Skip to main content
Log in

Rapid fabrication method of a microneedle mold with controllable needle height and width

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The main issue of transdermal drug delivery is that macromolecular drugs cannot diffuse through the stratum corneum of skin. Many studies have pursued micro-sized needles encapsulated with drugs to overcome this problem, as these needles can pierce the stratum corneum and allow drugs to enter the circulatory system of the human body. However, most microneedle fabrication processes are time-consuming and require expensive equipment. In this study, we demonstrate a rapid method for fabricating a microneedle mold using drawing lithography and a UV-cured resin. The mold was filled with a water-soluble material, polyvinylpyrrolidone (PVP), which was then demolded to produce a water-soluble microneedle array. The results of an in vitro skin insertion test using PVP microneedles and pig ear skin demonstrated the feasibility of the microneedle mold. In addition, by controlling the viscosity of the UV-cured resin through various heat treatments, microneedles with different heights and aspect ratios were produced. Compared with other methods, this technology significantly simplifies and accelerates the mold fabrication process. In addition, the required equipment is relatively simple and inexpensive. Through this technology, we can rapidly fabricate microneedle molds with controllable dimensions for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • B. P. Chaudhri, F. Ceyssens, P. De Moor, C. Van Hoof, R. Puers, A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction. J. Micromech. Microeng. 20, 064006 (2010)

    Article  Google Scholar 

  • C. K. Choi, K. J. Lee, Y. N. Youn, E. H. Jang, W. Kim, B. K. Min, W. Ryu, Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. Eur. J. Pharm. Biopharm. 83, 224–233 (2013)

    Article  Google Scholar 

  • Y. K. Demir, Z. Akan, O. Kerimoglu, Characterization of polymeric microneedle arrays for transdermal drug delivery. Plos One 8, e77289 (2013)

    Article  Google Scholar 

  • R. F. Donnelly, M. J. Garland, D. I. Morrow, K. Migalska, T. R. Singh, R. Majithiya, A. D. Woolfson, Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J. Control. Release 147, 333–341 (2010)

    Article  Google Scholar 

  • F. Duboeuf, A. Basarab, H. Liebgott, E. Brusseau, P. Delachartre, D. Vray, Investigation of PVA cryogel Young’s modulus stability with time, controlled by a simple reliable technique. Med. Phys. 36, 656–661 (2009)

    Article  Google Scholar 

  • L. J. Fernández, A. Altuna, M. Tijero, G. Gabriel, R. Villa, M. J. Rodríguez, M. Batlle, R. Vilares, J. Berganzo, F. J. Blanco, Study of functional viability of SU-8-based microneedles for neural applications. J. Micromech. Microeng. 19, 025007 (2009)

    Article  Google Scholar 

  • C. Fu, H. Huang, Different methods for the fabrication of UV-LIGA molds using SU-8 with tapered de-molding angles. Microsyst. Technol. 13, 293–298 (2006)

    Article  Google Scholar 

  • E. L. Giudice, J. D. Campbell, Needle-free vaccine delivery. Adv. Drug Deliv. Rev. 58, 68–89 (2006)

    Article  Google Scholar 

  • H. Huang, C. Fu, Different fabrication methods of out-of-plane polymer hollow needle arrays and their variations. J. Micromech. Microeng. 17, 393–402 (2007)

    Article  Google Scholar 

  • H. Huang, W. Yang, T. Wang, T. Chuang, C. Fu, 3D high aspect ratio micro structures fabricated by one step UV lithography. J. Micromech. Microeng. 17, 291–296 (2007)

    Article  Google Scholar 

  • J. Ji, F. E. H. Tay, J. Miao, Microfabricated hollow microneedle array using ICP etcher. J. Phys. Conf. Ser. 34, 1132–1136 (2006)

    Article  Google Scholar 

  • e.-S. Khafagy, M. Morishita, Y. Onuki, K. Takayama, Current challenges in non-invasive insulin delivery systems: a comparative review. Adv. Drug Deliv. Rev. 59, 1521–1546 (2007)

    Article  Google Scholar 

  • E. Larrañeta, J. Moore, E. M. Vicente-Perez, P. Gonzalez-Vazquez, R. Lutton, A. D. Woolfson, R. F. Donnelly, A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 472, 65–73 (2014)

    Article  Google Scholar 

  • K. Lee, H. Jung, Drawing lithography for microneedles: a review of fundamentals and biomedical applications. Biomaterials 33, 7309–7326 (2012)

    Article  Google Scholar 

  • K. Lee, H. C. Lee, D. Lee, H. Jung, Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 22, 483–486 (2010)

    Article  Google Scholar 

  • K. Lee, C. Y. Lee, H. Jung, Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 32, 3134–3140 (2011)

    Article  Google Scholar 

  • I. C. Lee, J. He, M. Tsai, K. Lin, Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery. J. Mater. Chem. B 3, 276–285 (2015)

    Article  Google Scholar 

  • C. G. Li, C. Y. Lee, K. Lee, H. Jung, An optimized hollow microneedle for minimally invasive blood extraction. Biomed. Microdevices 15, 17–25 (2013)

    Article  Google Scholar 

  • M. H. Ling, M. C. Chen, Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater. 9, 8952–8961 (2013)

    Article  Google Scholar 

  • D. V. McAllister, P. M. Wang, S. P. Davis, J.-H. Park, P. J. Canatella, M. G. Allen, M. R. Prausnitz, Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. U. S. A. 100, 13755–13760 (2003)

    Article  Google Scholar 

  • Y. Nir, A. Paz, E. Sabo, I. Potasman, Fear of injections in young adults: prevalence and associations. Am.J.Trop. Med. Hyg. 68, 341–344 (2003)

    Google Scholar 

  • J. J. Norman, J. M. Arya, M. A. McClain, P. M. Frew, M. I. Meltzer, M. R. Prausnitz, Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine 32, 1856–1862 (2014)

    Article  Google Scholar 

  • S. M. Pond, T. N. Tozer, First-pass elimination. Basic concepts and clinical consequences. Clin. Pharmacokinet. 9, 1–25 (1984)

    Article  Google Scholar 

  • M. R. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008)

    Article  Google Scholar 

  • M. R. Prausnitz, S. Mitragotri, R. Langer, Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3, 115–124 (2004)

    Article  Google Scholar 

  • S. P. Sullivan, D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, M. R. Prausnitz, Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16, 915–920 (2010)

    Article  Google Scholar 

  • J. C. Trim, T. S. J. Elliott, A review of sharps injuries and preventative strategies. J. Hosp. Infect. 53, 237–242 (2003)

    Article  Google Scholar 

  • K. Tsioris, W. K. Raja, E. M. Pritchard, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, Fabrication of silk microneedles for controlled-release drug delivery. Adv. Funct. Mater. 22, 330–335 (2012)

    Article  Google Scholar 

  • G. Valdés-Ramírez, J. R. Windmiller, J. C. Claussen, A. G. Martinez, F. Kuralay, M. Zhou, N. Zhou, R. Polsky, P. R. Miller, R. Narayan, J. Wang, Multiplexed and switchable release of distinct fluids from microneedle platforms via conducting polymer nanoactuators for potential drug delivery. Sens. Actuators B Chem. 161, 1018–1024 (2012)

    Article  Google Scholar 

  • N. Wilke, A. Morrissey, Silicon microneedle formation using modified mask designs based on convex corner undercut. J. Micromech. Microeng. 17, 238–244 (2007)

    Article  Google Scholar 

  • Z. Xiang, H. Wang, A. Pant, G. Pastorin, C. Lee, Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery. Biomicrofluidics 7, 26502 (2013)

    Article  Google Scholar 

  • Z. Xiang, H. Wang, S. K. Murugappan, S. Yen, G. Pastorin, C. Lee, Dense vertical SU-8 microneedles drawn from a heated mold with precisely controlled volume. J. Micromech. Microeng. 25, 025013 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Science and Technology of Taiwan and Chang Gung Memorial Hospital for their funding support (No. MOST 103-2221-E-182-016-MY2, CMRPD3E0381, BMRPC01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Heng Lin.

Additional information

Yen-Heng Lin and I.-Chi Lee contributed equally to this work.

Electronic supplementary material

ESM 1

(WMV 8335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YH., Lee, IC., Hsu, WC. et al. Rapid fabrication method of a microneedle mold with controllable needle height and width. Biomed Microdevices 18, 85 (2016). https://doi.org/10.1007/s10544-016-0113-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0113-8

Keywords

Navigation