Skin. ed. by N.A. Monteiro-Riviere (CRC Press, Boca Raton, 2010), p. 307
Google Scholar
S. Kalra, A. Singh, M. Gupta, V. Chadha, Ormocer: An aesthetic direct restorative material; an in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an ormocer-based bonding agent and a conventional fifth-generation bonding agent. Contemp. Clin. Dent. 3, 48 (2012). https://doi.org/10.4103/0976-237x.94546
Article
Google Scholar
S. Bystrova, R. Luttge, Micromolding for ceramic microneedle arrays. Microelectron. Eng. 88, 1681–1684 (2011). https://doi.org/10.1016/j.mee.2010.12.067
Article
Google Scholar
M. Verhoeven, S. Bystrova, L. Winnubst, H. Qureshi, T.D. De Gruijl et al., Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model, in: Microelectronic Engineering (Elsevier, 2012), pp. 659–662. doi: https://doi.org/10.1016/j.mee.2012.07.022
M.A. Boks, W.W.J. Unger, S. Engels, M. Ambrosini, Y. Van Kooyk et al., Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int. J. Pharm. 491, 375–383 (2015). https://doi.org/10.1016/j.ijpharm.2015.06.025
Article
Google Scholar
K. van der Maaden, R. Luttge, P.J. Vos, J. Bouwstra, G. Kersten, I. Ploemen, Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv. Transl. Res. 5, 397–406 (2015). https://doi.org/10.1007/s13346-015-0238-y
Article
Google Scholar
R. Pignatello, Biomaterials: Applications for Nanomedicine, 1st edn. (InTech, Rijeka, 2011).
Book
Google Scholar
R.J. Napier, A.J. Shimmin, Ceramic-on-ceramic bearings in total hip arthroplasty: “The future is now.” Semin. Arthroplasty 27, 235–238 (2016). https://doi.org/10.1053/j.sart.2017.03.001
Article
Google Scholar
B. Cai, W. Xia, S. Bredenberg, H. Engqvist, Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J. Mater. Chem. B 2, 5992–5998 (2014). https://doi.org/10.1039/C4TB00764F
Article
Google Scholar
H. Vallhov, W. Xia, H. Engqvist, A. Scheynius, Bioceramic microneedle arrays are able to deliver OVA to dendritic cells in human skin. J. Mater. Chem. B 6, 6808–6816 (2018). https://doi.org/10.1039/c8tb01476k
Article
Google Scholar
W. Yu, G. Jiang, D. Liu, L. Li, Z. Tong et al., Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater. Sci. Eng. C 73, 425–428 (2017). https://doi.org/10.1016/j.msec.2016.12.111
Article
Google Scholar
Y.-C.C. Kim, J.-H.H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012). https://doi.org/10.1016/j.addr.2012.04.005
Article
Google Scholar
T. Miyano, Y. Tobinaga, T. Kanno, Y. Matsuzaki, H. Takeda et al., Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices 7, 185–188 (2005). https://doi.org/10.1007/s10544-005-3024-7
Article
Google Scholar
G. Li, A. Badkar, S. Nema, C.S. Kolli, A.K. Banga, In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int. J. Pharm. 368, 109–115 (2009). https://doi.org/10.1016/j.ijpharm.2008.10.008
Article
Google Scholar
R.F. Donnelly, D.I.J. Morrow, T.R.R. Singh, K. Migalska, P.A. McCarron et al., Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev. Ind. Pharm. 35, 1242–1254 (2009). https://doi.org/10.1080/03639040902882280
Article
Google Scholar
R.F. Donnelly, T.R.R. Singh, D.I.J. Morrow, D.A. Woolfson, Microneedle-Mediated Transdermal and Intradermal Drug Delivery, 1st edn. (Wiley, Sussex, 2012).
Book
Google Scholar
X. Hong, L. Wei, F. Wu, Z. Wu, L. Chen et al., Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des. Devel. Ther. 7, 945–952 (2013). https://doi.org/10.2147/DDDT.S44401
Article
Google Scholar
M. Wang, L. Hu, C. Xu, Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 17, 1373–1387 (2017). https://doi.org/10.1039/C7LC00016B
Article
Google Scholar
G. Bonfante, H. Lee, L. Bao, J. Park, N. Takama et al., Comparison of polymers to enhance mechanical properties of microneedles for bio-medical applications. Micro Nano Syst. Lett. 8, 13 (2020). https://doi.org/10.1186/s40486-020-00113-0
Article
Google Scholar
S.F. Chou, K.A. Woodrow, Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J. Mech. Behav. Biomed. Mater. 65, 724–733 (2017). https://doi.org/10.1016/j.jmbbm.2016.09.004
Article
Google Scholar
L. Yan, A.P. Raphael, X. Zhu, B. Wang, W. Chen et al., Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin. Adv. Heal. Mater. 3, 555–564 (2014). https://doi.org/10.1002/adhm.201300312
Article
Google Scholar
W.K. Raja, S. MacCorkle, I.M. Diwan, A. Abdurrob, J. Lu et al., Transdermal delivery devices: fabrication, mechanics and drug release from silk. Small 9, 3704–3713 (2013). https://doi.org/10.1002/smll.201202075
Article
Google Scholar
L. Yan, A.P. Raphael, X. Zhu, B. Wang, W. Chen et al., Nanocomposite-strengthened dissolving microneedles for improved transdermal delivery to human skin. Adv. Healthc. Mater. 3, 555–564 (2014). https://doi.org/10.1002/adhm.201300312
Article
Google Scholar
M.T.C. Mc-Crudden, E. Larrañeta, A. Clark, C. Jarrahian, A. Rein-Weston et al., Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J. Control. Release 292, 119–129 (2018). https://doi.org/10.1016/j.jconrel.2018.11.002
Article
Google Scholar
Z. Luo, W. Sun, J. Fang, K. Lee, S. Li et al., Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv. Healthc. Mater. 8, 1801054 (2019). https://doi.org/10.1002/adhm.201801054
Article
Google Scholar
X. Zhou, Z. Luo, A. Baidya, H. Kim, C. Wang et al., Biodegradable β-cyclodextrin conjugated gelatin methacryloyl microneedle for delivery of water-insoluble drug. Adv. Healthc. Mater. 9, 2000527 (2020). https://doi.org/10.1002/adhm.202000527
Article
Google Scholar
E. Larrañeta, R.E.M. Lutton, A.J. Brady, E.M. Vicente-Pérez, A.D. Woolfson et al., Microwave-assisted preparation of hydrogel-forming microneedle arrays for transdermal drug delivery applications. Macromol. Mater. Eng. 300, 586–595 (2015). https://doi.org/10.1002/mame.201500016
Article
Google Scholar
T.R. Raj-Singh, M.J. Garland, K. Migalska, E.C. Salvador, R. Shaikh et al., Influence of a pore-forming agent on swelling, network parameters, and permeability of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: Application in transdermal delivery systems. J. Appl. Polym. Sci. 125, 2680–2694 (2012). https://doi.org/10.1002/app.36524
Article
Google Scholar
M.S. Gerstel, V.A. Place, Drug Delivery Device, 3964482 (1971)
S. Lee, S. Fakhraei-Lahiji, J. Jang, M. Jang, H. Jung, Micro-pillar integrated dissolving microneedles for enhanced transdermal drug delivery. Pharmaceutics 11, 402 (2019). https://doi.org/10.3390/pharmaceutics11080402
Article
Google Scholar
M.-C. Chen, H.-A. Chan, M.-H. Ling, L.-C. Su, Implantable polymeric microneedles with phototriggerable properties as a patient-controlled transdermal analgesia system. J. Mater. Chem. B 5, 496–503 (2017). https://doi.org/10.1039/C6TB02718K
Article
Google Scholar
M.C. Chen, K.Y. Lai, M.H. Ling, C.W. Lin, Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater. (2018). https://doi.org/10.1016/j.actbio.2017.11.004
Article
Google Scholar
M.-C. Chen, S.-F. Huang, K.-Y. Lai, M.-H. Ling, Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 34, 3077–3086 (2013). https://doi.org/10.1016/j.biomaterials.2012.12.041
Article
Google Scholar
J.M. Mazzara, L.J. Ochyl, J.K.Y. Hong, J.J. Moon, M.R. Prausnitz et al., Self-healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches. Bioeng. Transl. Med. 4, 116–128 (2019). https://doi.org/10.1002/btm2.10103
Article
Google Scholar
H. Jun, M.H. Ahn, I.J. Choi, S.K. Baek, J.H. Park et al., Immediate separation of microneedle tips from base array during skin insertion for instantaneous drug delivery. RSC Adv. 8, 17786–17796 (2018). https://doi.org/10.1039/c8ra02334d
Article
Google Scholar
I.J. Choi, A. Kang, M.H. Ahn, H. Jun, S.K. Baek et al., Insertion-responsive microneedles for rapid intradermal delivery of canine influenza vaccine. J. Control. Release 286, 460–466 (2018). https://doi.org/10.1016/j.jconrel.2018.08.017
Article
Google Scholar
I.J. Choi, W. Na, A. Kang, M.H. Ahn, M. Yeom et al., Patchless administration of canine influenza vaccine on dog’s ear using insertion-responsive microneedles (IRMN) without removal of hair and its in vivo efficacy evaluation. Eur. J. Pharm. Biopharm. 153, 150–157 (2020). https://doi.org/10.1016/j.ejpb.2020.06.006
Article
Google Scholar
Y.H. Chen, K.Y. Lai, Y.H. Chiu, Y.W. Wu, A.L. Shiau et al., Implantable microneedles with an immune-boosting function for effective intradermal influenza vaccination. Acta Biomater. (2019). https://doi.org/10.1016/j.actbio.2019.07.048
Article
Google Scholar
D. Chen, C. Wang, W. Chen, Y. Chen, J.X.J. Zhang, PVDF-Nafion nanomembranes coated microneedles for in vivo transcutaneous implantable glucose sensing. Biosens. Bioelectron. 74, 1047–1052 (2015). https://doi.org/10.1016/j.bios.2015.07.036
Article
Google Scholar
S. Kim, H. Yang, J. Eum, Y. Ma, S. Fakhraei-Lahiji et al., Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity. Biomaterials 232, 119733 (2020). https://doi.org/10.1016/j.biomaterials.2019.119733
Article
Google Scholar
M. Carlotti, V. Mattoli, Functional materials for two-photon polymerization in microfabrication. Small 15, 1902687 (2019). https://doi.org/10.1002/smll.201902687
Article
Google Scholar
D.M. Zuev, A.K. Nguyen, V.I. Putlyaev, R.J. Narayan, 3D printing and bioprinting using multiphoton lithography. Bioprinting 20, e00090 (2020). https://doi.org/10.1016/j.bprint.2020.e00090
Article
Google Scholar
I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis et al., Diffusion-assisted high-resolution direct femtosecond laser writing. ACS Nano 6, 2302–2311 (2012). https://doi.org/10.1021/nn204454c
Article
Google Scholar
C. Plamadeala, S.R. Gosain, S. Purkhart, B. Buchegger, W. Baumgartner et al., Three-dimensional photonic structures fabricated by two-photon polymerization for microfluidics and microneedles. in: International Conference on Transparent Optical Networks. 2018-July, 2018–2021 (2018). doi: https://doi.org/10.1109/ICTON.2018.8473647
M. Suzuki, T. Takahashi, S. Aoyagi, 3D laser lithographic fabrication of hollow microneedle mimicking mosquitos and its characterisation. Int. J. Nanotechnol. 15, 157–173 (2018). https://doi.org/10.1504/IJNT.2018.089545
Article
Google Scholar
A.D.R. Li, K.B. Putra, L. Chen, J.S. Montgomery, A. Shih, Mosquito proboscis-inspired needle insertion to reduce tissue deformation and organ displacement. Sci. Rep. 10, 1–14 (2020). https://doi.org/10.1038/s41598-020-68596-w
Article
Google Scholar
S.D. Gittard, A. Ovsianikov, B.N. Chichkov, A. Doraiswamy, R.J. Narayan, Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin. Drug Deliv. 7, 513–533 (2010). https://doi.org/10.1517/17425241003628171
Article
Google Scholar
M. Kavaldzhiev, J.E. Perez, Y. Ivanov, A. Bertoncini, C. Liberale et al., Biocompatible 3D printed magnetic micro needles. Biomed. Phys. Eng. Express 3, 25005 (2017). https://doi.org/10.1088/2057-1976/aa5ccb
Article
Google Scholar
E.D. Lemma, F. Rizzi, T. Dattoma, B. Spagnolo, L. Sileo et al., Mechanical properties tunability of three-dimensional polymeric structures in two-photon lithography. IEEE Trans. Nanotechnol. 16, 23–31 (2016). https://doi.org/10.1109/TNANO.2016.2625820
Article
Google Scholar
C.N. LaFratta, O. Simoska, I. Pelse, S. Weng, M. Ingram, A convenient direct laser writing system for the creation of microfluidic masters. Microfluid. Nanofluidics 19, 419–426 (2015). https://doi.org/10.1007/s10404-015-1574-4
Article
Google Scholar
A. Aksit, D.N. Arteaga, M. Arriaga, X. Wang, H. Watanabe et al., In-vitro perforation of the round window membrane via direct 3-D printed microneedles. Biomed. Microdevices 20, 47 (2018). https://doi.org/10.1007/s10544-018-0287-3
Article
Google Scholar
D. Ricci, M.M. Nava, T. Zandrini, G. Cerullo, M.T. Raimondi et al., Scaling-up techniques for the nanofabrication of cell culture substrates via two-photon polymerization for industrial-scale expansion of stem cells. Materials 10, 66 (2017). https://doi.org/10.3390/ma10010066
Article
Google Scholar
R.F. Donnelly, Clinical Translation and Industrial Development of Microneedle-based Products, in Microneedles Drug Vaccine Delivery, 1st edn., ed. by R.F. Donnelly, T.R.R. Singh (Wiley, Chichester, 2018), pp. 307–322
Chapter
Google Scholar
J.C. Birchall, R. Clemo, A. Anstey, D.N. John, Microneedles in clinical practice–an exploratory study into the opinions of healthcare professionals and the public. Pharm. Res. 28, 95–106 (2011). https://doi.org/10.1007/s11095-010-0101-2
Article
Google Scholar
E.M. Vicente-Pérez, H.L. Quinn, E. McAlister, S. O’Neill, L.-A. Hanna et al., The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo. Pharm. Res. 33, 1–10 (2016). https://doi.org/10.1007/s11095-016-2032-z
Article
Google Scholar