Skip to main content
Log in

Heat transfer analysis of Williamson fluid over exponentially stretching surface

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat transfer are presented. Two cases of heat transfer are considered, i.e., the prescribed exponential order surface temperature (PEST) case and the prescribed exponential order heat flux (PEHF) case. The highly nonlinear partial differential equations are simplified with suitable similar and non-similar variables, and finally are solved analytically with the help of the optimal homotopy analysis method (OHAM). The optimal convergence control parameters are obtained, and the physical features of the flow parameters are analyzed through graphs and tables. The skin friction and wall temperature gradient are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakiadis, B. C. Boundary layer behavior on continuous solid flat surfaces. American Institute of Chemical Engineers Journal, 7, 26–28 (1961)

    Article  Google Scholar 

  2. Tsou, F. K., Sparrow, E. M., and Goldstein, R. J. Flow and heat transfer in the boundary layer on a continuous moving surface. International Journal of Heat and Mass Transfer, 10, 219–235 (1967)

    Article  Google Scholar 

  3. Erickson, L. E., Fan, L. T., and Fox, V. G. Heat and mass transfer in the laminar boundary layer flow of a moving flat surface with constant surface velocity and temperature focusing on the effects of suction/injection. Industrial & Engineering Chemistry Fundamentals, 5, 19–25 (1966)

    Article  Google Scholar 

  4. Liu, I. C. A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet. International Communications in Heat and Mass Transfer, 32(8), 1075–1084 (2005)

    Article  Google Scholar 

  5. Hammad, M. A. A. and Ferdows, M. Similarity solutions to viscous flow and heat transfer of nanofluid over nonlinearly stretching sheet. Applied Mathematics and Mechanics (English Edition), 33(7), 923–930 (2012) DOI 10.1007/s10483-012-1595-7

    Article  MathSciNet  Google Scholar 

  6. Ali, F. M., Nazar, R., Arifin, N. M., and Pop, I. MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. Applied Mathematics and Mechanics (English Edition), 32(4), 409–418 (2011) DOI 10.1007/s10483-011-1426-6

    Article  MATH  MathSciNet  Google Scholar 

  7. Kumaran, V. and Ramanaiah, G. A note on the flow over a stretching sheet. Acta Mechanica 116(1–4), 229–233 (1996)

    Article  MATH  Google Scholar 

  8. Ali, M. E. On thermal boundary layer on a power law stretched surface with suction or injection. International Journal of Heat and Mass Transfer, 16, 280–290 (1995)

    Google Scholar 

  9. Elbashbeshy, E. M. A. Heat transfers over an exponentially stretching continuous surface with suction. Archives of Mechanics, 53(6), 643–651 (2001)

    MATH  Google Scholar 

  10. Sanjayanand, E. and Khan, S. K. On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet. International Journal of Thermal Sciences, 45, 819–828 (2006)

    Article  Google Scholar 

  11. Magyari, E. and Keller, B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. Journal of Physics D: Applied Physics, 32, 577–585 (1999)

    Article  Google Scholar 

  12. Nadeem, S., Zaheer, S., and Fang, T. Effects of thermal radiations on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. Numerical Algorithms, 57, 187–205 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nadeem, S. and Lee, C. Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Research Letters, 7, 94 (2012)

    Article  Google Scholar 

  14. Liao, S. J. Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC, Boca Raton, 99–102 (2003)

    Book  Google Scholar 

  15. Liao, S. J. On a generalized Taylor theorem: a rational proof of the validity of the homotopy analysis method. Applied Mathematics and Mechanics (English Edition), 24(1), 53–60 (2003) DOI 10.1007/BF02439377

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhu, J., Zheng, L. C., and Zhang, X. X. Analytical solution to stagnation-point flow and heat transfer over a stretching sheet based on homotopy analysis. Applied Mathematics and Mechanics (English Edition), 30(4), 463–474 (2009) DOI 10.1007/s10483-009-0407-2

    Article  MATH  MathSciNet  Google Scholar 

  17. Nadeem, S. and Hussain, A. MHD flow of a viscous fluid on a nonlinear porous shrinking sheet with homotopy analysis method. Applied Mathematics and Mechanics (English Edition), 30(12), 1569–1578 (2009) DOI 10.1007/s10483-009-1208-6

    Article  MATH  MathSciNet  Google Scholar 

  18. Liao, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Springer & Higher Education Press, Heidelberg (2012)

    Book  MATH  Google Scholar 

  19. Liao, S. J. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2003–2016 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, Q. The optimal homotopy-analysis method for Kawahara equation. Nonlinear Analysis: Real World Applications, 12, 1555–1561 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nadjafi, J. S. and Jafari, H. S. Comparison of Liao’s optimal HAM and Niu’s one-step optimal HAM for solving integro-differential equations. Journal of Applied Mathematics & Bioinformatics, 1(2), 85–98 (2011)

    MATH  Google Scholar 

  22. Niu, Z. and Wang, C. A one-step optimal homotopy analysis method for nonlinear differential. Communications in Nonlinear Science and Numerical Simulation, 15, 2026–2036 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fan, T. and You, X. Optimal homotopy analysis method for nonlinear differential equations in the boundary layer. Numerical Algorithms, 62, 337–354 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Williamson, R. V. The flow of pseudoplastic materials. Industrial & Engineering Chemistry, 21(11), 1108–1111 (1929)

    Article  Google Scholar 

  25. Lyubimov, D. V. and Perminov, A. V. Motion of a thin oblique layer of a pseudoplastic fluid. Journal of Engineering Physics and Thermophysics, 75(4), 920–924 (2002)

    Article  Google Scholar 

  26. Nadeem, S. and Akram, S. Influence of inclined magnetic field on peristaltic flow of a Williamson fluid model in an inclined symmetric or asymmetric channel. Mathematical and Computer Modelling, 52, 107–119 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nadeem, S. and Akbar, N. S. Numerical solutions of peristaltic flow of Williamson fluid with radially varying MHD in an endoscope. International Journal for Numerical Methods in Fluids, 66(2), 212–220 (2010)

    Article  MathSciNet  Google Scholar 

  28. Nadeem, S. and Akram, S. Peristaltic flow of a Williamson fluid in an asymmetric channel. Communications in Nonlinear Science and Numerical Simulation, 15, 1705–1716 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dapra, I. and Scarpi, G. Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture. International Journal of Rock Mechanics and Mining Sciences, 44, 271–278 (2007)

    Article  Google Scholar 

  30. Nadeem, S., Hussain, S. T., and Lee, C. Flow of a Williamson fluid over a stretching sheet. Brazilian Journal of Chemical Engineering, 30(3), 619–625 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nadeem.

Additional information

Project supported by the Ph.D. Indigenous Scheme of the Higher Education Commission of Pakistan (No. 112-21674-2PS1-576)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, S., Hussain, S.T. Heat transfer analysis of Williamson fluid over exponentially stretching surface. Appl. Math. Mech.-Engl. Ed. 35, 489–502 (2014). https://doi.org/10.1007/s10483-014-1807-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1807-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation