Skip to main content
Log in

Aspects of higher spin symmetry in flat space

  • Review Paper
  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

We review some aspects of higher spin symmetry, in (Anti-)de Sitter and flat space–times, aiming at closing the gap between the constantly curved and flat cases. On (Anti-)de Sitter space, non-Abelian higher spin algebras are at the core of the construction of interacting theories of higher spin gravity. By considering a suitable contraction of these algebras, we show that similar considerations can apply to Minkowski space–time. We identify a unique candidate to the role of higher spin symmetry in flat space that can also be built as a quotient of the universal enveloping algebra of the isometries of the vacuum, as in the (Anti-)de Sitter case. We then show how to recover the free dynamics from the gauging of the resulting algebra at the linear level. Finally, we show how to realise this gauge algebra as a subset of the global symmetries of a Carrollian conformal scalar field theory living on the null infinity of Minkowski space–time. This theory emerges as the limit of vanishing speed of light of a free massless relativistic scalar. The identification of the same higher spin algebra that rules the dynamics in the bulk of space–time within the global symmetries of this boundary theory paves the way to a flat counterpart of higher spin holography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This review contains no datasets.

Notes

  1. Some years later, the Bargmann–Wigner equations [30] were considered for this role. Although the latter were originally formulated as first-order equations on mixed-symmetry fields in \(D=4\,\), they were generalised to any D in Ref. [31], where it was also proven that they are equivalent to higher derivative equations in terms of symmetric fields. They were eventually abandoned due to their problematic coupling to electromagnetism.

  2. In general, self-coupling terms for fields of odd spin are problematic, even for spin one. A way out consists in introducing colour factors, like in Yang–Mills theory. However, it was found in Ref. [42] that the Berends–Burgers–van Dam spin-three vertex was necessarily inconsistent.

  3. Although one can build theories up to cubic order with only a finite number of fields, the necessity of closing of the algebra of gauge transformations at cubic level, or the consistency of interactions at quartic level, forces us to consider the full spectrum, see for instance the review [43]. The problem of an infinite spectrum is distinct from the potentially infinite number of interactions with increasing derivatives in a perturbative expansion, which is also present in the case of higher spin gravity.

  4. Higher spin cubic interactions were actually constructed earlier [48] but the analysis was performed in the light-cone gauge, thus obscuring the structure of a gauge theory.

  5. The S-matrix measures the scattering amplitudes in an asymptotically far region of Minkowski space, and has to be replaced in Anti de Sitter by correlation functions of the boundary theory, while no direct equivalent seems to exist in de Sitter space–time.

  6. It was proven, much later after the original construction of Fradkin and Vasiliev, that this algebra is the unique one that reproduces known non-Abelian cubic interactions [65] in any dimensions \(D \ge 4\,\), save for a one-parameter deformation in \(D=5\,\).

  7. The original formulation of the AdS/CFT correspondence postulated the equivalence between type IIB super-string theory on AdS\(_5 \times S^5\) and a dual \(\mathcal{N}= 4\) super-conformal Yang–Mill theory on four-dimensional Minkowski space, the boundary of AdS\(_5\,\).

  8. The name Carrollian was inspired by Lewis Carroll’s book Through the looking glass, where the protagonist Alice is puzzled by the Queen’s remark ‘it takes all the running you can do, to keep in the same place’. In Carrollian space–time, the speed of light is sent to zero, creating this sense of ‘static motion’.

  9. The ‘magnetic’ (or ‘space-like’) action, as well as a holographic realisation of both theories, will be discussed in Ref. [105].

  10. However, unconstrained and geometric theories [18, 37, 156,157,158,159,160] are placed on a different footing from the get-go, since they require traceful gauge parameters to start with.

  11. As explained in, e.g. Ref. [121], the component of \(\textrm{d}C^{a(s),b(s)}\) whose Young diagram has three rows is killed as a consequence of Eq. (2.27b), which is also the case of its trace, so that the only surviving component is a Lorentz-irreducible tensor \(C^{a(s+1),b(s)}\) with two rows of length \((s+1)\) and \(s\,\).

  12. A complete classification of cubic vertices in light-cone was performed in Ref. [52] which exhibits \((2\,s-2)\), \((2\,s+2)\) and 2-derivative couplings with gravity. The latter class can not be seen within the Fronsdal formulation and only the first leads to a deformation of gauge transformations [58, 131]

  13. A Lagrangian formulation is not strictly necessary to construct an interacting theory, but if one wants to quantise it using the Feynman rules, it is a desirable feature. However, an underlying algebra is always necessary to have a consistent theory. Indeed, in order to build quartic interactions, the cubic vertices must satisfy a consistency condition which is that the structure constants of the algebra they define satisfy the Jacobi identity.

  14. Remember that \(\mathfrak {sl}(4,{{\mathbb {R}}})\) and \(\mathfrak {su}(2,2)\) are two real forms of \(\mathfrak {sl}(4,{{\mathbb {C}}})\,\).

  15. An alternative construction, in which mixed products of the \(\mathcal{L}\) and \(\bar{\mathcal{L}}\) generators are allowed, leads to an extended algebra dubbed ‘large AdS higher-spin algebra’ in Ref. [181]. Similar extended algebras also appear in the description of partially massless fields in three dimensions [182].

  16. The lower bound on the value of \(C_2\) is related to unitarity constraints [140], and the case \(\lambda \in {{\mathbb {N}}}\) reproduces some finite-dimensional truncations.

  17. In the case of massless Poincaré representations, the Pauli–Lubanski pseudo-vector or its higher dimensional generalisation is proportional to the generator of translations, where the proportionality constant encodes the helicity. In our case, \({{\mathbb {W}}}_{a_1 \,\cdots \, a_{D-3}} \sim 0\), meaning that we are looking at a massless scalar.

  18. The requirement that the boundary field theory has exact higher spin symmetry is quite constraining. Theories with slightly broken (i.e. exact up to order 1/N in a large-N expansion) higher spin symmetry such as the quartic model with critical coupling gives more flexibility and would correspond to a situation where higher spin symmetry in the bulk is broken by quantum effects in a controlled way.

  19. Another possibility is given by the extended BMS algebra of Barnich and Troessaert [92], which enhances the group of conformal transformations of the two-sphere to transformations of the Riemann sphere by arbitrary holomorphic and anti-holomorphic functions, except in 0 and \(\infty \,\).

  20. Alternatively, one may consider higher differential symmetries, up to the quotient by the equivalence relation \(\sim \) defined by \({\hat{\mathcal{D}}}_1 \sim {\hat{\mathcal{D}}}_2\) if and only if there exists \({\hat{\mathcal{P}}}\) such that \({\hat{\mathcal{D}}}_1 - {\hat{\mathcal{D}}}_2 = \mathcal{P}\circ A\,\).

  21. The requirement that \({\hat{\mathcal{D}}}\) is non-trivial means that we can always look for \(V^{\mu _1 \,\cdots \, \mu _{s-1}}\). Indeed, if \(V^{\mu _1 \,\cdots \, \mu _{s-1}} = \eta ^{(\mu _1 \mu _2} W^{a_3 \,\cdots \, \mu _{s-1})}\,\), then the highest order of \({\hat{\mathcal{D}}}\) is trivial. This means that \({\hat{\mathcal{D}}}\) is equivalent to another differential operator of strictly lower degree, in the definition of footnote 20.

  22. In this case, it is customary to add a logarithmic branch [203] so that the holographic reconstruction procedure can be performed without obstruction, but in the case of the singleton we precisely want to keep things that way so that a truncation of the spectrum appears, corresponding to defining an ‘ultra-short’ representation of the conformal group.

  23. Even with these two requirements, it is in general non-unique [210, 213].

  24. In its original form, the Carroll group of coordinate transformations is the \(c \rightarrow 0\) contraction of the Poincaré group, and plays a dual role to the Galilei group obtained as the \(c \rightarrow \infty \) contraction.

  25. Let us also mention that the algebra of isometries of any null projective hypersurface (for instance null infinity \({\mathscr {I}}\)) is the BMS algebra [95, 209], which is a straightforward extension of the conformal Carroll algebra.

  26. This operator is distinct from the Laplace–Yamabe operator on the sphere \(S^d\) with round metric \(\gamma \,\).

  27. This definition is well suited for the boundary description of the simpleton, where bulk rigid translations are represented on the boundary by the vector fields \(f_a({\textbf{x}})\,\partial _u\), with \(f_a({\textbf{x}})\) a function of the celestial sphere verifying the good-cut equation defined in (3.58).

  28. The Newman–Unti group at level k is generated by vector fields X preserving the metric up to a conformal factor, i.e. \({\mathcal {L}}_X g = \lambda g\) and such that \({\mathcal {L}}_\xi {}^k X = 0\) where \(\xi \) is the fundamental Carrollian vector field.

  29. In Ref. [212], the realisation of a higher spin extension of the BMS\(_{d+2}\) algebra on the asymptotic data of a free Minkowski scalar field was investigated, and it was proposed that the algebra realised for the value of the scaling dimension \(\Delta = \frac{d}{2} - 1\) gave rise to a candidate asymptotic symmetry algebra for unconstrained higher spin theories in Minkowski space–time.

  30. Such non-localities are also known to appear in the standard unfolded form of the equations of motion in AdS, from quartic order in the interactions [229,230,231]. It is a subject of intense research to determine whether there exists a weaker notion of locality under which higher spin interactions are local at each arbitrary order in perturbation or spin [232, 233].

  31. Recall that the maximally balanced representation corresponds to a field \(\Phi ^{A(s),\dot{A}(s)}\) with as many dotted as there are undotted indices, and coincides with a completely symmetric tensor \(\varphi _{\mu (s)}\) in a Lorentz-irreducible representation using Pauli matrices, while the maximally unbalanced representation possesses only dotted \(\Phi ^{\dot{A}(2s)}\) or undotted \(\Phi ^{A(2s)}\) indices and coincides with the self-dual or anti-self-dual part of a rectangular tensor \(C_{\mu (s),\nu (s)}\,\). The former is naturally identified with the traceless part of the Fronsdal field and the latter with the higher spin Weyl curvature, equal on-shell to s derivatives of the Fronsdal field. Representations between the maximally balanced or unbalanced ones exist, corresponding to tensor of mixed-symmetry.

  32. Some recent progress in chiral higher spin gravity [240, 241] indicates that there exists another framework in which one can translate most of the results of higher spin holography into flat space. One can prove for instance the Flato–Fronsdal theorem, but one must be ready to accept some unconventional features as well. For instance, the gauge algebra relevant for flat self-dual higher spin gravity is not based on the Poincaré algebra [235, 242], but on a different contraction of the AdS\(_4\) isometry algebra. This last statement is not restricted to higher spins, since it is also the case for flat self-dual gravity [243].

References

  1. M.H. Goroff, A. Sagnotti, the ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266, 709–736 (1986). https://doi.org/10.1016/0550-3213(86)90193-8

    Article  ADS  Google Scholar 

  2. G. Veneziano, Construction of a crossing—symmetric, Regge behaved amplitude for linearly rising trajectories. Nuovo Cim. A 57, 190–197 (1968). https://doi.org/10.1007/BF02824451

    Article  ADS  Google Scholar 

  3. D.J. Gross, P.F. Mende, String theory beyond the planck scale. Nucl. Phys. B 303, 407–454 (1988). https://doi.org/10.1016/0550-3213(88)90390-2

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Moeller, P.C. West, Arbitrary four string scattering at high energy and fixed angle. Nucl. Phys. B 729, 1–48 (2005). https://doi.org/10.1016/j.nuclphysb.2005.09.036. arXiv:hep-th/0507152

    Article  ADS  Google Scholar 

  5. A. Fotopoulos, M. Tsulaia, On the tensionless limit of string theory, off–shell higher spin interaction vertices and BCFW recursion relations. JHEP 11, 086 (2010). https://doi.org/10.1007/JHEP11(2010)086. arXiv:1009.0727 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  6. D.J. Gross, High-Energy Symmetries of String Theory. Phys. Rev. Lett. 60, 1229 (1988). https://doi.org/10.1103/PhysRevLett.60.1229

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Sagnotti, Notes on strings and higher spins. J. Phys. A 46, 214006 (2013). https://doi.org/10.1088/1751-8113/46/21/214006. arXiv:1112.4285 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Ouvry, J. Stern, Gauge fields of any spin and symmetry. Phys. Lett. B 177, 335–340 (1986). https://doi.org/10.1016/0370-2693(86)90763-X

    Article  ADS  MathSciNet  Google Scholar 

  9. B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins. Nucl. Phys. B Proc. Suppl. 102, 113–119 (2001). https://doi.org/10.1016/S0920-5632(01)01545-6. arXiv:hep-th/0103247

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Sagnotti, M. Tsulaia, On higher spins and the tensionless limit of string theory. Nucl. Phys. B 682, 83–116 (2004). https://doi.org/10.1016/j.nuclphysb.2004.01.024. arXiv:hep-th/0311257

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins. Nucl. Phys. B 669, 159–172 (2003). https://doi.org/10.1016/j.nuclphysb.2003.07.002. arXiv:hep-th/0305155

    Article  ADS  MathSciNet  Google Scholar 

  12. M.R. Gaberdiel, R. Gopakumar, Tensionless string spectra on AdS\(_{3}\). JHEP 05, 085 (2018). https://doi.org/10.1007/JHEP05(2018)085. arXiv:1803.04423 [hep-th]

    Article  ADS  Google Scholar 

  13. L. Eberhardt, M.R. Gaberdiel, R. Gopakumar, The worldsheet dual of the symmetric product CFT. JHEP 04, 103 (2019). https://doi.org/10.1007/JHEP04(2019)103. arXiv:1812.01007 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Isberg, U. Lindstrom, B. Sundborg, G. Theodoridis, Classical and quantized tensionless strings. Nucl. Phys. B 411, 122–156 (1994). https://doi.org/10.1016/0550-3213(94)90056-6. arXiv:hep-th/9307108

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Bagchi, S. Chakrabortty, P. Parekh, Tensionless strings from worldsheet symmetries. JHEP 01, 158 (2016). https://doi.org/10.1007/JHEP01(2016)158. arXiv:1507.04361 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Casali, P. Tourkine, On the null origin of the ambitwistor string. JHEP 11, 036 (2016). https://doi.org/10.1007/JHEP11(2016)036. arXiv:1606.05636 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  17. A.K.H. Bengtsson, A unified action for higher spin gauge bosons from covariant string theory. Phys. Lett. B 182, 321–325 (1986). https://doi.org/10.1016/0370-2693(86)90100-0

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Francia, A. Sagnotti, On the geometry of higher spin gauge fields. Class. Quant. Grav. 20, 473–486 (2003). https://doi.org/10.1088/0264-9381/20/12/313. arXiv:hep-th/0212185

    Article  ADS  MathSciNet  Google Scholar 

  19. N. Bouatta, G. Compere, A. Sagnotti, An introduction to free higher-spin fields. In: Argurio, R., Barnich, G., Bonelli, G., Grigoriev, M. (eds.) 1st Solvay Workshop on Higher Spin Gauge Theories, pp. 79–99 (2004)

  20. D. Francia, String theory triplets and higher-spin curvatures. Phys. Lett. B 690, 90–95 (2010). https://doi.org/10.1016/j.physletb.2010.05.006. arXiv:1001.5003 [hep-th]

    Article  ADS  Google Scholar 

  21. A. Campoleoni, D. Francia, Maxwell-like Lagrangians for higher spins. JHEP 03, 168 (2013). https://doi.org/10.1007/JHEP03(2013)168. arXiv:1206.5877 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Francia, A. Sagnotti, Higher-spin geometry and string theory. J. Phys. Conf. Ser. 33, 57 (2006). https://doi.org/10.1088/1742-6596/33/1/006. arXiv:hep-th/0601199

    Article  ADS  Google Scholar 

  23. A. Sagnotti, M. Taronna, String lessons for higher-spin interactions. Nucl. Phys. B 842, 299–361 (2011). https://doi.org/10.1016/j.nuclphysb.2010.08.019. arXiv:1006.5242 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Majorana, Relativistic theory of particles with arbitrary intrinsic angular momentum. Nuovo Cim. 9, 335–344 (1932). https://doi.org/10.1007/BF02959557

    Article  ADS  Google Scholar 

  25. P.A.M. Dirac, Relativistic wave equations. Proc. Roy. Soc. Lond. A 155, 447–459 (1936). https://doi.org/10.1098/rspa.1936.0111

    Article  ADS  Google Scholar 

  26. E.P. Wigner, On unitary representations of the inhomogeneous Lorentz Group. Ann. Math. 40, 149–204 (1939). https://doi.org/10.2307/1968551

    Article  ADS  MathSciNet  Google Scholar 

  27. X. Bekaert, N. Boulanger, The unitary representations of the Poincaré group in any spacetime dimension. SciPost Phys. Lect. Notes 30, 1 (2021). https://doi.org/10.21468/SciPostPhysLectNotes.30. arXiv:hep-th/0611263

    Article  Google Scholar 

  28. N. Boulanger, S. Cnockaert, M. Henneaux, A note on spin s duality. JHEP 06, 060 (2003). https://doi.org/10.1088/1126-6708/2003/06/060. arXiv:hep-th/0306023

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Fierz, W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. Roy. Soc. Lond. A 173, 211–232 (1939). https://doi.org/10.1098/rspa.1939.0140

    Article  ADS  MathSciNet  Google Scholar 

  30. V. Bargmann, E.P. Wigner, Group theoretical discussion of relativistic wave equations. Proc. Nat. Acad. Sci. 34, 211 (1948). https://doi.org/10.1073/pnas.34.5.211

    Article  ADS  MathSciNet  Google Scholar 

  31. X. Bekaert, N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D, R). II. Quadratic actions. Commun. Math. Phys. 271, 723–773 (2007). https://doi.org/10.1007/s00220-006-0187-x. arXiv:hep-th/0606198

    Article  ADS  MathSciNet  Google Scholar 

  32. S.-J. Chang, Lagrange formulation for systems with higher spin. Phys. Rev. 161, 1308–1315 (1967). https://doi.org/10.1103/PhysRev.161.1308

    Article  ADS  Google Scholar 

  33. C. Fronsdal, Massless fields with integer spin. Phys. Rev. D 18, 3624 (1978). https://doi.org/10.1103/PhysRevD.18.3624

    Article  ADS  Google Scholar 

  34. L.P.S. Singh, C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case. Phys. Rev. D 9, 898–909 (1974). https://doi.org/10.1103/PhysRevD.9.898

    Article  ADS  Google Scholar 

  35. L.P.S. Singh, C.R. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case. Phys. Rev. D 9, 910–920 (1974). https://doi.org/10.1103/PhysRevD.9.910

    Article  ADS  Google Scholar 

  36. T. Curtright, Massless field supermultiplets with arbitrary spin. Phys. Lett. B 85, 219–224 (1979). https://doi.org/10.1016/0370-2693(79)90583-5

    Article  ADS  Google Scholar 

  37. B. Wit, D.Z. Freedman, Systematics of higher spin gauge fields. Phys. Rev. D 21, 358 (1980). https://doi.org/10.1103/PhysRevD.21.358

    Article  ADS  MathSciNet  Google Scholar 

  38. J.M.F. Labastida, Massless particles in arbitrary representations of the Lorentz group. Nucl. Phys. B 322, 185–209 (1989). https://doi.org/10.1016/0550-3213(89)90490-2

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Campoleoni, Metric-like Lagrangian Formulations for higher-spin fields of mixed symmetry. Riv. Nuovo Cim. 33(3–4), 123–253 (2010). https://doi.org/10.1393/ncr/i2010-10053-2. arXiv:0910.3155 [hep-th]

    Article  ADS  Google Scholar 

  40. F.A. Berends, G.J.H. Burgers, H. Dam, On the theoretical problems in constructing interactions involving higher spin massless particles. Nucl. Phys. B 260, 295–322 (1985). https://doi.org/10.1016/0550-3213(85)90074-4

    Article  ADS  MathSciNet  Google Scholar 

  41. A.K.H. Bengtsson, I. Bengtsson, Massless higher-spin fields revisited. Class. Quant. Grav. 3, 927–936 (1986). https://doi.org/10.1088/0264-9381/3/5/022

    Article  ADS  MathSciNet  Google Scholar 

  42. X. Bekaert, N. Boulanger, S. Leclercq, Strong obstruction of the Berends–Burgers–van Dam spin-3 vertex. J. Phys. A 43, 185401 (2010). https://doi.org/10.1088/1751-8113/43/18/185401. arXiv:1002.0289 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  43. X. Bekaert, N. Boulanger, P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples. Rev. Mod. Phys. 84, 987–1009 (2012). https://doi.org/10.1103/RevModPhys.84.987. arXiv:1007.0435 [hep-th]

    Article  ADS  Google Scholar 

  44. S. Weinberg, Photons and gravitons in \(S\)-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass. Phys. Rev. 135, 1049–1056 (1964). https://doi.org/10.1103/PhysRev.135.B1049

    Article  ADS  MathSciNet  Google Scholar 

  45. C. Aragone, H. La Roche, Massless second order tetradic spin 3 fields and higher helicity bosons. Nuovo Cim. A 72, 149 (1982). https://doi.org/10.1007/BF02902412

    Article  ADS  Google Scholar 

  46. S.R. Coleman, J. Mandula, All possible symmetries of the S matrix. Phys. Rev. 159, 1251–1256 (1967). https://doi.org/10.1103/PhysRev.159.1251

    Article  ADS  Google Scholar 

  47. M. Porrati, Universal limits on massless high-spin particles. Phys. Rev. D 78, 065016 (2008). https://doi.org/10.1103/PhysRevD.78.065016. arXiv:0804.4672 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  48. A.K.H. Bengtsson, I. Bengtsson, L. Brink, Cubic Interaction Terms for Arbitrary Spin. Nucl. Phys. B 227, 31–40 (1983). https://doi.org/10.1016/0550-3213(83)90140-2

    Article  ADS  Google Scholar 

  49. A.K.H. Bengtsson, I. Bengtsson, N. Linden, Interacting higher spin gauge fields on the light front. Class. Quant. Grav. 4, 1333 (1987). https://doi.org/10.1088/0264-9381/4/5/028

    Article  ADS  MathSciNet  Google Scholar 

  50. E.S. Fradkin, R.R. Metsaev, A Cubic interaction of totally symmetric massless representations of the Lorentz group in arbitrary dimensions. Class. Quant. Grav. 8, 89–94 (1991). https://doi.org/10.1088/0264-9381/8/4/004

    Article  ADS  MathSciNet  Google Scholar 

  51. R.R. Metsaev, Generating function for cubic interaction vertices of higher spin fields in any dimension. Mod. Phys. Lett. A 8, 2413–2426 (1993). https://doi.org/10.1142/S0217732393003706

    Article  ADS  MathSciNet  Google Scholar 

  52. R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields. Nucl. Phys. B 759, 147–201 (2006). https://doi.org/10.1016/j.nuclphysb.2006.10.002. arXiv:hep-th/0512342

    Article  ADS  MathSciNet  Google Scholar 

  53. R.R. Metsaev, Cubic interaction vertices for fermionic and bosonic arbitrary spin fields. Nucl. Phys. B 859, 13–69 (2012). https://doi.org/10.1016/j.nuclphysb.2012.01.022. arXiv:0712.3526 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  54. R. Manvelyan, K. Mkrtchyan, W. Ruhl, General trilinear interaction for arbitrary even higher spin gauge fields. Nucl. Phys. B 836, 204–221 (2010). https://doi.org/10.1016/j.nuclphysb.2010.04.019. arXiv:1003.2877 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  55. D. Francia, G.L. Monaco, K. Mkrtchyan, Cubic interactions of Maxwell-like higher spins. JHEP 04, 068 (2017). https://doi.org/10.1007/JHEP04(2017)068. arXiv:1611.00292 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  56. M.A. Vasiliev, E.S. Fradkin, Gravitational interaction of massless high spin (S \({>}\) 2) fields. JETP Lett. 44, 622–627 (1986)

    ADS  MathSciNet  Google Scholar 

  57. E.S. Fradkin, M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields. Nucl. Phys. B 291, 141–171 (1987). https://doi.org/10.1016/0550-3213(87)90469-X

    Article  ADS  MathSciNet  Google Scholar 

  58. N. Boulanger, S. Leclercq, P. Sundell, On the uniqueness of minimal coupling in higher-spin gauge theory. JHEP 08, 056 (2008). https://doi.org/10.1088/1126-6708/2008/08/056. arXiv:0805.2764 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  59. M.A. Vasiliev, ‘Gauge’ form of description of massless fields with arbitrary spin. Sov. J. Nucl. Phys. 32, 439 (1980)

    MathSciNet  Google Scholar 

  60. M.A. Vasiliev, Free massless fields of arbitrary spin in the de sitter space and initial data for a higher spin superalgebra. Fortsch. Phys. 35, 741–770 (1987). https://doi.org/10.1002/prop.2190351103

    Article  ADS  MathSciNet  Google Scholar 

  61. E.S. Fradkin, M.A. Vasiliev, On the gravitational interaction of massless higher spin fields. Phys. Lett. B 189, 89–95 (1987). https://doi.org/10.1016/0370-2693(87)91275-5

    Article  ADS  MathSciNet  Google Scholar 

  62. E.S. Fradkin, M.A. Vasiliev, Candidate to the role of higher spin symmetry. Ann. Phys. 177, 63 (1987). https://doi.org/10.1016/S0003-4916(87)80025-8

    Article  ADS  MathSciNet  Google Scholar 

  63. M.A. Vasiliev, Consistent equations for interacting massless fields of all spins in the first order in curvatures. Ann. Phys. 190, 59–106 (1989). https://doi.org/10.1016/0003-4916(89)90261-3

    Article  ADS  MathSciNet  Google Scholar 

  64. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions. Phys. Lett. B 243, 378–382 (1990). https://doi.org/10.1016/0370-2693(90)91400-6

    Article  ADS  MathSciNet  Google Scholar 

  65. N. Boulanger, D. Ponomarev, E.D. Skvortsov, M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT. Int. J. Mod. Phys. A 28, 1350162 (2013). https://doi.org/10.1142/S0217751X13501625. arXiv:1305.5180 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  66. M.A. Vasiliev, Linearized curvatures for auxiliary fields in the de sitter space. Nucl. Phys. B 307, 319 (1988). https://doi.org/10.1016/0550-3213(88)90325-2

    Article  ADS  MathSciNet  Google Scholar 

  67. V.E. Lopatin, M.A. Vasiliev, Free massless bosonic fields of arbitrary spin in \(d\)-dimensional De Sitter space. Mod. Phys. Lett. A 3, 257 (1988). https://doi.org/10.1142/S0217732388000313

    Article  ADS  MathSciNet  Google Scholar 

  68. M.G. Eastwood, Higher symmetries of the Laplacian. Ann. Math. 161, 1645–1665 (2005). https://doi.org/10.4007/annals.2005.161.1645. arXiv:hep-th/0206233

    Article  MathSciNet  Google Scholar 

  69. M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations. JHEP 12, 046 (2004). https://doi.org/10.1088/1126-6708/2004/12/046. arXiv:hep-th/0404124

    Article  ADS  MathSciNet  Google Scholar 

  70. M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d). Phys. Lett. B 567, 139–151 (2003). https://doi.org/10.1016/S0370-2693(03)00872-4. arXiv:hep-th/0304049

    Article  ADS  MathSciNet  Google Scholar 

  71. M.A. Vasiliev, Higher spin gauge theories in various dimensions. Fortsch. Phys. 52, 702–717 (2004). https://doi.org/10.1002/prop.200410167. arXiv:hep-th/0401177

    Article  ADS  MathSciNet  Google Scholar 

  72. M.A. Vasiliev, Actions, charges and off-shell fields in the unfolded dynamics approach. Int. J. Geom. Meth. Mod. Phys. 3, 37–80 (2006). https://doi.org/10.1142/S0219887806001016. arXiv:hep-th/0504090

    Article  MathSciNet  Google Scholar 

  73. E.D. Skvortsov, Mixed-symmetry massless fields in minkowski space unfolded. JHEP 07, 004 (2008). https://doi.org/10.1088/1126-6708/2008/07/004. arXiv:0801.2268 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  74. N. Boulanger, C. Iazeolla, P. Sundell, Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism. JHEP 07, 013 (2009). https://doi.org/10.1088/1126-6708/2009/07/013. arXiv:0812.3615 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  75. C. Iazeolla, P. Sundell, A fiber approach to harmonic analysis of unfolded higher-spin field equations. JHEP 10, 022 (2008). https://doi.org/10.1088/1126-6708/2008/10/022. arXiv:0806.1942 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  76. E.D. Skvortsov, Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects. JHEP 01, 106 (2010). https://doi.org/10.1007/JHEP01(2010)106. arXiv:0910.3334 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  77. M.A. Vasiliev, Holography, unfolding and higher-spin theory. J. Phys. A 46, 214013 (2013). https://doi.org/10.1088/1751-8113/46/21/214013. arXiv:1203.5554 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  78. A. Campoleoni, S. Pekar, Carrollian and Galilean conformal higher-spin algebras in any dimensions. JHEP 02, 150 (2022). https://doi.org/10.1007/JHEP02(2022)150. arXiv:2110.07794 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  79. N. Boulanger, A. Campoleoni, S. Pekar, New higher-spin curvatures in flat space. Phys. Rev. D 108(10), 101904 (2023). https://doi.org/10.1103/PhysRevD.108.L101904. arXiv:2306.05367 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  80. C. Iazeolla, On the algebraic structure of higher-spin field equations and new exact solutions. PhD thesis, Rome U.,Tor Vergata (2008)

  81. M. Flato, C. Fronsdal, One massless particle equals two Dirac singletons: elementary particles in a curved space. 6. Lett. Math. Phys. 2, 421–426 (1978). https://doi.org/10.1007/BF00400170

    Article  ADS  MathSciNet  Google Scholar 

  82. F.A. Berends, G.J.H. Burgers, H. Dam, Explicit construction of conserved currents for massless fields of arbitrary spin. Nucl. Phys. B 271, 429–441 (1986). https://doi.org/10.1016/S0550-3213(86)80019-0

    Article  ADS  MathSciNet  Google Scholar 

  83. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). https://doi.org/10.1023/A:1026654312961. arXiv:hep-th/9711200

    Article  ADS  MathSciNet  Google Scholar 

  84. I.R. Klebanov, A.M. Polyakov, AdS dual of the critical O(N) vector model. Phys. Lett. B 550, 213–219 (2002). https://doi.org/10.1016/S0370-2693(02)02980-5. arXiv:hep-th/0210114

    Article  ADS  MathSciNet  Google Scholar 

  85. E. Sezgin, P. Sundell, Massless higher spins and holography. Nucl. Phys. B 644, 303–370 (2002) https://doi.org/10.1016/S0550-3213(02)00739-3 . arXiv:hep-th/0205131. [Erratum: Nucl.Phys.B 660, 403–403 (2003)]

  86. J. Maldacena, A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry. J. Phys. A 46, 214011 (2013). https://doi.org/10.1088/1751-8113/46/21/214011. arXiv:1112.1016 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  87. Y.S. Stanev, Constraining conformal field theory with higher spin symmetry in four dimensions. Nucl. Phys. B 876, 651–666 (2013). https://doi.org/10.1016/j.nuclphysb.2013.09.002. arXiv:1307.5209 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  88. V. Alba, K. Diab, Constraining conformal field theories with a higher spin symmetry in d=4 (2013) . arXiv:1307.8092 [hep-th]

  89. V. Alba, K. Diab, Constraining conformal field theories with a higher spin symmetry in \(d > 3\) dimensions. JHEP 03, 044 (2016). https://doi.org/10.1007/JHEP03(2016)044. arXiv:1510.02535 [hep-th]

    Article  ADS  Google Scholar 

  90. H. Bondi, M.G.J. Burg, A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems. Proc. Roy. Soc. Lond. A 269, 21–52 (1962). https://doi.org/10.1098/rspa.1962.0161

    Article  ADS  Google Scholar 

  91. R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times. Proc. Roy. Soc. Lond. A 270, 103–126 (1962). https://doi.org/10.1098/rspa.1962.0206

    Article  ADS  MathSciNet  Google Scholar 

  92. G. Barnich, C. Troessaert, Aspects of the BMS/CFT correspondence. JHEP 05, 062 (2010). https://doi.org/10.1007/JHEP05(2010)062. arXiv:1001.1541 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  93. M. Campiglia, A. Laddha, Asymptotic symmetries and subleading soft graviton theorem. Phys. Rev. D 90(12), 124028 (2014). https://doi.org/10.1103/PhysRevD.90.124028. arXiv:1408.2228 [hep-th]

    Article  ADS  Google Scholar 

  94. L. Donnay, A. Fiorucci, Y. Herfray, R. Ruzziconi, Carrollian perspective on celestial holography. Phys. Rev. Lett. 129(7), 071602 (2022). https://doi.org/10.1103/PhysRevLett.129.071602. arXiv:2202.04702 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  95. C. Duval, G.W. Gibbons, P.A. Horvathy, Conformal Carroll groups and BMS symmetry. Class. Quant. Grav. 31, 092001 (2014). https://doi.org/10.1088/0264-9381/31/9/092001. arXiv:1402.5894 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  96. M. Henneaux, P. Salgado-Rebolledo, Carroll contractions of Lorentz-invariant theories. JHEP 11, 180 (2021). https://doi.org/10.1007/JHEP11(2021)180. arXiv:2109.06708 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  97. L. Ciambelli, C. Marteau, A.C. Petkou, P.M. Petropoulos, K. Siampos, Flat holography and Carrollian fluids. JHEP 07, 165 (2018). https://doi.org/10.1007/JHEP07(2018)165. arXiv:1802.06809 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  98. A. Campoleoni, L. Ciambelli, C. Marteau, P.M. Petropoulos, K. Siampos, Two-dimensional fluids and their holographic duals. Nucl. Phys. B 946, 114692 (2019). https://doi.org/10.1016/j.nuclphysb.2019.114692. arXiv:1812.04019 [hep-th]

    Article  MathSciNet  Google Scholar 

  99. A. Campoleoni, L. Ciambelli, A. Delfante, C. Marteau, P.M. Petropoulos, R. Ruzziconi, Holographic Lorentz and Carroll frames. JHEP 12, 007 (2022). https://doi.org/10.1007/JHEP12(2022)007. arXiv:2208.07575 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  100. A. Strominger, Asymptotic Symmetries of Yang–Mills theory. JHEP 07, 151 (2014). https://doi.org/10.1007/JHEP07(2014)151. arXiv:1308.0589 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  101. A. Campoleoni, D. Francia, C. Heissenberg, On higher-spin supertranslations and superrotations. JHEP 05, 120 (2017). https://doi.org/10.1007/JHEP05(2017)120. arXiv:1703.01351 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  102. A. Campoleoni, M. Henneaux, S. Hörtner, A. Leonard, Higher-spin charges in Hamiltonian form. II. Fermi fields. JHEP 02, 058 (2017). https://doi.org/10.1007/JHEP02(2017)058. arXiv:1701.05526 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  103. A. Campoleoni, D. Francia, C. Heissenberg, On asymptotic symmetries in higher dimensions for any spin. JHEP 12, 129 (2020). https://doi.org/10.1007/JHEP12(2020)129. arXiv:2011.04420 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  104. X. Bekaert, A. Campoleoni, S. Pekar, Carrollian conformal scalar as flat-space singleton. Phys. Lett. B 838, 137734 (2023). https://doi.org/10.1016/j.physletb.2023.137734. arXiv:2211.16498 [hep-th]

    Article  MathSciNet  Google Scholar 

  105. X. Bekaert, A. Campoleoni, S. Pekar, Holographic realisation of conformal Carrollian scalars. (to appear)

  106. J. Boer, J. Goeree, W gravity from Chern–Simons theory. Nucl. Phys. B 381, 329–359 (1992). https://doi.org/10.1016/0550-3213(92)90650-Z. arXiv:hep-th/9112060

    Article  ADS  MathSciNet  Google Scholar 

  107. G. Arcioni, C. Dappiaggi, Holography in asymptotically flat space-times and the BMS group. Class. Quant. Grav. 21, 5655 (2004). https://doi.org/10.1088/0264-9381/21/23/022. arXiv:hep-th/0312186

    Article  ADS  Google Scholar 

  108. S. Pasterski, M. Pate, A.-M. Raclariu, Celestial holography. In: Snowmass 2021 (2021)

  109. A. Bagchi, S. Banerjee, R. Basu, S. Dutta, Scattering amplitudes: Celestial and Carrollian. Phys. Rev. Lett. 128(24), 241601 (2022). https://doi.org/10.1103/PhysRevLett.128.241601. arXiv:2202.08438 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  110. L. Mason, R. Ruzziconi, A. Yelleshpur Srikant, Carrollian amplitudes and celestial symmetries (2023) . arXiv:2312.10138 [hep-th]

  111. S. Giombi, Higher spin — cft duality. In: Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 137–214 (2017). https://doi.org/10.1142/9789813149441_0003

  112. L. Donnay, A. Fiorucci, Y. Herfray, R. Ruzziconi, Bridging Carrollian and celestial holography. Phys. Rev. D 107(12), 126027 (2023). https://doi.org/10.1103/PhysRevD.107.126027. arXiv:2212.12553 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  113. A.G. Nikitin, Generalized killing tensors of arbitrary rank and order. Ukr. Math. J. 43(1991), 734–743 (1991). https://doi.org/10.1007/BF01058941

    Article  MathSciNet  Google Scholar 

  114. X. Bekaert, E. Joung, J. Mourad, Comments on higher-spin holography. Fortsch. Phys. 60, 882–888 (2012). https://doi.org/10.1002/prop.201200014. arXiv:1202.0543 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  115. X. Bekaert, M. Grigoriev, Notes on the ambient approach to boundary values of AdS gauge fields. J. Phys. A 46, 214008 (2013). https://doi.org/10.1088/1751-8113/46/21/214008. arXiv:1207.3439 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  116. J. Boer, J. Hartong, N.A. Obers, W. Sybesma, S. Vandoren, Carroll symmetry, dark energy and inflation. Front. Phys. 10, 810405 (2022). https://doi.org/10.3389/fphy.2022.810405. arXiv:2110.02319 [hep-th]

    Article  Google Scholar 

  117. S. Baiguera, G. Oling, W. Sybesma, B.T. Søgaard, Conformal Carroll scalars with boosts. Sci. Post Phys. 14(4), 086 (2023). https://doi.org/10.21468/SciPostPhys.14.4.086. arXiv:2207.03468 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  118. P.A.M. Dirac, A remarkable representation of the 3 + 2 de Sitter group. J. Math. Phys. 4, 901–909 (1963). https://doi.org/10.1063/1.1704016

    Article  ADS  MathSciNet  Google Scholar 

  119. E. Angelopoulos, M. Laoues, Masslessness in n-dimensions. Rev. Math. Phys. 10, 271–300 (1998). https://doi.org/10.1142/S0129055X98000082. arXiv:hep-th/9806100

    Article  MathSciNet  Google Scholar 

  120. E.D. Skvortsov, Gauge fields in (A)dS(d) and connections of its symmetry algebra. J. Phys. A 42, 385401 (2009). https://doi.org/10.1088/1751-8113/42/38/385401. arXiv:0904.2919 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  121. V.E. Didenko, E.D. Skvortsov, Elements of vasiliev theory (2014) . arXiv:1401.2975 [hep-th]

  122. R. Rahman, M. Taronna, From higher spins to strings: a primer (2015) . arXiv:1512.07932 [hep-th]

  123. D. Ponomarev, Basic introduction to higher-spin theories. Int. J. Theor. Phys. 62(7), 146 (2023). https://doi.org/10.1007/s10773-023-05399-5. arXiv:2206.15385 [hep-th]

    Article  MathSciNet  Google Scholar 

  124. S.A. Pekar, Introduction to higher-spin theories. PoS Modave2022, 004 (2023). https://doi.org/10.22323/1.435.0004

  125. C. Fronsdal, Singletons and massless, integral spin fields on de sitter space (elementary particles in a curved space. 7. Phys. Rev. D 20, 848–856 (1979). https://doi.org/10.1103/PhysRevD.20.848

    Article  ADS  MathSciNet  Google Scholar 

  126. C. Aragone, S. Deser, Consistency problems of hypergravity. Phys. Lett. B 86, 161–163 (1979). https://doi.org/10.1016/0370-2693(79)90808-6

    Article  ADS  MathSciNet  Google Scholar 

  127. F.A. Berends, J.W. Holten, P. Nieuwenhuizen, B. Wit, ON SPIN 5/2 GAUGE FIELDS. Phys. Lett. B 83, 188 (1979). https://doi.org/10.1016/0370-2693(79)91257-7 . [Erratum: Phys.Lett.B 84, 529 (1979)]

  128. S. Weinberg, E. Witten, Limits on Massless Particles. Phys. Lett. B 96, 59–62 (1980). https://doi.org/10.1016/0370-2693(80)90212-9

    Article  ADS  MathSciNet  Google Scholar 

  129. R.R. Metsaev, Massless mixed symmetry bosonic free fields in d-dimensional anti-de Sitter space-time. Phys. Lett. B 354, 78–84 (1995). https://doi.org/10.1016/0370-2693(95)00563-Z

    Article  ADS  MathSciNet  Google Scholar 

  130. E. Joung, M. Taronna, Cubic interactions of massless higher spins in (A)dS: metric-like approach. Nucl. Phys. B 861, 145–174 (2012). https://doi.org/10.1016/j.nuclphysb.2012.03.013. arXiv:1110.5918 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  131. N. Boulanger, S. Leclercq, Consistent couplings between spin-2 and spin-3 massless fields. JHEP 11, 034 (2006). https://doi.org/10.1088/1126-6708/2006/11/034. arXiv:hep-th/0609221

    Article  ADS  MathSciNet  Google Scholar 

  132. A.V. Shapovalov, I.V. Shirokov, Symmetry algebras of linear differential equations. Theor. Math. Phys. 92(1992), 697–703 (1992). https://doi.org/10.1007/BF01018697

    Article  MathSciNet  Google Scholar 

  133. S.W. MacDowell, F. Mansouri, unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38, 739 (1977) https://doi.org/10.1103/PhysRevLett.38.739 . [Erratum: Phys.Rev.Lett. 38, 1376 (1977)]

  134. A. Campoleoni, S. Fredenhagen, S. Pfenninger, S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields. JHEP 11, 007 (2010). https://doi.org/10.1007/JHEP11(2010)007. arXiv:1008.4744 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  135. M. Henneaux, S.-J. Rey, Nonlinear \(W_{infinity}\) as asymptotic symmetry of three-dimensional higher spin anti-de sitter gravity. JHEP 12, 007 (2010). https://doi.org/10.1007/JHEP12(2010)007. arXiv:1008.4579 [hep-th]

    Article  ADS  Google Scholar 

  136. A. Campoleoni, S. Fredenhagen, S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories. JHEP 09, 113 (2011). https://doi.org/10.1007/JHEP09(2011)113. arXiv:1107.0290 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  137. A. Campoleoni, H.A. Gonzalez, B. Oblak, M. Riegler, BMS modules in three dimensions. Int. J. Mod. Phys. A 31(12), 1650068 (2016). https://doi.org/10.1142/S0217751X16500688. arXiv:1603.03812 [hep-th]

    Article  ADS  Google Scholar 

  138. M.P. Blencowe, A consistent interacting massless higher spin field theory in \(D\) = (2+1). Class. Quant. Grav. 6, 443 (1989). https://doi.org/10.1088/0264-9381/6/4/005

    Article  ADS  MathSciNet  Google Scholar 

  139. E. Bergshoeff, M.P. Blencowe, K.S. Stelle, Area preserving diffeomorphisms and higher spin algebra. Commun. Math. Phys. 128, 213 (1990). https://doi.org/10.1007/BF02108779

    Article  ADS  MathSciNet  Google Scholar 

  140. S.F. Prokushkin, M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3-D AdS space-time. Nucl. Phys. B 545, 385 (1999). https://doi.org/10.1016/S0550-3213(98)00839-6. arXiv:hep-th/9806236

    Article  ADS  MathSciNet  Google Scholar 

  141. S. Deser, R. Jackiw, Three-dimensional cosmological gravity: dynamics of constant curvature. Ann. Phys. 153, 405–416 (1984). https://doi.org/10.1016/0003-4916(84)90025-3

    Article  ADS  MathSciNet  Google Scholar 

  142. S. Deser, R. Jackiw, G. Hooft, Three-dimensional einstein gravity: dynamics of flat space. Ann. Phys. 152, 220 (1984). https://doi.org/10.1016/0003-4916(84)90085-X

    Article  ADS  MathSciNet  Google Scholar 

  143. J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986). https://doi.org/10.1007/BF01211590

    Article  ADS  MathSciNet  Google Scholar 

  144. A. Achucarro, P.K. Townsend, A Chern–Simons action for three-dimensional anti-De Sitter supergravity theories. Phys. Lett. B 180, 89 (1986). https://doi.org/10.1016/0370-2693(86)90140-1

    Article  ADS  MathSciNet  Google Scholar 

  145. E. Witten, (2+1)-Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46 (1988). https://doi.org/10.1016/0550-3213(88)90143-5

    Article  ADS  MathSciNet  Google Scholar 

  146. M.R. Gaberdiel, R. Gopakumar, Minimal model holography. J. Phys. A 46, 214002 (2013). https://doi.org/10.1088/1751-8113/46/21/214002. arXiv:1207.6697 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  147. A.V. Korybut, Covariant structure constants for a deformed oscillator algebra. Theor. Math. Phys. 193(1), 1409–1419 (2017). https://doi.org/10.1134/S0040577917100014. arXiv:1409.8634 [hep-th]

    Article  MathSciNet  Google Scholar 

  148. T. Basile, N. Boulanger, F. Buisseret, Structure constants of shs\([\lambda ]\) : the deformed-oscillator point of view. J. Phys. A 51(2), 025201 (2018). https://doi.org/10.1088/1751-8121/aa9af6. arXiv:1604.04510 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  149. H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller, J. Rosseel, Spin-3 gravity in three-dimensional flat space. Phys. Rev. Lett. 111(12), 121603 (2013). https://doi.org/10.1103/PhysRevLett.111.121603. arXiv:1307.4768 [hep-th]

    Article  ADS  Google Scholar 

  150. H.A. Gonzalez, J. Matulich, M. Pino, R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity. JHEP 09, 016 (2013). https://doi.org/10.1007/JHEP09(2013)016. arXiv:1307.5651 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  151. M. Ammon, D. Grumiller, S. Prohazka, M. Riegler, R. Wutte, Higher-spin flat space cosmologies with soft hair. JHEP 05, 031 (2017). https://doi.org/10.1007/JHEP05(2017)031. arXiv:1703.02594 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  152. G. Barnich, N. Bouatta, M. Grigoriev, Surface charges and dynamical Killing tensors for higher spin gauge fields in constant curvature spaces. JHEP 10, 010 (2005). https://doi.org/10.1088/1126-6708/2005/10/010. arXiv:hep-th/0507138

    Article  ADS  MathSciNet  Google Scholar 

  153. X. Bekaert, N. Boulanger, Gauge invariants and Killing tensors in higher-spin gauge theories. Nucl. Phys. B 722, 225–248 (2005). https://doi.org/10.1016/j.nuclphysb.2005.06.009. arXiv:hep-th/0505068

    Article  ADS  MathSciNet  Google Scholar 

  154. E.D. Skvortsov, M.A. Vasiliev, Transverse invariant higher spin fields. Phys. Lett. B 664, 301–306 (2008). https://doi.org/10.1016/j.physletb.2008.05.043. arXiv:hep-th/0701278

    Article  ADS  MathSciNet  Google Scholar 

  155. D. Francia, S.L. Lyakhovich, A.A. Sharapov, On the gauge symmetries of Maxwell-like higher-spin Lagrangians. Nucl. Phys. B 881, 248–268 (2014). https://doi.org/10.1016/j.nuclphysb.2014.02.001. arXiv:1310.8589 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  156. D. Francia, A. Sagnotti, Free geometric equations for higher spins. Phys. Lett. B 543, 303–310 (2002). https://doi.org/10.1016/S0370-2693(02)02449-8. arXiv:hep-th/0207002

    Article  ADS  MathSciNet  Google Scholar 

  157. X. Bekaert, N. Boulanger, On geometric equations and duality for free higher spins. Phys. Lett. B 561, 183–190 (2003). https://doi.org/10.1016/S0370-2693(03)00409-X. arXiv:hep-th/0301243

    Article  ADS  MathSciNet  Google Scholar 

  158. D. Francia, A. Sagnotti, Minimal local Lagrangians for higher-spin geometry. Phys. Lett. B 624, 93–104 (2005). https://doi.org/10.1016/j.physletb.2005.08.002. arXiv:hep-th/0507144

    Article  ADS  MathSciNet  Google Scholar 

  159. D. Francia, On the relation between local and geometric Lagrangians for higher spins. J. Phys. Conf. Ser. 222, 012002 (2010). https://doi.org/10.1088/1742-6596/222/1/012002. arXiv:1001.3854 [hep-th]

    Article  Google Scholar 

  160. D. Francia, Generalised connections and higher-spin equations. Class. Quant. Grav. 29, 245003 (2012). https://doi.org/10.1088/0264-9381/29/24/245003. arXiv:1209.4885 [hep-th]

    Article  ADS  Google Scholar 

  161. E.D. Skvortsov, Frame-like actions for massless mixed-symmetry fields in Minkowski space. Nucl. Phys. B 808, 569–591 (2009). https://doi.org/10.1016/j.nuclphysb.2008.09.007. arXiv:0807.0903 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  162. E. Joung, M. Taronna, Cubic-interaction-induced deformations of higher-spin symmetries. JHEP 03, 103 (2014). https://doi.org/10.1007/JHEP03(2014)103. arXiv:1311.0242 [hep-th]

    Article  ADS  Google Scholar 

  163. S.N. Gupta, Gravitation and electromagnetism. Phys. Rev. 96, 1683–1685 (1954). https://doi.org/10.1103/PhysRev.96.1683

    Article  ADS  MathSciNet  Google Scholar 

  164. R.H. Kraichnan, Special-relativistic derivation of generally covariant gravitation theory. Phys. Rev. 98, 1118–1122 (1955). https://doi.org/10.1103/PhysRev.98.1118

    Article  ADS  MathSciNet  Google Scholar 

  165. S. Weinberg, Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations. Phys. Rev. 138, 988–1002 (1965). https://doi.org/10.1103/PhysRev.138.B988

    Article  ADS  MathSciNet  Google Scholar 

  166. S. Deser, Selfinteraction and gauge invariance. Gen. Rel. Grav. 1, 9–18 (1970). https://doi.org/10.1007/BF00759198. arXiv:gr-qc/0411023

    Article  ADS  Google Scholar 

  167. D.G. Boulware, S. Deser, Classical general relativity derived from quantum gravity. Ann. Phys. 89, 193 (1975). https://doi.org/10.1016/0003-4916(75)90302-4

    Article  ADS  MathSciNet  Google Scholar 

  168. M.A. Vasiliev, Higher spin gauge theories in various dimensions. PoS JHW2003, 003 (2003) https://doi.org/10.1002/prop.200410167 . arXiv:hep-th/0401177

  169. X. Bekaert, S. Cnockaert, C. Iazeolla, M.A. Vasiliev, Nonlinear higher spin theories in various dimensions. In: Argurio, R., Barnich, G., Bonelli, G., Grigoriev, M. (eds.) 1st Solvay Workshop on Higher Spin Gauge Theories, pp. 132–197 (2004)

  170. X. Bekaert, N. Boulanger, A. Campoleoni, M. Chiodaroli, D. Francia, M. Grigoriev, E. Sezgin, E. Skvortsov, Snowmass white paper: higher spin gravity and higher spin symmetry (2022) . arXiv:2205.01567 [hep-th]

  171. X. Bekaert, Comments on higher-spin symmetries. Int. J. Geom. Meth. Mod. Phys. 6, 285–342 (2009). https://doi.org/10.1142/S0219887809003527. arXiv:0807.4223 [hep-th]

    Article  MathSciNet  Google Scholar 

  172. S.E. Konstein, M.A. Vasiliev, Extended higher spin superalgebras and their massless representations. Nucl. Phys. B 331, 475–499 (1990). https://doi.org/10.1016/0550-3213(90)90216-Z

    Article  ADS  MathSciNet  Google Scholar 

  173. E. Sezgin, P. Sundell, Supersymmetric higher spin theories. J. Phys. A 46, 214022 (2013). https://doi.org/10.1088/1751-8113/46/21/214022. arXiv:1208.6019 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  174. J. Fang, C. Fronsdal, Massless fields with half integral spin. Phys. Rev. D 18, 3630 (1978). https://doi.org/10.1103/PhysRevD.18.3630

    Article  ADS  Google Scholar 

  175. J. Fang, C. Fronsdal, Massless, half integer spin fields in de sitter space. Phys. Rev. D 22, 1361 (1980). https://doi.org/10.1103/PhysRevD.22.1361

    Article  ADS  MathSciNet  Google Scholar 

  176. E. Joung, K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations. JHEP 01, 003 (2016). https://doi.org/10.1007/JHEP01(2016)003. arXiv:1508.07332 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  177. N. Boulanger, E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime. JHEP 09, 063 (2011). https://doi.org/10.1007/JHEP09(2011)063. arXiv:1107.5028 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  178. G. Thompson, Killing tensors in spaces of constant curvature. J. Math. Phys. 27, 2693–2699 (1986). https://doi.org/10.1063/1.527288

    Article  ADS  MathSciNet  Google Scholar 

  179. R. Manvelyan, K. Mkrtchyan, R. Mkrtchyan, S. Theisen, On higher spin symmetries in \(AdS_{5}\). JHEP 10, 185 (2013). https://doi.org/10.1007/JHEP10(2013)185. arXiv:1304.7988 [hep-th]

    Article  ADS  Google Scholar 

  180. E. Joung, K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and structure constants. JHEP 05, 103 (2014). https://doi.org/10.1007/JHEP05(2014)103. arXiv:1401.7977 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  181. M. Ammon, M. Pannier, M. Riegler, Scalar fields in 3D asymptotically flat higher-spin gravity. J. Phys. A 54(10), 105401 (2021). https://doi.org/10.1088/1751-8121/abdbc6. arXiv:2009.14210 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  182. M. Grigoriev, K. Mkrtchyan, E. Skvortsov, Matter-free higher spin gravities in 3D: partially-massless fields and general structure. Phys. Rev. D 102(6), 066003 (2020). https://doi.org/10.1103/PhysRevD.102.066003. arXiv:2005.05931 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  183. M. Bordemann, J. Hoppe, P. Schaller, Infinite dimensional matrix algebras. Phys. Lett. B 232, 199–203 (1989). https://doi.org/10.1016/0370-2693(89)91687-0

    Article  ADS  MathSciNet  Google Scholar 

  184. E.S. Fradkin, V.Y. Linetsky, Infinite dimensional generalizations of simple Lie algebras. Mod. Phys. Lett. A 5, 1967–1977 (1990). https://doi.org/10.1142/S0217732390002249

    Article  ADS  MathSciNet  Google Scholar 

  185. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions, and two-dimensions. Int. J. Mod. Phys. D 5, 763–797 (1996). https://doi.org/10.1142/S0218271896000473. arXiv:hep-th/9611024

    Article  ADS  MathSciNet  Google Scholar 

  186. D. Ponomarev, 3d conformal fields with manifest sl(2, \({\mathbb{C} }\)). JHEP 06, 055 (2021). https://doi.org/10.1007/JHEP06(2021)055. arXiv:2104.02770 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  187. D. Grumiller, A. Perez, S. Prohazka, D. Tempo, R. Troncoso, Higher spin black holes with soft hair. JHEP 10, 119 (2016). https://doi.org/10.1007/JHEP10(2016)119. arXiv:1607.05360 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  188. C.N. Pope, L.J. Romans, X. Shen, \(W\)(infinity) and the Racah–Wigner Algebra. Nucl. Phys. B 339, 191–221 (1990). https://doi.org/10.1016/0550-3213(90)90539-P

    Article  ADS  Google Scholar 

  189. S.M. Kuzenko, A.E. Pindur, Massless particles in five and higher dimensions. Phys. Lett. B 812, 136020 (2021). https://doi.org/10.1016/j.physletb.2020.136020. arXiv:2010.07124 [hep-th]

    Article  MathSciNet  Google Scholar 

  190. L. Barannik, W. Fushchich, Casimir operators of the generalised poincaré and galilei groups. In: Markov, M.A., Manko, V.I., Dodonov, V.V. (eds.) Group Theoretical Methods in Physics: Proceedings of the Third Yurmala Seminar, pp. 275–282. VNU Science Press (1986)

  191. S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia, X. Yin, Chern–Simons theory with vector fermion matter. Eur. Phys. J. C 72, 2112 (2012). https://doi.org/10.1140/epjc/s10052-012-2112-0. arXiv:1110.4386 [hep-th]

    Article  ADS  Google Scholar 

  192. C. Sleight, Metric-like methods in higher spin holography. PoS Modave2016, 003 (2017) https://doi.org/10.22323/1.296.0003 . arXiv:1701.08360 [hep-th]

  193. J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de poincaré. Annales de l’I.H.P. Physique théorique 3(1), 1–12 (1965)

    Google Scholar 

  194. A. Bagchi, R. Basu, A. Kakkar, A. Mehra, Flat holography: aspects of the dual field theory. JHEP 12, 147 (2016). https://doi.org/10.1007/JHEP12(2016)147. arXiv:1609.06203 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  195. A. Bagchi, A. Mehra, P. Nandi, Field theories with conformal carrollian symmetry. JHEP 05, 108 (2019). https://doi.org/10.1007/JHEP05(2019)108. arXiv:1901.10147 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  196. L. Ciambelli, R.G. Leigh, C. Marteau, P.M. Petropoulos, Carroll structures, null geometry and conformal isometries. Phys. Rev. D 100(4), 046010 (2019). https://doi.org/10.1103/PhysRevD.100.046010. arXiv:1905.02221 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  197. L. Ciambelli, Paving the fluid road to flat holography. PhD thesis, Ecole Polytechnique, CPHT (2019)

  198. E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel, T. Veldhuis, Carroll versus Galilei gravity. JHEP 03, 165 (2017). https://doi.org/10.1007/JHEP03(2017)165. arXiv:1701.06156 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  199. A. Campoleoni, M. Henneaux, S. Pekar, A. Pérez, P. Salgado-Rebolledo, Magnetic Carrollian gravity from the Carroll algebra. JHEP 09, 127 (2022). https://doi.org/10.1007/JHEP09(2022)127. arXiv:2207.14167 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  200. X. Bekaert, Singletons and their maximal symmetry algebras. In: Dragovich, B., Rakic, Z. (eds.) 6th Summer School in Modern Mathematical Physics, pp. 71–89 (2011)

  201. X. Bekaert, M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach. Nucl. Phys. B 876, 667–714 (2013). https://doi.org/10.1016/j.nuclphysb.2013.08.015. arXiv:1305.0162 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  202. A.Y. Segal, Conformal higher spin theory. Nucl. Phys. B 664, 59–130 (2003). https://doi.org/10.1016/S0550-3213(03)00368-7. arXiv:hep-th/0207212

    Article  ADS  MathSciNet  Google Scholar 

  203. K. Skenderis, Lecture notes on holographic renormalization. Class. Quant. Grav. 19, 5849–5876 (2002). https://doi.org/10.1088/0264-9381/19/22/306. arXiv:hep-th/0209067

    Article  MathSciNet  Google Scholar 

  204. R.E. Howe, Transcending classical invariant theory. J. Am. Math. Soc. 2, 535–552 (1989)

    Article  MathSciNet  Google Scholar 

  205. M. Eastwood, T. Leistner, Higher symmetries of the square of the laplacian. IMA Vol. Math. Appl. 144, 319–338 (2008). https://doi.org/10.1007/978-0-387-73831-4_15. arXiv:math/0610610

    Article  MathSciNet  Google Scholar 

  206. C. Brust, K. Hinterbichler, Partially Massless higher-spin theory. JHEP 02, 086 (2017). https://doi.org/10.1007/JHEP02(2017)086. arXiv:1610.08510 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  207. C. Brust, K. Hinterbichler, Free \({\square }^{k}\) scalar conformal field theory. JHEP 02, 066 (2017). https://doi.org/10.1007/JHEP02(2017)066. arXiv:1607.07439 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  208. T. Basile, X. Bekaert, N. Boulanger, Flato–Fronsdal theorem for higher-order singletons. JHEP 11, 131 (2014). https://doi.org/10.1007/JHEP11(2014)131. arXiv:1410.7668 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  209. C. Duval, G.W. Gibbons, P.A. Horvathy, Conformal Carroll groups. J. Phys. A 47(33), 335204 (2014). https://doi.org/10.1088/1751-8113/47/33/335204. arXiv:1403.4213 [hep-th]

    Article  MathSciNet  Google Scholar 

  210. K. Morand, Embedding Galilean and Carrollian geometries I. Gravitational waves. J. Math. Phys. 61(8), 082502 (2020). https://doi.org/10.1063/1.5130907. arXiv:1811.12681 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  211. E. Bergshoeff, J. Figueroa-O’Farrill, J. Gomis, A non-lorentzian primer. SciPost Phys. Lect. Notes 69, 1 (2023). https://doi.org/10.21468/SciPostPhysLectNotes.69. arXiv:2206.12177 [hep-th]

    Article  Google Scholar 

  212. X. Bekaert, B. Oblak, Massless scalars and higher-spin BMS in any dimension. JHEP 11, 022 (2022). https://doi.org/10.1007/JHEP11(2022)022. arXiv:2209.02253 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  213. J. Hartong, Gauging the Carroll algebra and ultra-relativistic gravity. JHEP 08, 069 (2015). https://doi.org/10.1007/JHEP08(2015)069. arXiv:1505.05011 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  214. R. Penrose, W. Rindler, Spinors and space-time. In: Cambridge Monographs on Mathematical Physics, vol. 2. Cambridge University Press (1986). https://doi.org/10.1017/CBO9780511524486

  215. H. Bacry, J. Levy-Leblond, Possible kinematics. J. Math. Phys. 9, 1605–1614 (1968). https://doi.org/10.1063/1.1664490

    Article  ADS  MathSciNet  Google Scholar 

  216. K. Nguyen, P. West, Carrollian conformal fields and flat holography. Universe 9(9), 385 (2023). https://doi.org/10.3390/universe9090385. arXiv:2305.02884 [hep-th]

    Article  ADS  Google Scholar 

  217. N. Gupta, N.V. Suryanarayana, Constructing Carrollian CFTs. JHEP 03, 194 (2021). https://doi.org/10.1007/JHEP03(2021)194. arXiv:2001.03056 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  218. D. Rivera-Betancour, M. Vilatte, Revisiting the Carrollian scalar field. Phys. Rev. D 106(8), 085004 (2022). https://doi.org/10.1103/PhysRevD.106.085004. arXiv:2207.01647 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  219. P.-X. Hao, W. Song, X. Xie, Y. Zhong, BMS-invariant free scalar model. Phys. Rev. D 105(12), 125005 (2022). https://doi.org/10.1103/PhysRevD.105.125005. arXiv:2111.04701 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  220. A. Bagchi, A. Banerjee, S. Dutta, K.S. Kolekar, P. Sharma, Carroll covariant scalar fields in two dimensions. JHEP 01, 072 (2023). https://doi.org/10.1007/JHEP01(2023)072. arXiv:2203.13197 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  221. L. Freidel, R. Oliveri, D. Pranzetti, S. Speziale, The weyl BMS group and Einstein’s equations. JHEP 07, 170 (2021). https://doi.org/10.1007/JHEP07(2021)170. arXiv:2104.05793 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  222. S.J. Haco, S.W. Hawking, M.J. Perry, J.L. Bourjaily, The conformal BMS group. JHEP 11, 012 (2017). https://doi.org/10.1007/JHEP11(2017)012. arXiv:1701.08110 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  223. O. Fuentealba, H.A. González, A. Pérez, D. Tempo, R. Troncoso, Superconformal Bondi–Metzner–Sachs algebra in three dimensions. Phys. Rev. Lett. 126(9), 091602 (2021). https://doi.org/10.1103/PhysRevLett.126.091602. arXiv:2011.08197 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  224. G. Barnich, A. Gomberoff, H.A. González, Three-dimensional Bondi–Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory. Phys. Rev. D 87(12), 124032 (2013). https://doi.org/10.1103/PhysRevD.87.124032. arXiv:1210.0731 [hep-th]

    Article  ADS  Google Scholar 

  225. W.-B. Liu, J. Long, Symmetry group at future null infinity: scalar theory. Phys. Rev. D 107(12), 126002 (2023). https://doi.org/10.1103/PhysRevD.107.126002. arXiv:2210.00516 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  226. A. Sharapov, E. Skvortsov, Formal higher spin gravities. Nucl. Phys. B 941, 838–860 (2019). https://doi.org/10.1016/j.nuclphysb.2019.02.011. arXiv:1901.01426 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  227. A.A. Sharapov, E.D. Skvortsov, Formal higher-spin theories and Kontsevich–Shoikhet–Tsygan formality. Nucl. Phys. B 921, 538–584 (2017). https://doi.org/10.1016/j.nuclphysb.2017.06.005. arXiv:1702.08218 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  228. D. Baumann, D. Green, A. Joyce, E. Pajer, G.L. Pimentel, C. Sleight, M. Taronna, Snowmass white paper: the cosmological bootstrap. In: Snowmass 2021 (2022)

  229. X. Bekaert, J. Erdmenger, D. Ponomarev, C. Sleight, Quartic AdS interactions in higher-spin gravity from conformal field theory. JHEP 11, 149 (2015). https://doi.org/10.1007/JHEP11(2015)149. arXiv:1508.04292 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  230. C. Sleight, M. Taronna, Higher-spin gauge theories and bulk locality. Phys. Rev. Lett. 121(17), 171604 (2018). https://doi.org/10.1103/PhysRevLett.121.171604. arXiv:1704.07859 [hep-th]

    Article  ADS  Google Scholar 

  231. D. Ponomarev, A note on (non)-locality in holographic higher spin theories. Universe 4(1), 2 (2018). https://doi.org/10.3390/universe4010002. arXiv:1710.00403 [hep-th]

    Article  ADS  Google Scholar 

  232. M.A. Vasiliev, Star-product functions in higher-spin theory and locality. JHEP 06, 031 (2015). https://doi.org/10.1007/JHEP06(2015)031. arXiv:1502.02271 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  233. V.E. Didenko, O.A. Gelfond, A.V. Korybut, M.A. Vasiliev, Limiting shifted homotopy in higher-spin theory and spin-locality. JHEP 12, 086 (2019). https://doi.org/10.1007/JHEP12(2019)086. arXiv:1909.04876 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  234. R. Penrose, Zero rest mass fields including gravitation: asymptotic behavior. Proc. Roy. Soc. Lond. A 284, 159 (1965). https://doi.org/10.1098/rspa.1965.0058

    Article  ADS  Google Scholar 

  235. K. Krasnov, E. Skvortsov, T. Tran, Actions for self-dual Higher spin gravities. JHEP 08, 076 (2021). https://doi.org/10.1007/JHEP08(2021)076. arXiv:2105.12782 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  236. L. Donnay, S. Pasterski, A. Puhm, Asymptotic symmetries and celestial CFT. JHEP 09, 176 (2020). https://doi.org/10.1007/JHEP09(2020)176. arXiv:2005.08990 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  237. T. Basile, X. Bekaert, N. Boulanger, Mixed-symmetry fields in de Sitter space: a group theoretical glance. JHEP 05, 081 (2017). https://doi.org/10.1007/JHEP05(2017)081. arXiv:1612.08166 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  238. E.A. Bergshoeff, A. Campoleoni, A. Fontanella, L. Mele, J. Rosseel, Carroll fermions (2023) . arXiv:2312.00745 [hep-th]

  239. K. Banerjee, R. Basu, B. Krishnan, S. Maulik, A. Mehra, A. Ray, One-loop quantum effects in Carroll scalars. Phys. Rev. D 108(8), 085022 (2023). https://doi.org/10.1103/PhysRevD.108.085022. arXiv:2307.03901 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  240. D. Ponomarev, Chiral higher-spin holography in flat space: the Flato–Fronsdal theorem and lower-point functions. JHEP 01, 048 (2023). https://doi.org/10.1007/JHEP01(2023)048. arXiv:2210.04036 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  241. D. Ponomarev, Towards higher-spin holography in flat space. JHEP 01, 084 (2023). https://doi.org/10.1007/JHEP01(2023)084. arXiv:2210.04035 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  242. Y. Herfray, K. Krasnov, E. Skvortsov, Higher-spin self-dual Yang–Mills and gravity from the twistor space. JHEP 01, 158 (2023). https://doi.org/10.1007/JHEP01(2023)158. arXiv:2210.06209 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  243. K. Krasnov, E. Skvortsov, Flat self-dual gravity. JHEP 08, 082 (2021). https://doi.org/10.1007/JHEP08(2021)082. arXiv:2106.01397 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  244. A. Ashtekar, Geometry and physics of null infinity (2014) . arXiv:1409.1800 [gr-qc]

Download references

Acknowledgements

This review draws its origin from the author’s PhD thesis, defended at the University of Mons under the supervision of A. Campoleoni. I would like to express my gratitude to him for the enthusiasm he put in this project, but also for his trust, his many advises and his insights. I would also like to thank X. Bekaert, M. Henneaux, A. Pérez and P. Salgado-Rebolledo for collaboration, N. Boulanger, E. Skvortsov, I. Basile, I. Ahlouche Lahlali, J. O’Connor, A. Delfante and the Physique de l’Univers, Champs et Gravitation group in Mons for providing a pleasant and stimulating work environment, J.M. Figueroa-O’Farrill, J. Hartong and S. Prohazka and the University of Edinburgh for their warm hospitality, and finally M. Petropoulos, M. Vilatte, D. Rivera-Betancour and the rest of Centre de Physique Théorique—CPHT at École polytechnique for enlightening discussions.

Funding

The work of the author was supported by the Fonds de la Recherche Scientifique – FNRS under Grant No. FC.36447, as well as the SofinaBoël Fund for Education and Talent and the Fonds Friedmann run by the Fondation de l’École polytechnique.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed in full to the writing of this review and thanks A. Campoleoni, as well as the referee, for careful rereading of the manuscript.

Corresponding author

Correspondence to Simon Alexandre Pekar.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekar, S.A. Aspects of higher spin symmetry in flat space. Riv. Nuovo Cim. (2024). https://doi.org/10.1007/s40766-024-00051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40766-024-00051-2

Keywords

Navigation