Skip to main content
Log in

Maxwell-like Lagrangians for higher spins

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show how implementing invariance under divergence-free gauge transformations leads to a remarkably simple Lagrangian description of massless bosons of any spin. Our construction covers both flat and (A)dS backgrounds and extends to tensors of arbitrary mixed-symmetry type. Irreducible and traceless fields produce single-particle actions, while whenever trace constraints can be dispensed with the resulting Lagrangians display the same reducible, multi-particle spectra as those emerging from the tensionless limit of free open-string field theory. For all explored options the corresponding kinetic operators take essentially the same form as in the spin-one, Maxwell case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Francia, Low-spin models for higher-spin Lagrangians, Prog. Theor. Phys. Suppl. 188 (2011) 94 [arXiv:1103.0683] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  2. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. D. Sorokin, Introduction to the classical theory of higher spins, AIP Conf. Proc. 767 (2005) 172 [hep-th/0405069] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Bouatta, G. Compere and A. Sagnotti, An introduction to free higher-spin fields, hep-th/0409068 [INSPIRE].

  5. A. Sagnotti, E. Sezgin and P. Sundell, On higher spins with a strong Sp(2, \( \mathbb{R} \)) condition, hep-th/0501156 [INSPIRE].

  6. X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].

  7. D. Francia and A. Sagnotti, Higher-spin geometry and string theory, J. Phys. Conf. Ser. 33 (2006) 57 [hep-th/0601199] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Campoleoni, Higher spins in D = 2 + 1, arXiv:1110.5841 [INSPIRE].

  9. A. Sagnotti, Notes on strings and higher spins, arXiv:1112.4285 [INSPIRE].

  10. M. Fierz, Force-free particles with any spin, Helv. Phys. Acta 12 (1939) 3 [INSPIRE].

    Article  Google Scholar 

  11. C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  12. E. Skvortsov and M. Vasiliev, Transverse invariant higher spin fields, Phys. Lett. B 664 (2008) 301 [hep-th/0701278] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. J. Labastida, Massless particles in arbitrary representations of the Lorentz group, Nucl. Phys. B 322 (1989) 185 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. I. Bose fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. II. Fermi fields, Nucl. Phys. B 828 (2010) 405 [arXiv:0904.4447] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Campoleoni, Lagrangian formulations for Bose and Fermi higher-spin fields of mixed symmetry, arXiv:0905.1472 [INSPIRE].

  17. A. Campoleoni, Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry, Riv. Nuovo Cim. 33 (2010) 123 [arXiv:0910.3155] [INSPIRE].

    Google Scholar 

  18. T. Curtright, Generalized gauge fields, Phys. Lett. B 165 (1985) 304 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. C. Aulakh, I. Koh and S. Ouvry, Higher spin fields with mixed symmetry, Phys. Lett. B 173 (1986) 284 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. W. Siegel and B. Zwiebach, Gauge string fields from the light cone, Nucl. Phys. B 282 (1987) 125 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. C. Burdik, A. Pashnev and M. Tsulaia, On the mixed symmetry irreducible representations of the Poincaré group in the BRST approach, Mod. Phys. Lett. A 16 (2001) 731 [hep-th/0101201] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. K. Alkalaev, M. Grigoriev and I.Y. Tipunin, Massless Poincaré modules and gauge invariant equations, Nucl. Phys. B 823 (2009) 509 [arXiv:0811.3999] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Cherney, E. Latini and A. Waldron, Generalized Einstein operator generating functions, Phys. Lett. B 682 (2010) 472 [arXiv:0909.4578] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. I. Buchbinder and A. Reshetnyak, General Lagrangian formulation for higher spin fields with arbitrary index symmetry. I. Bosonic fields, Nucl. Phys. B 862 (2012) 270 [arXiv:1110.5044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. E. Skvortsov, Frame-like actions for massless mixed-symmetry fields in Minkowski space, Nucl. Phys. B 808 (2009) 569 [arXiv:0807.0903] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. E. Skvortsov and Y. Zinoviev, Frame-like actions for massless mixed-symmetry fields in Minkowski space. Fermions, Nucl. Phys. B 843 (2011) 559 [arXiv:1007.4944] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. K. Alkalaev, FV-type action for AdS 5 mixed-symmetry fields, JHEP 03 (2011) 031 [arXiv:1011.6109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. N. Boulanger, E. Skvortsov and Y. Zinoviev, Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds, J. Phys. A 44 (2011) 415403 [arXiv:1107.1872] [INSPIRE].

    Google Scholar 

  30. N. Boulanger and E. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. Y. Zinoviev, On massive mixed symmetry tensor fields in Minkowski space and (A)dS, hep-th/0211233 [INSPIRE].

  32. P. de Medeiros, Massive gauge invariant field theories on spaces of constant curvature, Class. Quant. Grav. 21 (2004) 2571 [hep-th/0311254] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. C. Burdik and A. Reshetnyak, On representations of higher spin symmetry algebras for mixed-symmetry HS fields on AdS-spaces. Lagrangian formulation, J. Phys. Conf. Ser. 343 (2012) 012102 [arXiv:1111.5516] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Alkalaev, O. Shaynkman and M. Vasiliev, On the frame-like formulation of mixed symmetry massless fields in (A)dS(d), Nucl. Phys. B 692 (2004) 363 [hep-th/0311164] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. K. Alkalaev, Two column higher spin massless fields in AdS(d), Theor. Math. Phys. 140 (2004) 1253 [hep-th/0311212] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Alkalaev, O. Shaynkman and M. Vasiliev, Lagrangian formulation for free mixed-symmetry bosonic gauge fields in (A)dS(d), JHEP 08 (2005) 069 [hep-th/0501108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. K. Alkalaev, O. Shaynkman and M. Vasiliev, Frame-like formulation for free mixed-symmetry bosonic massless higher-spin fields in AdS(d), hep-th/0601225 [INSPIRE].

  38. Y. Zinoviev, Frame-like gauge invariant formulation for mixed symmetry fermionic fields, Nucl. Phys. B 821 (2009) 21 [arXiv:0904.0549] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. Y. Zinoviev, Towards frame-like gauge invariant formulation for massive mixed symmetry bosonic fields. II. General Young tableau with two rows, Nucl. Phys. B 826 (2010) 490 [arXiv:0907.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. E. Skvortsov, Gauge fields in (A)dS(d) and connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. E. Skvortsov, Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. K.B. Alkalaev and M. Grigoriev, Unified BRST description of AdS gauge fields, Nucl. Phys. B 835 (2010) 197 [arXiv:0910.2690] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. K. Alkalaev and M. Grigoriev, Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type, Nucl. Phys. B 853 (2011) 663 [arXiv:1105.6111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Grigoriev, Parent formulations, frame-like Lagrangians and generalized auxiliary fields, JHEP 12 (2012) 048 [arXiv:1204.1793] [INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Metsaev, Massless mixed symmetry bosonic free fields in d-dimensional Anti-de Sitter space-time, Phys. Lett. B 354 (1995) 78 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. R. Metsaev, Arbitrary spin massless bosonic fields in d-dimensional Anti-de Sitter space, Lect. Notes Phys. 524 (1997) 331 [hep-th/9810231] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. L. Brink, R. Metsaev and M.A. Vasiliev, How massless are massless fields in AdS(d), Nucl. Phys. B 586 (2000) 183 [hep-th/0005136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture. II. Oscillator realization, JHEP 07 (2009) 014 [arXiv:0812.4438] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. D. Francia and A. Sagnotti, Minimal local Lagrangians for higher-spin geometry, Phys. Lett. B 624 (2005) 93 [hep-th/0507144] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. D. Francia, J. Mourad and A. Sagnotti, Current exchanges and unconstrained higher spins, Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. D. Francia, J. Mourad and A. Sagnotti, (A)dS exchanges and partially-massless higher spins, Nucl. Phys. B 804 (2008) 383 [arXiv:0803.3832] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543 (2002) 303 [hep-th/0207002] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. D. Francia and A. Sagnotti, On the geometry of higher spin gauge fields, Class. Quant. Grav. 20 (2003) S473 [hep-th/0212185] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. D. Francia, Geometric Lagrangians for massive higher-spin fields, Nucl. Phys. B 796 (2008) 77 [arXiv:0710.5378] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. D. Francia, Geometric massive higher spins and current exchanges, Fortsch. Phys. 56 (2008) 800 [arXiv:0804.2857] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. B. de Wit and D.Z. Freedman, Systematics of higher spin gauge fields, Phys. Rev. D 21 (1980) 358 [INSPIRE].

    ADS  Google Scholar 

  58. A. Pashnev and M. Tsulaia, Description of the higher massless irreducible integer spins in the BRST approach, Mod. Phys. Lett. A 13 (1998) 1853 [hep-th/9803207] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. I. Buchbinder, A. Pashnev and M. Tsulaia, Lagrangian formulation of the massless higher integer spin fields in the AdS background, Phys. Lett. B 523 (2001) 338 [hep-th/0109067] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  60. K. Hallowell and A. Waldron, Constant curvature algebras and higher spin action generating functions, Nucl. Phys. B 724 (2005) 453 [hep-th/0505255] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. G. Barnich and M. Grigoriev, Parent form for higher spin fields on Anti-de Sitter space, JHEP 08 (2006) 013 [hep-th/0602166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. F. Bastianelli, O. Corradini and E. Latini, Higher spin fields from a worldline perspective, JHEP 02 (2007) 072 [hep-th/0701055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. I. Buchbinder, A. Galajinsky and V. Krykhtin, Quartet unconstrained formulation for massless higher spin fields, Nucl. Phys. B 779 (2007) 155 [hep-th/0702161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. R. Marnelius, Lagrangian higher spin field theories from the O(N) extended supersymmetric particle, arXiv:0906.2084 [INSPIRE].

  65. S. Ouvry and J. Stern, Gauge fields of any spin and symmetry, Phys. Lett. B 177 (1986) 335 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. A.K. Bengtsson, A unified action for higher spin gauge bosons from covariant string theory, Phys. Lett. B 182 (1986) 321 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  67. M. Henneaux and C. Teitelboim, Consistent quantum mechanics of chiral p-formsFirst and second quantized point particles of any spin, in Quantum mechanics of fundamental systems, 2, C. Teitelboim and J. Zanelli eds., Plenum Press, New York U.S.A. (1988) 113.

  68. A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. D. Francia, String theory triplets and higher-spin curvatures, Phys. Lett. B 690 (2010) 90 [arXiv:1001.5003] [INSPIRE].

    ADS  Google Scholar 

  70. G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nucl. Phys. B 669 (2003) 159 [hep-th/0305155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. A. Fotopoulos and M. Tsulaia, Gauge invariant Lagrangians for free and interacting higher spin fields. A review of the BRST formulation, Int. J. Mod. Phys. A 24 (2009) 1 [arXiv:0805.1346] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  72. D.P. Sorokin and M.A. Vasiliev, Reducible higher-spin multiplets in flat and AdS spaces and their geometric frame-like formulation, Nucl. Phys. B 809 (2009) 110 [arXiv:0807.0206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. A. Einstein, The principle of relativity, Siz. Preuss. Acad. Scis. (1919).

  74. J.J. van der Bij, H. van Dam and Y.J. Ng, The exchange of massless spin two particles, Physica 116A (1982) 307.

    ADS  Google Scholar 

  75. W. Buchmüller and N. Dragon, Einstein gravity from restricted coordinate invariance, Phys. Lett. B 207 (1988) 292 [INSPIRE].

    ADS  Google Scholar 

  76. W. Unruh, A unimodular theory of canonical quantum gravity, Phys. Rev. D 40 (1989) 1048 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  77. M. Henneaux and C. Teitelboim, The cosmological constant and general covariance, Phys. Lett. B 222 (1989) 195 [INSPIRE].

    ADS  Google Scholar 

  78. E. Alvarez, D. Blas, J. Garriga and E. Verdaguer, Transverse Fierz-Pauli symmetry, Nucl. Phys. B 756 (2006) 148 [hep-th/0606019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. E. Alvarez, A.F. Faedo and J. Lopez-Villarejo, Ultraviolet behavior of transverse gravity, JHEP 10 (2008) 023 [arXiv:0807.1293] [INSPIRE].

    Article  ADS  Google Scholar 

  80. E. Alvarez and R. Vidal, Weyl transverse gravity (WTDiff) and the cosmological constant, Phys. Rev. D 81 (2010) 084057 [arXiv:1001.4458] [INSPIRE].

    ADS  Google Scholar 

  81. F. Bastianelli and R. Bonezzi, U(N) spinning particles and higher spin equations on complex manifolds, JHEP 03 (2009) 063 [arXiv:0901.2311] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. F. Bastianelli, R. Bonezzi and C. Iazeolla, Quantum theories of (p,q)-forms, JHEP 08 (2012) 045 [arXiv:1204.5954] [INSPIRE].

    Article  ADS  Google Scholar 

  83. D. Francia, On the relation between local and geometric Lagrangians for higher spins, J. Phys. Conf. Ser. 222 (2010) 012002 [arXiv:1001.3854] [INSPIRE].

    Article  ADS  Google Scholar 

  84. P. de Medeiros and C. Hull, Geometric second order field equations for general tensor gauge fields, JHEP 05 (2003) 019 [hep-th/0303036] [INSPIRE].

    Article  Google Scholar 

  85. X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D, R): duality and Poincaré lemma, Commun. Math. Phys. 245 (2004) 27 [hep-th/0208058] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. R. Manvelyan, K. Mkrtchyan, W. Rühl and M. Tovmasyan, On nonlinear higher spin curvature, Phys. Lett. B 699 (2011) 187 [arXiv:1102.0306] [INSPIRE].

    ADS  Google Scholar 

  87. C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space (elementary particles in a curved space. 7., Phys. Rev. D 20 (1979) 848 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  88. X. Bekaert and N. Boulanger, The unitary representations of the Poincaré group in any spacetime dimension, hep-th/0611263 [INSPIRE].

  89. J. Labastida and T. Morris, Massless mixed symmetry bosonic free fields, Phys. Lett. B 180 (1986) 101 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  90. D.M. Gitman and I.V. Tyutin, Quantization of fields with constraints, Springer, Berlin Germany (1990).

    Book  MATH  Google Scholar 

  91. M. Henneaux, C. Teitelboim and J. Zanelli, Gauge invariance and degree of freedom count, Nucl. Phys. B 332 (1990) 169 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  92. A. Higuchi, Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter group SO(N, 1), J. Math. Phys. 28 (1987) 1553 [Erratum ibid. 43 (2002) 6385] [INSPIRE].

  93. R. Metsaev, Lowest eigenvalues of the energy operator for totally (anti)symmetric massless fields of the n-dimensional Anti-de Sitter group, Class. Quant. Grav. 11 (1994) L141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. A. Fotopoulos and M. Tsulaia, Current exchanges for reducible higher spin modes on AdS, arXiv:1007.0747 [INSPIRE].

  95. L. Singh and C. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].

    ADS  Google Scholar 

  96. Y. Zinoviev, Frame-like gauge invariant formulation for massive high spin particles, Nucl. Phys. B 808 (2009) 185 [arXiv:0808.1778] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. Y. Zinoviev, Toward frame-like gauge invariant formulation for massive mixed symmetry bosonic fields, Nucl. Phys. B 812 (2009) 46 [arXiv:0809.3287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  98. A. Fotopoulos and M. Tsulaia, Current exchanges for reducible higher spin multiplets and gauge fixing, JHEP 10 (2009) 050 [arXiv:0907.4061] [INSPIRE].

    Article  ADS  Google Scholar 

  99. J. Fang and C. Fronsdal, Massless fields with half integral spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].

    ADS  Google Scholar 

  100. R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  101. I. Buchbinder, A. Fotopoulos, A.C. Petkou and M. Tsulaia, Constructing the cubic interaction vertex of higher spin gauge fields, Phys. Rev. D 74 (2006) 105018 [hep-th/0609082] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  102. A. Fotopoulos and M. Tsulaia, Interacting higher spins and the high energy limit of the bosonic string, Phys. Rev. D 76 (2007) 025014 [arXiv:0705.2939] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  103. N. Boulanger, S. Leclercq and P. Sundell, On the uniqueness of minimal coupling in higher-spin gauge theory, JHEP 08 (2008) 056 [arXiv:0805.2764] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  104. X. Bekaert, E. Joung and J. Mourad, On higher spin interactions with matter, JHEP 05 (2009) 126 [arXiv:0903.3338] [INSPIRE].

    Article  ADS  Google Scholar 

  105. R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [INSPIRE].

    Article  ADS  Google Scholar 

  106. A. Sagnotti and M. Taronna, String lessons for higher-spin interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  107. R. Manvelyan, K. Mkrtchyan and W. Ruehl, A generating function for the cubic interactions of higher spin fields, Phys. Lett. B 696 (2011) 410 [arXiv:1009.1054] [INSPIRE].

    ADS  Google Scholar 

  108. D. Polyakov, A string model for AdS gravity and higher spins, Phys. Rev. D 84 (2011) 126004 [arXiv:1106.1558] [INSPIRE].

    ADS  Google Scholar 

  109. M. Taronna, Higher-spin interactions: four-point functions and beyond, JHEP 04 (2012) 029 [arXiv:1107.5843] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  110. M. Vasiliev, Cubic vertices for symmetric higher-spin gauge fields in (A)dS d , Nucl. Phys. B 862 (2012) 341 [arXiv:1108.5921] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  111. E. Joung and M. Taronna, Cubic interactions of massless higher spins in (A)dS: metric-like approach, Nucl. Phys. B 861 (2012) 145 [arXiv:1110.5918] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  112. E. Joung, L. Lopez and M. Taronna, On the cubic interactions of massive and partially-massless higher spins in (A)dS, JHEP 07 (2012) 041 [arXiv:1203.6578] [INSPIRE].

    Article  ADS  Google Scholar 

  113. P. Dempster and M. Tsulaia, On the structure of quartic vertices for massless higher spin fields on Minkowski background, Nucl. Phys. B 865 (2012) 353 [arXiv:1203.5597] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  114. R. Metsaev, BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields, Phys. Lett. B 720 (2013) 237 [arXiv:1205.3131] [INSPIRE].

    ADS  Google Scholar 

  115. A. Lichnerowicz, Propagateurs et commutateurs en relativité générale, Publ. Math. IHES 10 (1961) 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Francia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campoleoni, A., Francia, D. Maxwell-like Lagrangians for higher spins. J. High Energ. Phys. 2013, 168 (2013). https://doi.org/10.1007/JHEP03(2013)168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)168

Keywords

Navigation