Skip to main content
Log in

Unsteady Convective Boundary Layer Flow for MHD Williamson Fluid Over an Inclined Porous Stretching Sheet with Non-Linear Radiation and Heat Source

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, we have discussed unsteady convective boundary layer flow for MHD Williamson fluid over an inclined porous stretching sheet with non-linear radiation and heat source. We have considered the porosity medium, chemical reaction. By using suitable transformation, the governing PDEs corresponding to the momentum, energy and mass equations are converted into non-linear coupled ODEs and numerically by using Runge–Kutta Fehlberg fourth–fifth order method along with shooting approach. The effects of physically parameters on the velocity, heat and mass transfer are analyzed with the help of graphs and tables. Increases temperature ratio parameter rising the value of skin friction coefficient \(C_{f}\), local Nusselt number \(Nu_{x}\) and reverse effect show on local Sherwood number Sh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970)

    Article  Google Scholar 

  2. Chen, C.K., Char, M.I.: Heat transfer of a continuous stretching surface with suction or blowing. J. Math. Anal. Appl. 135, 568–580 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abbasbandy, S., Ghehsareh, H.R.: Solutions of the magneto hydrodynamic flow over a nonlinear stretching sheet and Nano boundary layers over stretching surfaces. Int. J. Numer. Methods Fluids 70, 1324–1340 (2012). doi:10.1002/fld.2752

  4. Aziz, A.: A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simul. 14, 1064–1068 (2009)

    Article  Google Scholar 

  5. Vajravelu, K., Hadjinicolaou, A.: Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation. Int. Commun. Heat Mass Transf. 20(3), 417–430 (1993)

    Article  Google Scholar 

  6. Nadeem, S., Hussain, S.T.: Heat transfer analysis of Williamson fluid over exponentially stretching surface. Appl. Math. Mech. Engl. Ed. 35(4), 489–502 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nadeem, S., Hussain, S.T.: Flow and heat transfer analysis of Williamson Nano fluid. Appl. Nanosci. 4, 1005–1012 (2014)

    Article  Google Scholar 

  8. Nadeem, S., Hussain, S.T.: Analysis of MHD Williamson Nano fluid flow over a heated surface. J. Appl. Fluid Mech. 9(2), 729–739 (2016)

    Article  Google Scholar 

  9. Nadeem, S., Hussain, S.T., Lee, C.: Flow of a Williamson fluid over a stretching sheet. Braz. J. Chem. Eng. 30(3), 619–625 (2013)

    Article  Google Scholar 

  10. Nadeem, S., Hussain, S.T.: Flow and heat transfer analysis of Williamson Nano fluid. Appl. Nanosci. 4, 1005–1012 (2013)

    Article  Google Scholar 

  11. Gorla, R.S.R., Krishnamurthya, M.R., Prasannakumara, B.C., Gireesha, B.J.: Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nano fluid in porous medium. Eng. Sci. Technol. Int. J. 19, 53–61 (2016)

    Article  Google Scholar 

  12. Dapra, I., Scarpi, G.: Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture. Int. J. Rock Mech. Min Sci. 44(2), 271–278 (2007)

    Article  Google Scholar 

  13. Hayat, T., Shafiq, A., Alsaedi, A.: Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation. Alex. Eng. J. 55, 2229–2240 (2016)

    Article  Google Scholar 

  14. Timol, M.G., Darji, R.M.: On invariance analysis of MHD boundary layer equations for non-Newtonian Williamson fluids. Int. J. Adv. Appl. Math. Mech. 1(4), 10–19 (2014)

    MATH  Google Scholar 

  15. Rao, P.K., Jyothi, B.: Slip effects on MHD peristaltic transport of a Williamson fluid through a porous medium in a symmetric channel. J. Math. Comput. Sci. 3(5), 1306–1324 (2013)

    Google Scholar 

  16. Kavitha, K., Prasad, K.R., Kumari, B.A.: Fully developed free convective flow of a Williamson fluid in a vertical channel under the effect of a magnetic field. Adv. Appl. Sci. Res. 3(4), 2492–2499 (2012)

    Google Scholar 

  17. Salahuddin, T., Bibi, M., Khan, F., Malik, M.Y.: Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/ absorption. AIP Adv. 6, 035–101 (2016)

    Google Scholar 

  18. Nadeem, S., Ahmed, Z., Saleem, S.: The effect of variable viscosities on micropolar flow of two nanofluids. Zeitschrift für Naturforschung A 71(12), 1121–1129 (2016)

    Article  Google Scholar 

  19. Nadeem, S., Mehmood, R., Saleem, S., Akbar, N.S.: Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate. J. Taiwan Inst. Chem. Eng. 74, 49–58 (2017)

    Article  Google Scholar 

  20. Nadeem, S., Muhammad, N., Haq, R.U.: Heat transport phenomenon in the ferromagnetic fluid over a stretching sheet with thermal stratification. Results Phys. 7, 854–861 (2017)

    Article  Google Scholar 

  21. Nadeem, S., Muhammad, N., Mustafa, T.: Squeezed flow of a nanofluid with Cattaneo–Christov heat and mass fluxes. Results Phys. 7, 862–869 (2017)

    Article  Google Scholar 

  22. Nadeem, S., Muhammad, N.: Impact of stratification and Cattaneo–Christov heat flux in the flow saturated with porous medium. J. Mol. Liq. 224, 423–430 (2016)

    Article  Google Scholar 

  23. Nadeem, S., Mehmood, R., Akbar, N.S., Rana, S.: Non-aligned stagnation point flow of radiating Casson fluid over a stretching surface. Alex. Eng. J. (2017). doi:10.1016/j.aej.2017.01.010

    Google Scholar 

  24. Sandeep, N., Kumaran, G.: Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion Academic. J. Mol. Liq. 233, 262–269 (2017)

    Article  Google Scholar 

  25. Mohsen, N., Ehsan, R., Seyed, A.H., Majid, G.: Experimental and analytical investigations of vibrational behavior of U-shaped atomic force microscope probe considering thermal loading and the modified couple stress theory Eur. Phys. J. Plus 132(6), 247 (2017). doi:10.1140/epjp/i2017-11518-5

    Article  Google Scholar 

  26. Guo, Y., Chen, X., Sang, Q., Han, C., Lv, D., Zhang, Q., Liu, M., Wei, X.: Comparative study of the viscoelastic micellar solutions of R16HTAC and CTAC in the presence of sodium salicylate. J. Mol. Liq. 234, 437–443 (2017)

    Article  Google Scholar 

  27. Sandeep, N., Animasaun, I.L., Raju, C.S.K.: Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alex. Eng. J. 55(2), 1595–1606 (2016)

    Article  Google Scholar 

  28. Sandeep, N., Krishna, P.M., Reddy, J.V.R., Sugunamma, V.: Dual solutions for unsteady flow of Powell Eyring fluid past an inclined stretching sheet. J. Nav. Archit. Mar. Eng. 13, 89–99 (2016)

    Article  Google Scholar 

  29. Andersson, H.I., Hansen, O.R., Holmedal, B.: Diffusion of a chemically reactive species from a stretching sheet. Int. J. Heat Mass Transf. 37, 659–664 (1994)

    Article  MATH  Google Scholar 

  30. Prasad, K.V., Sujatha, A., Vajravelu, K., Pop, I.: MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermos-physical properties. Meccanica 47, 1425–39 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mukhopadhyay, S., Golam, A.M., Wazed, A.P.: Effects of transpiration on unsteady MHD flow of an UCM fluid passing through a stretching surface in the presence of a first orderchemical reaction. Chin. Phys. B 22, 124–701 (2013)

    Google Scholar 

  32. Palani, S., Kumar, B.R., Kameswaran, P.K.: Unsteady MHD flow of an UCM fluid over a stretching surface with higher order chemical reaction. Ain Shams Eng. J. 7, 399–408 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Parmar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, A. Unsteady Convective Boundary Layer Flow for MHD Williamson Fluid Over an Inclined Porous Stretching Sheet with Non-Linear Radiation and Heat Source. Int. J. Appl. Comput. Math 3 (Suppl 1), 859–881 (2017). https://doi.org/10.1007/s40819-017-0387-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0387-4

Keywords

Navigation