Skip to main content
Log in

MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermophysical properties

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper we investigate the effects of temperature-dependent viscosity, thermal conductivity and internal heat generation/absorption on the MHD flow and heat transfer of a non-Newtonian UCM fluid over a stretching sheet. The governing partial differential equations are first transformed into coupled non-linear ordinary differential equation using a similarity transformation. The resulting intricate coupled non-linear boundary value problem is solved numerically by a second order finite difference scheme known as Keller-Box method for various values of the pertinent parameters. Numerical computations are performed for two different cases namely, zero and non-zero values of the fluid viscosity parameter. That is, 1/θ r →0 and 1/θ r ≠0 to get the effects of the magnetic field and the Maxwell parameter on the velocity and temperature fields, for several physical situations. Comparisons with previously published works are presented as special cases. Numerical results for the skin-friction co-efficient and the Nusselt number with changes in the Maxwell parameter and the fluid viscosity parameter are tabulated for different values of the pertinent parameters. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid phenomena, especially the UCM fluid phenomena. Maxwell fluid reduces the wall-shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a
Fig. 2b
Fig. 3
Fig. 4a
Fig. 4b
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a :

constant in (3)

b :

constant in (14) known as stretching rate b>0

B 0 :

uniform magnetic field

c p :

specific heat at constant pressure

C f :

skin friction coefficient

d ij :

deformation rate tensor

f :

dimensionless stream function

K :

thermal conductivity

L ij :

velocity gradient tensor

K :

thermal conductivity of the fluid far away from the sheet

Mn :

magnetic parameter

Nu x :

local Nusselt number

Pr:

Prandtl number

Q s :

temperature dependent volumetric rate of heat generation/absorption

q w :

heat transfer from the surface of the sheet

T :

fluid temperature

T r :

constant in (4)

T w :

temperature of the plate

T :

ambient temperature

U w (x):

velocity of the stretching sheet

u,v :

velocity components in the x and y directions

x,y :

Cartesian coordinates

α :

thermal diffusivity

α 0,β 0 :

unknown initial conditions

β :

Maxwell parameter

β 1 :

heat source/sink parameter

γ :

constant defined in (4)

ν :

kinematic viscosity

ρ :

density

σ :

electric conductivity

δ :

the coefficient of viscosity defined in (10)

λ :

relaxation time

ΔT :

characteristic temperature

\(\frac{\Delta}{\Delta t}\) :

upper convected time derivative

ε :

constant in (2) known as variable thermal conductivity parameter

η :

similarity variable

θ :

dimensionless temperature

θ r :

constant in (5) known as fluid viscosity parameter

μ :

viscosity

ψ :

stream function

τ ij :

tensor notation

τ w :

skin friction or shear stress

∞:

condition at infinity

w :

condition at the wall

′:

derivative with respect to η

References

  1. Sakiadis BC (1961) Boundary layer behavior on continuous solid surfaces: I. Boundary-layer equations for two dimensional and axisymmetric flow. AIChE J 7:26–28

    Article  Google Scholar 

  2. Sakiadis BC (1961) Boundary layer behavior on continuous solid surfaces: II, the boundary layer on a continuous flat surface. AIChE J 7:221–225

    Article  Google Scholar 

  3. Erickson LE, Cha LC, Fan LT (1966) The cooling of a continuous flat sheet. In: AICHE Chemical engineering progress symposium series. Heat transfer, Los Angeles, vol 62, pp 157–165

    Google Scholar 

  4. Tsou FK, Sparrow EM, Goldstein RJ (1967) Flow and heat transfer in the boundary layer on a continuous moving surface. Int J Heat Mass Transf 10:219–235

    Article  Google Scholar 

  5. Fox VG, Erickson LE, Fan LT (1968) methods for solving the boundary layer equations for moving continuous flat surfaces with suction and injection. AIChE J 14:726–736

    Article  Google Scholar 

  6. Soundalgekar VM, Ramana Murthy TV (1980) Heat transfer in the flow past a continuous moving plate with variable temperature. Warme- Stoffubertrag 14:91–93

    Article  ADS  Google Scholar 

  7. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647

    Article  Google Scholar 

  8. Grubka LJ, Bobba KM (1985) Heat transfer characteristics of a continuous stretching surface with variable temperature. J Heat Transf 107:248–250

    Article  Google Scholar 

  9. Chen CH (1998) Laminar mixed convection adjacent to vertical continuously stretching sheets. Heat Mass Transf 33:471–476

    Article  ADS  Google Scholar 

  10. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55:744–746

    Article  Google Scholar 

  11. Chen CK, Char MI (1988) Heat transfer of a continuous stretching surface with suction or blowing. J Math Anal Appl 135:568–580

    Article  MathSciNet  MATH  Google Scholar 

  12. Ali ME (1994) Heat transfer characteristics of a continuous stretching surface. Heat Mass Transf 29:227–234

    Google Scholar 

  13. Vajravelu K (1994) Flow and heat transfer in a saturated porous medium over a stretching surface. Z Angew Math Mech 74:605–614

    Article  MATH  Google Scholar 

  14. Pavlov KB (1974) Magnaetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a plane surface. Magn Gidrodin 4:146–147

    Google Scholar 

  15. Chakrabarti A, Gupta AS (1979) Hydro magnetic flow and heat transfer over a stretching sheet. Q Appl Math 37:73–78

    MATH  Google Scholar 

  16. Char MI (1994) Heat and mass transfer in a hydromagnetic flow of the visco-elastic fluid over a stretching sheet. J Math Anal Appl 186:674–689

    Article  MathSciNet  MATH  Google Scholar 

  17. Chang Wen-Dong (1989) The non-uniqueness of the flow of a visco-elastic fluid over a stretching sheet. Q Appl Math 47:365–366

    MATH  Google Scholar 

  18. Andresson HI (1992) MHD flow of a visco-elastic fluid past a stretching surface. Acta Mech 95:227–230

    Article  MathSciNet  Google Scholar 

  19. Vajravelu K, Rolins D (1991) Heat transfer in a visco-elastic fluid over a stretching sheet. J Math Anal Appl 158:241–255

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhatnagar RK, Gupta G, Rajagopal KR (1995) Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. Int J Non-Linear Mech 30:391–405

    Article  MATH  Google Scholar 

  21. Renardy M (1997) High weissenberg numberboundary layers for upper convected Maxwell fluid. J Non-Newton Fluid Mech 68:125–132

    Article  Google Scholar 

  22. Sadeghy K, Najafi AH, Saffaripour M (2005) Sakiadis flow of an upper-convected Maxwell fluid. Int J Non-Linear Mech 40:1220–1228

    Article  MATH  Google Scholar 

  23. Hayat T, Abbas Z, Sajid M (2006) Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A 358:396–403

    Article  ADS  MATH  Google Scholar 

  24. Aliakbar V, Alizadeh-Pahlavan A, Sadeghy K (2009) The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets. Commun Nonlinear Numer Simul 14:779–794

    Article  Google Scholar 

  25. Vajravelu K, Prasad KV, Sujatha A (2011) Convection heat transfer in a Maxwell fluid at a non-isothermal surface, Central. Eur J Phys 9:807–815

    Google Scholar 

  26. Hayat T, Qasim M (2010) Influence of thermal radiation and joule heating on MHD flow of a Maxwell fluid in the presence of a thermophoresis. Int J Heat Mass Transf 53:4780–4788

    Article  MATH  Google Scholar 

  27. Hayat T, Abbas Z, Sajid M (2009) MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface. Chaos Solutions Fractals 39:840–848

    Article  ADS  MATH  Google Scholar 

  28. Abbas Z, Wang Y, Hayat T, Overlack M (2010) Mixed convection in the stagnation point flow of a Maxwell fluid towards a vertical stretching surface. Nonlinear Anal, Real World Appl 11:3218–3228

    Article  MathSciNet  MATH  Google Scholar 

  29. Sadeghy K, Najafi AH, Saffaripour M (2005) Sakiadis flow of an upper-convected Maxwell fluid. Int J Non-Linear Mech 40:1220–1228

    Article  MATH  Google Scholar 

  30. Mamaloukas Ch, Subhas Abel M, Tawade JV, Mahabaleswar US (2010) On effects of a transverse magnetic filed on an UCM fluid over a stretching sheet. Int J Pure Appl Math 1:85–92

    Google Scholar 

  31. Kumari M, Nath G (2009) Steady mixed convection stagnation flow of upper convected Maxwell fluids with magnetic field. Int J Non-Linear Mech 44:1048–1055

    Article  MATH  Google Scholar 

  32. Hayat T, Sajjad R, Abbas Z, Sajid M, Hendi AA (2011) Radiation effects on MHD flow of Maxwell fluid in a channel with porous medium. Int J Heat Mass Transf 54:854–862

    Article  MATH  Google Scholar 

  33. Hayat T, Awais M, Qasim M, Hendi AA (2011) Effects of mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid. Int J Heat Mass Transf 54:3777–3782

    Article  MATH  Google Scholar 

  34. Herwig H, Wickern G (1986) The effect variable properties on laminar boundary layer flow. Warme- Stoffubertrag 20:47–57

    Article  ADS  Google Scholar 

  35. Lai FC, Kulacki FA (1990) The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium. Int J Heat Mass Transf 33:1028–1031

    Article  Google Scholar 

  36. Takhar HS, Nitu S, Pop I (1991) Boundary layer flow due to a moving plate: variable fluid properties. Acta Mech 90:37–42

    Article  MATH  Google Scholar 

  37. Pop I, Gorla RSR, Rashidi M (1992) The effect of variable viscosity on flow and heat transfer to a continuous moving flat plate. Int J Eng Sci 30:1–6

    Article  Google Scholar 

  38. Hassanien IA (1997) The effect of variable viscosity on flow and heat transfer on a continuous stretching surface. Z Angew Math Mech 77:876–880

    Article  MathSciNet  MATH  Google Scholar 

  39. Subhas Abel M, Khan SK, Prasad KV (2002) Study of visco-elastic fluid flow and heat transfer over a stretching sheet with variable fluid viscosity. Int J Non-Linear Mech 37:81–88

    Article  MATH  Google Scholar 

  40. Seedbeek MA (2005) Finite element method for the effects of chemical reaction, variable viscosity, thermophoresis and heat generation/absorption on a boundary layer hydro magnetic flow with heat and mass transfer over a heat surface. Acta Mech 177:1–18

    Article  Google Scholar 

  41. Ali ME (2006) The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface. Int J Ther Sci 45:60–69

    Article  Google Scholar 

  42. Andersson HI, Aarseth JB (2007) Sakiadis flow with variable fluid properties: revisited. Int J Eng Sci 45:554–561

    Article  MathSciNet  MATH  Google Scholar 

  43. Prasad KV, Vajravelu K, Datti PS (2010) The effects of variable fluid properties on the hydromagnetic flow and heat transfer over a non-linearly stretching sheet. Int J Ther Sci 49:603–610

    Article  Google Scholar 

  44. (1986–1987) CRC hand book of chemistry and physics, 67th edn. CRC Press, Boca Raton

  45. Rajagopal KR, Gupta AS, Wineman AS (1980) On the boundary layer theory for non-Newtonian fluids. Lett Appl Eng Sci 18:875–883

    MATH  Google Scholar 

  46. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1. Wiley, New York

    Google Scholar 

  47. Andersson HI, Bech KH, Dandapat BS (1992) Magnetohydrodynamic flow of a power law fluid over a stretching sheet. Int J Non-Linear Mech 27:929–936

    Article  MATH  Google Scholar 

  48. Na TY (1979) Computational methods in engineering boundary value problems. Academic Press, New York

    MATH  Google Scholar 

  49. Cebeci T, Bradshaw P (1984) Physical and computational aspects of convective heat transfer. Springer, New York

    MATH  Google Scholar 

  50. Keller HB (1992) Numerical methods for two-point boundary value problems. Dover, New York

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the constructive comments of the reviewers which led to definite improvement in the paper. K. V. Prasad expresses his grateful thanks to DST authorities of India for providing with the financial support through BOYSCAST fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K.V., Sujatha, A., Vajravelu, K. et al. MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermophysical properties. Meccanica 47, 1425–1439 (2012). https://doi.org/10.1007/s11012-011-9526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-011-9526-x

Keywords

Navigation