Skip to main content

Advertisement

Log in

Photocatalyst Engineering for Water-Based CO2 Reduction Under Visible Light Irradiation to Enhance CO Selectivity: A Review of Recent Advances

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Among greenhouse gases, carbon dioxide (CO2) is major constituent causing severe climate change. Therefore, it is imperative to seek solutions that will subside CO2 concentration in the atmosphere. One of the best approaches is photocatalytic CO2 reductions into useful molecules (Carbon monoxide (CO), Methane (CH4) and Hydrogen (H2)). This unique route could remediate both environmental and energy crises simultaneously. However, the overall photoconversion and selectivity for CO production have been severely constrained by poor light absorption and competitive side reactions (water splitting and hydrogenation). Here, authors have given insights on current state of structural engineering-based CO evolution via CO2 photoreduction under visible irradiation. Moreover, different structural modifications including elemental doping, facet engineering heterojunctions, surface defects, and co-catalyst introduction methods have been discussed thoroughly to improve CO selectivity and production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Khan AA, Tahir M. Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels. J CO2 Util 2019;29:205–39. https://doi.org/10.1016/j.jcou.2018.12.008.

  2. Ren X, Gao M, Zhang Y, Zhang Z, Cao X, Wang B, et al. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism.ApplCatalBEnviron2020;274:119063. https://doi.org/10.1016/J.APCATB.2020.119063.

  3. Soden BJ, Collins WD, Feldman DR. Reducing uncertainties in climate models. Science(80-)2018;361:326–7. https://doi.org/10.1126/SCIENCE.AAU1864/SUPPL_FILE/AAU1864-SODEN-SM.PDF.

  4. Li, K., An, X., Park, K. H., Khraisheh, M., & Tang, J. (2014). A critical review of CO2 photoconversion: Catalysts and reactors. Catalysis Today, 224, 3–12. https://doi.org/10.1016/J.CATTOD.2013.12.006

    Article  Google Scholar 

  5. Amiri, H., Ayati, B., & Ganjidoust, H. (2017). Mass transfer phenomenon in photocatalytic cascade disc reactor: Effects of artificial roughness and flow rate. Chem Eng Process Process Intensif, 116, 48–59. https://doi.org/10.1016/J.CEP.2017.03.004

    Article  Google Scholar 

  6. Balu, S., Velmurugan, S., Palanisamy, S., Chen, S. W., Velusamy, V., Yang, T. C. K., et al. (2019). Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media. Journal of the Taiwan Institute of Chemical Engineers, 99, 258–267. https://doi.org/10.1016/J.JTICE.2019.03.011

    Article  Google Scholar 

  7. Fajrina, N., & Tahir, M. (2019). A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy, 44, 540–577. https://doi.org/10.1016/J.IJHYDENE.2018.10.200

    Article  Google Scholar 

  8. Ahmed, A. A., Nazzal, M. A., & Darras, B. M. (2022). Cyber-physical systems as an enabler of circular economy to achieve sustainable development goals: a comprehensive review. Int J Precis Eng Manuf - Green Technol, 9, 955–975. https://doi.org/10.1007/S40684-021-00398-5/TABLES/3

    Article  Google Scholar 

  9. Yin, W. J., Wen, B., Ge, Q., Li, X. B., Teobaldi, G., & Liu, L. M. (2020). Activity and selectivity of CO2 photoreduction on catalytic materials. Dalt Trans, 49, 12918–12928. https://doi.org/10.1039/D0DT02651D

    Article  Google Scholar 

  10. Men YL, You Y, Pan YX, Gao H, Xia Y, Cheng DG, et al. Selective CO Evolution from Photoreduction of CO2 on a Metal-Carbide-Based Composite Catalyst. J Am ChemSoc2018;140:13071–7. https://doi.org/10.1021/JACS.8B08552/ASSET/IMAGES/LARGE/JA-2018-08552D_0005.JPEG.

  11. Guo, Q., Liang, F., Li, X. B., Gao, Y. J., Huang, M. Y., Wang, Y., et al. (2019). Efficient and selective CO2 reduction integrated with organic synthesis by solar energy. Chem, 5, 2605–2616. https://doi.org/10.1016/J.CHEMPR.2019.06.019

    Article  Google Scholar 

  12. Habisreutinger, S. N., Schmidt-Mende, L., Stolarczyk, J. K., Schmidt-Mende, L., Stolarczyk, J. K., & Habisreutinger, S. N. (2013). Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chemie Int Ed, 52, 7372–7408. https://doi.org/10.1002/ANIE.201207199

    Article  Google Scholar 

  13. Li D, Xu HQ, Jiao L, Jiang HL. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem2019;1:100005. https://doi.org/10.1016/J.ENCHEM.2019.100005.

  14. Miller M, illiam Robinson WE, Rita Oliveira A, Heidary N, Kornienko N, Warnan J, et al. Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide. Angew Chemie 2019;131:4649–53. https://doi.org/10.1002/ANGE.201814419.

  15. Bhandari, B., Lee, K.-T., Lee, G.-Y., Cho, Y.-M., & Ahn, S.-H. (2015). Optimization of hybrid renewable energy power systems: a review. Int J Precis Eng Manuf Technol, 2, 99. https://doi.org/10.1007/s40684-015-0013-z

    Article  Google Scholar 

  16. Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for selective photoreduction of CO2 into solarfuels. ChemRev2019;119:3962–4179. https://doi.org/10.1021/ACS.CHEMREV.8B00400/ASSET/IMAGES/MEDIUM/CR-2018-004003_0043.GIF.

  17. Choi, Y.-J., & Kim, S.-Y. (2018). A study on determining an appropriate power trading contracts to promote renewable energy systems. Int J Precis Eng Manuf Technol, 5, 623–630. https://doi.org/10.1007/s40684-018-0064-z

    Article  Google Scholar 

  18. Alaba, P. A., Mazari, S. A., Farouk, H. U., Sanni, S. E., Agboola, O., Lee, C. S., et al. (2021). Harvesting electricity from CO2 emission: opportunities, challenges and future prospects. Int J Precis Eng Manuf - Green Technol, 8, 1061–1081. https://doi.org/10.1007/S40684-020-00250-2/FIGURES/6

    Article  Google Scholar 

  19. Kim, S., Kim, K. H., Oh, C., Zhang, K., & Park, J. H. (2022). Artificial photosynthesis for high-value-added chemicals: Old material, new opportunity. Carbon Energy, 4, 21–44. https://doi.org/10.1002/CEY2.159

    Article  Google Scholar 

  20. Jiao, X., Zheng, K., Liang, L., Li, X., Sun, Y., & Xie, Y. (2020). Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chemical Society Reviews, 49, 6592–6604. https://doi.org/10.1039/D0CS00332H

    Article  Google Scholar 

  21. Rödger, J. M., Beier, J., Schönemann, M., Schulze, C., Thiede, S., Bey, N., et al. (2021). Combining life cycle assessment and manufacturing system simulation: evaluating dynamic impacts from renewable energy supply on product-specific environmental footprints. Int J Precis Eng Manuf - Green Technol, 8, 1007–1026. https://doi.org/10.1007/S40684-020-00229-Z/FIGURES/9

    Article  Google Scholar 

  22. Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 308, 168–175. https://doi.org/10.1016/J.JCAT.2013.06.008

    Article  Google Scholar 

  23. Khan H, Charles H, Lee CS. Synergistic effect stemming from vertically anchored seamless 2D MoSe2 nanosheets on 1D NiTiO3 nanofibers toward CO2 photoreduction. J CO2 Util 2022;61:102058. https://doi.org/10.1016/j.jcou.2022.102058.

  24. Doherty, F., Wang, H., Yang, M., & Goldsmith, B. R. (2020). Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO2. Catalysis Science & Technology, 10, 5772–5791. https://doi.org/10.1039/D0CY01316A

    Article  Google Scholar 

  25. Ebhota, W. S., & Jen, T. C. (2020). Fossil fuels environmental challenges and the role of solar photovoltaic technology advances in fast tracking hybrid renewable energy system. Int J Precis Eng Manuf - Green Technol, 7, 97–117. https://doi.org/10.1007/S40684-019-00101-9/FIGURES/12

    Article  Google Scholar 

  26. Van Rooyen, L. A., Allen, P., Kelly-Rees, C., & O’Connor, D. I. (2018). The effects of varying gas concentrations and exposure times on colour stability and shelf-life of vacuum packaged beef steaks subjected to carbon monoxide pretreatment. Food Packaging and Shelf Life, 18, 230–237. https://doi.org/10.1016/J.FPSL.2018.10.010

    Article  Google Scholar 

  27. Fu J, Jiang K, Qiu X, Yu J, Liu M. Product selectivity of photocatalytic CO2 reduction reactions. Mater Today2020;32:222–43. https://doi.org/10.1016/J.MATTOD.2019.06.009.

  28. Sun, Z., Talreja, N., Tao, H., Texter, J., Muhler, M., Strunk, J., et al. (2018). Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angew Chemie Int Ed, 57, 7610–7627. https://doi.org/10.1002/ANIE.201710509

    Article  Google Scholar 

  29. Álvarez, A., Borges, M., Corral-Pérez, J. J., Olcina, J. G., Hu, L., Cornu, D., et al. (2017). CO2 Activation over catalytic surfaces. ChemPhysChem, 18, 3135–3141. https://doi.org/10.1002/CPHC.201700782

    Article  Google Scholar 

  30. Chang, X., Wang, T., & Gong, J. (2016). CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 9, 2177–2196. https://doi.org/10.1039/C6EE00383D

    Article  Google Scholar 

  31. Huang H, Zhao J, Weng B, Lai F, Zhang M, Hofkens J, et al. Site-Sensitive Selective CO2 Photoreduction to CO over Gold Nanoparticles. Angew Chemie 2022;134:e202204563. https://doi.org/10.1002/ANGE.202204563.

  32. Song, J. H., Min, S. H., Kim, S. G., Cho, Y., & Ahn, S. H. (2022). Multi-functionalization strategies using nanomaterials: a review and case study in sensing applications. Int J Precis Eng Manuf - Green Technol, 9, 323–347. https://doi.org/10.1007/S40684-021-00356-1/FIGURES/24

    Article  Google Scholar 

  33. Huang H, Zhao J, Weng B, Lai F, Zhang M, Hofkens J, et al. Site-Sensitive Selective CO2 Photoreduction to CO over Gold Nanoparticles. Angew Chemie 2022;2022:e202204563. https://doi.org/10.1002/ANGE.202204563.

  34. Kuramochi, Y., Ishitani, O., & Ishida, H. (2018). Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coordination Chemistry Reviews, 373, 333–356. https://doi.org/10.1016/J.CCR.2017.11.023

    Article  Google Scholar 

  35. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem 2018 26 2018;2:65–81. https://doi.org/10.1038/s41570-018-0010-1.

  36. Lin X, Wang S, Tu W, Wang H, Hou Y, Dai W, et al. Magnetic Hollow Spheres Assembled from Graphene-Encapsulated Nickel Nanoparticles for Efficient Photocatalytic CO2 Reduction 2019. https://doi.org/10.1021/acsaem.9b01673.

  37. Khalid, S., Raouf, I., Khan, A., Kim, N., & Kim, H. S. (2019). A review of human-powered energy harvesting for smart electronics: recent progress and challenges. Int J Precis Eng Manuf—Green Technol, 6, 821–851. https://doi.org/10.1007/S40684-019-00144-Y/FIGURES/10

    Article  Google Scholar 

  38. Qi X, Zhong R, Chen M, Sun C, You S, Gu J, et al. Single metal−organic cage decorated with an Ir(III) Complex for CO2 Photoreduction 2021. https://doi.org/10.1021/acscatal.1c01974.

  39. Li, C., Tong, X., Yu, P., Du, W., Wu, J., Rao, H., et al. (2019). Carbon dioxide photo/electroreduction with cobalt. J Mater Chem A, 7, 16622–16642. https://doi.org/10.1039/C9TA03892B

    Article  Google Scholar 

  40. Chen YH, Qi MY, Li YH, Tang ZR, Wang T, Gong J, et al. Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction. Cell Reports Phys Sci 2021;2:100371. https://doi.org/10.1016/J.XCRP.2021.100371.

  41. Zhou, R., Yin, Y., Long, D., Cui, J., Yan, H., Liu, W., et al. (2019). PVP-assisted laser ablation growth of Ag nanocubes anchored on reduced graphene oxide (rGO) for efficient photocatalytic CO2 reduction. Prog Nat Sci Mater Int, 29, 660–666. https://doi.org/10.1016/J.PNSC.2019.11.001

    Article  Google Scholar 

  42. Lin, X., Wang, S., Tu, W., Wang, H., Hou, Y., Dai, W., et al. (2019). Magnetic hollow spheres assembled from graphene-encapsulated nickel nanoparticles for efficient photocatalytic CO2 reduction. ACS Appl Energy Mater, 2, 7670–7678. https://doi.org/10.1021/ACSAEM.9B01673/ASSET/IMAGES/LARGE/AE9B01673_0008.JPEG

    Article  Google Scholar 

  43. Khan H, Charles H, Lee CS. Fabrication of noble-metal-free copper-doped TiO2 nanofibers synergized with acetic acid-treated g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Appl Surf Sci 2023;607:155068. https://doi.org/10.1016/J.APSUSC.2022.155068.

  44. Zhong, W., Sa, R., Li, L., He, Y., Li, L., Bi, J., et al. (2019). A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. Journal of the American Chemical Society, 141, 7615–7621. https://doi.org/10.1021/jacs.9b02997

    Article  Google Scholar 

  45. Zhang, P., Wang, S., Guan, B. Y., & Lou, X. W. D. (2019). Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy & Environmental Science, 12, 164–168. https://doi.org/10.1039/C8EE02538J

    Article  Google Scholar 

  46. Qi, X., Zhong, R., Chen, M., Sun, C., You, S., Gu, J., et al. (2021). Single metal-organic cage decorated with an Ir(III) complex for CO2 photoreduction. ACS Catalysis, 11, 7241–7248. https://doi.org/10.1021/ACSCATAL.1C01974/SUPPL_FILE/CS1C01974_SI_002.CIF

    Article  Google Scholar 

  47. Wang, M., Shen, M., Jin, X., Tian, J., Li, M., Zhou, Y., et al. (2019). Oxygen vacancy generation and stabilization in CeO2- x by Cu introduction with improved CO2 photocatalytic reduction activity. ACS Catalysis, 9, 4573–4581.

    Article  Google Scholar 

  48. Wang Y, Bai X, Wang F, Kang S, Yin C, Li X. Nanocasting synthesis of chromium doped mesoporous CeO2 with enhanced visible-light photocatalytic CO2 reduction performance. J Hazard Mater 2019;372:69–76. https://doi.org/10.1016/J.JHAZMAT.2017.10.007.

  49. Wan S, Chen M, Ou M, Zhong Q. Plasmonic Ag nanoparticles decorated SrTiO3 nanocubes for enhanced photocatalytic CO2 reduction and H2 evolution under visible light irradiation. J CO2 Util 2019;33:357–64. https://doi.org/10.1016/J.JCOU.2019.06.024.

  50. Ojha, N., Bajpai, A., & Kumar, S. (2019). Visible light-driven enhanced CO2 reduction by water over Cu modified S-doped g-C3N4. Catalysis Science & Technology, 9, 4598–4613. https://doi.org/10.1039/C9CY01185D

    Article  Google Scholar 

  51. Liu, Y., Shang, S., Mo, S., Wang, P., & Wang, H. (2021). Eco-friendly strategies for the material and fabrication of wearable sensors. Int J Precis Eng Manuf—Green Technol, 8, 1323–1346. https://doi.org/10.1007/S40684-020-00285-5/TABLES/1

    Article  Google Scholar 

  52. Ai L, Su J, Wang M, Jiang J. Bamboo-Structured Nitrogen-Doped Carbon Nanotube Coencapsulating Cobalt and Molybdenum Carbide Nanoparticles: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting 2018. https://doi.org/10.1021/acssuschemeng.8b01120

  53. Tang S, Yin X, Wang G, Lu X, Lu T. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res 2018 122 2018;12:457–62. https://doi.org/10.1007/S12274-018-2240-4.

  54. Tang S, Yin X, Wang G, Lu X, Lu T. Single titanium-oxide species implanted in 2D g-C 3 N 4 matrix as a highly efficient visible-light CO2 reduction photocatalyst n.d. https://doi.org/10.1007/s12274-018-2240-4.

  55. Li, Q., Zhang, Y., Zhang, L., Xia, J., Liu, X., Hu, L., et al. (2019). Enhanced activity of Β-Ga2O3 by substitution with transition metal for CO2 photoreduction under visible light irradiation. Catalysis Communications, 120, 23–27. https://doi.org/10.1016/J.CATCOM.2018.11.007

    Article  Google Scholar 

  56. Lan, Y., Xie, Y., Chen, J., Hu, Z., & Cui, D. (2019). Selective photocatalytic CO2 reduction on copper–titanium dioxide: A study of the relationship between CO production and H2 suppression. Chemical Communications, 55, 8068–8071. https://doi.org/10.1039/C9CC02891A

    Article  Google Scholar 

  57. Mu Q, Zhu W, Li X, Zhang C, Su Y, Lian Y, et al. Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Appl Catal B Environ 2020;262:118144. https://doi.org/10.1016/j.apcatb.2019.118144.

  58. Niu, P., Pan, Z., Wang, S., & Wang, X. (2021). Tuning crystallinity and surface hydrophobicity of a cobalt phosphide cocatalyst to boost CO2 photoreduction performance. Chemsuschem, 14, 1302–1307. https://doi.org/10.1002/CSSC.202002755

    Article  Google Scholar 

  59. Shi H, Du J, Wang H, Jia Z, Jin D, Cao J, et al. Engineering unsaturated coordination of conductive TiOx clusters derived from Metal–Organic–Framework incorporated into hollow semiconductor for highly selective CO2 photoreduction. Chem Eng J 2022;440:135735. https://doi.org/10.1016/J.CEJ.2022.135735.

  60. Gopalakrishnan VN, Nguyen D-T, Becerra J, Sakar M, Ahad JME, Jautzy JJ, et al. Manifestation of an Enhanced Photoreduction of CO2 to CO over the In Situ Synthesized rGO−Covalent Organic Framework under Visible Light Irradiation 2021. https://doi.org/10.1021/acsaem.1c00862.

  61. Khan H, Kang S, Charles H, Lee CS. Epitaxial Growth of Flower-Like MoS2 on One-Dimensional Nickel Titanate Nanofibers: A “Sweet Spot” for Efficient Photoreduction of Carbon Dioxide. Front Chem 2022;10. https://doi.org/10.3389/FCHEM.2022.837915/FULL.

  62. Kim E, Do KH, Wang J, Hong Y, Putta Rangappa A, Amaranatha Reddy D, et al. Construction of 1D TiO2 nanotubes integrated ultrathin 2D ZnIn2S4 nanosheets heterostructure for highly efficient and selective photocatalytic CO2 reduction. Appl Surf Sci 2022;587:152895. https://doi.org/10.1016/J.APSUSC.2022.152895.

  63. Wang HZ, Rong HP, Wang D, Li XY, Zhang EH, Wan XD, et al. 2000426 (1 of 8) Highly Selective Photoreduction of CO2 with Suppressing H2 Evolution by Plasmonic Au/CdSe-Cu2 O Hierarchical Nanostructures under Visible Light 2020;16:2000426. https://doi.org/10.1002/smll.202000426.

  64. Shahriar, M., Vo, C. P., & Ahn, K. K. (2019). Self-powered flexible PDMS channel assisted discrete liquid column motion based triboelectric nanogenerator (DLC-TENG) as mechanical transducer. Int J Precis Eng Manuf—Green Technol, 6, 907–917. https://doi.org/10.1007/S40684-019-00148-8/FIGURES/5

    Article  Google Scholar 

  65. Xu Y, You Y, Huang H, Guo Y, Zhang Y. Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction. J Hazard Mater 2020;381:121159. https://doi.org/10.1016/J.JHAZMAT.2019.121159.

  66. He YQ, Rao H, Song KP, Li JX, Yu Y, Lou Y, et al. FULL PAPER www.afm-journal.de 3D Hierarchical ZnIn2S4 Nanosheets with Rich Zn Vacancies Boosting Photocatalytic CO2 Reduction. Adv Funct Mater 2019;29:1905153. https://doi.org/10.1002/adfm.201905153.

  67. Nguyen, Q. T., & Ahn, K. K. K. (2021). Fluid-based triboelectric nanogenerators: A review of current status and applications. Int J Precis Eng Manuf—Green Technol, 8, 1043–1060. https://doi.org/10.1007/S40684-020-00255-X/TABLES/3

    Article  Google Scholar 

  68. Kong, X. Y., Lee, W. Q., Mohamed, A. R., & Chai, S. P. (2019). Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chemical Engineering Journal, 372, 1183–1193. https://doi.org/10.1016/J.CEJ.2019.05.001

    Article  Google Scholar 

  69. Jin, X., Lv, C., Zhou, X., Ye, L., Xie, H., Liu, Y., et al. (2019). Oxygen vacancy engineering of Bi24O31Cl10 for boosted photocatalytic CO2 conversion. Chemsuschem, 12, 2740–2747. https://doi.org/10.1002/CSSC.201900621

    Article  Google Scholar 

  70. He, Y. Q., Rao, H., Song, K. P., Li, J. X., Yu, Y., Lou, Y., et al. (2019). 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Advanced Functional Materials, 29, 1905153. https://doi.org/10.1002/ADFM.201905153

    Article  Google Scholar 

  71. Huang, S., Long, Y., Ruan, S., & Zeng, Y.-J. (2019). Enhanced photocatalytic CO2 reduction in defect-engineered Z-Scheme WO3−x/g-C3N4 heterostructures. ACS Omega, 4, 15593–15599. https://doi.org/10.1021/acsomega.9b01969

    Article  Google Scholar 

  72. Shi, Y., Zhan, G., Li, H., Wang, X., Liu, X. X., Shi, L., et al. (2021). Simultaneous manipulation of bulk excitons and surface defects for ultrastable and highly selective CO2 photoreduction. Advanced Materials, 33, 2100143. https://doi.org/10.1002/ADMA.202100143

    Article  Google Scholar 

  73. Ma H, Li X, Fan S, Yin Z, Gan G, Qin M, et al. In Situ Formation of Interfacial Defects between Co-Based Spinel/ Carbon Nitride Hybrids for Efficient CO2 Photoreduction 2020. https://doi.org/10.1021/acsaem.0c00881.

  74. Dao, X.-Y., Xie, X.-F., Guo, J.-H., Zhang, X.-Y., Kang, Y.-S., & Sun, W.-Y. (2020). Boosting photocatalytic CO2 reduction efficiency by heterostructures of NH2-MIL-101(Fe)/g-C3N4. Cite This ACS Appl Energy Mater, 2020, 3946–3954. https://doi.org/10.1021/acsaem.0c00352

    Article  Google Scholar 

  75. Xie Z, Xu Y, Li D, Meng S, Chen M, Jiang D. Covalently Bonded Bi2O3 Nanosheet/Bi2WO6 Network Heterostructures for Efficient Photocatalytic CO2 Reduction. Appl Catal B Environ 2020;270:118878. https://doi.org/10.1021/acsaem.0c02252.

  76. Xie, Z., Xu, Y., Li, D., Meng, S., Chen, M., & Jiang, D. (2020). Covalently bonded Bi2O3Nanosheet/Bi2WO6Network heterostructures for efficient photocatalytic CO2 reduction. ACS Appl Energy Mater, 3, 12194–12203. https://doi.org/10.1021/ACSAEM.0C02252/ASSET/IMAGES/LARGE/AE0C02252_0007.JPEG

    Article  Google Scholar 

  77. Wang K, Miao C, Liu Y, Cai L, Jones W, Fan J, et al. Vacancy enriched ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly efficient visible-light catalysts for CO2 reduction. Appl Catal B Environ 2020;270:118878. https://doi.org/10.1016/J.APCATB.2020.118878.

  78. Yuan, L., Li, Y. H., Tang, Z. R., Gong, J., & Xu, Y. J. (2020). Defect-promoted visible light-driven C-C coupling reactions pairing with CO2 reduction. Journal of Catalysis, 390, 244–250. https://doi.org/10.1016/J.JCAT.2020.07.036

    Article  Google Scholar 

  79. Liu D, Chen D, Li N, Xu Q, Li H, He J, et al. Carbon Nitride Surface Engineering of g-C3N4 by Stacked BiOBr Sheets Rich in Oxygen Vacancies for Boosting Photocatalytic Performance n.d. https://doi.org/10.1002/ange.201914949.

  80. Shen J, Li Y, Zhao H, Pan K, Li X, Qu Y, et al. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res 2019 128 2019;12:1931–6. https://doi.org/10.1007/S12274-019-2460-2.

  81. Wang, J., Hua, C., Dong, X., Wang, Y., & Zheng, N. (2020). Synthesis of plasmonic bismuth metal deposited InVO4 nanosheets for enhancing solar light-driven photocatalytic nitrogen fixation. Sustain Energy Fuels, 4, 1855–1862. https://doi.org/10.1039/C9SE01136F

    Article  Google Scholar 

  82. Nadolny, K., Kieraś, S., & Sutowski, P. (2021). Modern approach to delivery coolants, lubricants and antiadhesives in the environmentally friendly grinding processes. Int J Precis Eng Manuf - Green Technol, 8, 639–663. https://doi.org/10.1007/S40684-020-00270-Y/TABLES/4

    Article  Google Scholar 

  83. Hwang, H. M., Oh, S., Shim, J. H., Kim, Y. M., Kim, A., Kim, D., et al. (2019). Phase-selective disordered anatase/ordered rutile interface system for visible-light-driven, metal-free CO2 reduction. ACS Applied Materials & Interfaces, 11, 35693–35701. https://doi.org/10.1021/ACSAMI.9B10837/SUPPL_FILE/AM9B10837_SI_001.PDF

    Article  Google Scholar 

  84. Zhou, R. H., Wei, Z. H., Li, Y. Y., Li, Z. J., & Yao, H. C. (2019). Construction of visible light–responsive Z-scheme CdS/BiOI photocatalyst with enhanced photocatalytic CO2 reduction activity. Journal of Materials Research, 34, 3907–3917. https://doi.org/10.1557/JMR.2019.354

    Article  Google Scholar 

  85. Bafaqeer, A., Tahir, M., & Amin, N. A. S. (2019). Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels. Applied Catalysis B: Environmental, 242, 312–326. https://doi.org/10.1016/J.APCATB.2018.09.097

    Article  Google Scholar 

  86. Shi, W., Guo, X., Cui, C., Jiang, K., Li, Z., Qu, L., et al. (2019). Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (0 0 1) facets for photocatalytic CO2 reduction under visible-light irradiation. Applied Catalysis B, 243, 236–242. https://doi.org/10.1016/J.APCATB.2018.09.076

    Article  Google Scholar 

  87. Bafaqeer, A., Tahir, M., Amin, N. A. S., Mohamed, A. R., & Yunus, M. A. C. (2021). Fabricating 2D/2D/2D heterojunction of graphene oxide mediated g-C3N4 and ZnV2O6 composite with kinetic modelling for photocatalytic CO2 reduction to fuels under UV and visible light. Journal of Materials Science, 56, 9985–10007. https://doi.org/10.1007/S10853-021-05906-1/FIGURES/13

    Article  Google Scholar 

  88. Wang, L., Zhao, X., Lv, D., Liu, C., Lai, W., Sun, C., et al. (2020). Promoted photocharge separation in 2D lateral epitaxial heterostructure for visible-light-driven CO2 photoreduction. Advanced Materials, 32, 2004311. https://doi.org/10.1002/ADMA.202004311

    Article  Google Scholar 

  89. Zhang, G., Zhu, X., Chen, D., Li, N., Xu, Q., Li, H., et al. (2020). Hierarchical Z -scheme g-C3N4 /Au/ZnIn2S4 photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion. Environmental Science. Nano, 7, 676–687. https://doi.org/10.1039/C9EN01325C

    Article  Google Scholar 

  90. Hou, Q., Li, X., Pi, Y., & Xiao, J. (2020). Construction of In2S3@NH2-MIL-68(In)@In2S3Sandwich homologous heterojunction for efficient CO2 photoreduction. Industrial and Engineering Chemistry Research, 59, 20711–20718.

    Article  Google Scholar 

  91. Tahir B, Mohd Nawawi MG, Nawawi M. Highly stable 3D/2D WO3/g-C3N4 Z-scheme heterojunction for stimulating photocatalytic CO2 reduction by H2O/H2 to CO and CH4 under visible light. J CO2 Util 2020;41:101270. https://doi.org/10.1016/J.JCOU.2020.101270.

  92. Tahir M, Tahir B. 2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4. Chem Eng J 2020;400:125868. https://doi.org/10.1016/J.CEJ.2020.125868.

  93. Wang, Y., Zhen, W., Zeng, Y., Wan, S., Guo, H., Zhang, S., et al. (2020). In situ self-assembly of zirconium metal–organic frameworks onto ultrathin carbon nitride for enhanced visible light-driven conversion of CO2 to CO. J Mater Chem A, 8, 6034–6040. https://doi.org/10.1039/C9TA14005K

    Article  Google Scholar 

  94. Raza A, Shen H, Haidry AA, Sun L, Liu R, Cui S. Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation. J CO2 Util 2020;37:260–71. https://doi.org/10.1016/J.JCOU.2019.12.020.

  95. Gao, M., Li, L., Wang, Q., Ma, Z., Li, X., & Liu, Z. (2022). Integration of additive manufacturing in casting: advances, challenges, and prospects. Int J Precis Eng Manuf - Green Technol, 9, 305–322. https://doi.org/10.1007/S40684-021-00323-W/FIGURES/10

    Article  Google Scholar 

  96. Xie, X. F., Dao, X. Y., Guo, F., Zhang, X. Y., Wang, F. M., & Sun, W. Y. (2020). Synergistic effect of CdS and NH2-UiO-66 on photocatalytic reduction of CO2 under visible light irradiation. ChemistrySelect, 5, 4001–4007. https://doi.org/10.1002/SLCT.202000290

    Article  Google Scholar 

  97. Zheng, B., Xu, H., Guo, L., Yu, X., Ji, J., Ying, C., et al. (2020). Genomic and phenotypic diversity of carbapenemase-producing enterobacteriaceae isolates from bacteremia in china: A multicenter epidemiological, microbiological, and genetic study. Engineering. https://doi.org/10.1016/J.ENG.2020.10.015

    Article  Google Scholar 

  98. Yang, J., Hao, J., Xu, S., Wang, Q., Dai, J., Zhang, A., et al. (2019). InVO4/β-AgVO3 nanocomposite as a Direct Z-scheme photocatalyst toward efficient and selective visible-light-driven CO2 reduction. ACS Applied Materials & Interfaces, 11, 32025–32037. https://doi.org/10.1021/ACSAMI.9B10758/ASSET/IMAGES/LARGE/AM9B10758_0012.JPEG

    Article  Google Scholar 

  99. Yang, L., Li, L., Xia, P., Li, H., Yang, J., Li, X., et al. (2021). Enhanced syngas production from CO2 photoreduction over CoPd alloy modified NiAl-LDH under visible light. Chemical Communications, 57, 11629–11632. https://doi.org/10.1039/D1CC04863E

    Article  Google Scholar 

  100. Wang, S. Q., Zhang, X. Y., Dao, X. Y., Cheng, X. M., & Sun, W. Y. (2020). Cu2O@Cu@UiO-66-NH2ternary nanocubes for photocatalytic CO2reduction. ACS Appl Nano Mater, 3, 10437–10445. https://doi.org/10.1021/ACSANM.0C02312/SUPPL_FILE/AN0C02312_SI_001.PDF

    Article  Google Scholar 

  101. Deng H, Fei X, Yang Y, Fan J, Yu J, Cheng B, et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem Eng J 2021;409:127377. https://doi.org/10.1016/J.CEJ.2020.127377.

  102. Yu B, Wu Y, Meng F, Wang Q, Jia X, Wasim Khan M, et al. Formation of hierarchical Bi2MoO6/ln2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction. Chem Eng J 2022;429:132456. https://doi.org/10.1016/J.CEJ.2021.132456.

  103. Liu Q, Chen Q, Li T, Ren Q, Zhong S, Zhao Y, et al. Vacancy engineering of AuCu cocatalysts for improving the photocatalytic conversion of CO2 to CH4 2019. https://doi.org/10.1039/c9ta09938g.

  104. Shiraishi Y, Tsukamoto D, Sugano Y, Shiro A, Ichikawa S, Tanaka S, et al. Platinum Nanoparticles Supported on Anatase Titanium Dioxide as Highly Active Catalysts for Aerobic Oxidation under Visible Light Irradiation 2012. https://doi.org/10.1021/cs300407e

  105. Jang, Y. R., Joo, S. J., Chu, J. H., Uhm, H. J., Park, J. W., Ryu, C. H., et al. (2021). A review on intense pulsed light sintering technologies for conductive electrodes in printed electronics. Int J Precis Eng Manuf - Green Technol, 8, 327–363. https://doi.org/10.1007/S40684-020-00193-8/FIGURES/31

    Article  Google Scholar 

  106. Chen C, Jin J, Chen S, Wang T, Xiao J, Peng T. In-situ growth of ultrafine ZnO on g-C3N4 layer for highly active and selective CO2 photoreduction to CH4 under visible light. Mater Res Bull 2021;137:111177. https://doi.org/10.1016/J.MATERRESBULL.2020.111177.

  107. Kumar DP, Rangappa AP, Shim HS, Do KH, Hong Y, Gopannagari M, et al. Nanocavity-assisted single-crystalline Ti3+ self-doped blue TiO2(B) as efficient cocatalyst for high selective CO2 photoreduction of g-C3N4. Mater Today Chem 2022;24. https://doi.org/10.1016/J.MTCHEM.2022.100827.

  108. Yang C, Tan Q, Li Q, Zhou J, Fan J, Li B, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea. Appl Catal B Environ 2020;268:118738. https://doi.org/10.1016/J.APCATB.2020.118738.

  109. Wang, Y., Wang, S., Zhang, S. L., & Lou, X. W. (2020). Formation of hierarchical FeCoS2–CoS2 double-shelled nanotubes with enhanced performance for photocatalytic reduction of CO2. Angew Chemie Int Ed, 59, 11918–11922. https://doi.org/10.1002/ANIE.202004609

    Article  Google Scholar 

  110. Windle, C. D., & Reisner, E. (2015). Heterogenised molecular catalysts for the reduction of CO2 to fuels. Chimia (Aarau), 69, 435–441. https://doi.org/10.2533/CHIMIA.2015.435

    Article  Google Scholar 

  111. Louis ME, Fenton TG, Rondeau J, Jin T, Li G. Solar CO2 Reduction Using Surface-Immobilized Molecular Catalysts. 2015;36:38–60. https://doi.org/10.1080/02603594.2015.1088008.

  112. Cometto, C., Kuriki, R., Chen, L., Maeda, K., Lau, T. C., Ishitani, O., et al. (2018). A carbon nitride/fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with Visible Light. Journal of the American Chemical Society, 140, 7437–7440.

    Article  Google Scholar 

  113. Abdellah, M., El-Zohry, A. M., Antila, L. J., Windle, C. D., Reisner, E., & Hammarström, L. (2017). Time-resolved IR spectroscopy reveals a mechanism with TiO2 as a reversible electron acceptor in a TiO2–Re catalyst system for CO2 photoreduction. Journal of the American Chemical Society, 139, 1226–1232. https://doi.org/10.1021/JACS.6B11308

    Article  Google Scholar 

  114. Kuehnel, M. F., Orchard, K. L., Dalle, K. E., & Reisner, E. (2017). Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. Journal of the American Chemical Society, 139, 7217–7223. https://doi.org/10.1021/JACS.7B00369/ASSET/IMAGES/LARGE/JA-2017-00369T_0005.JPEG

    Article  Google Scholar 

  115. Huang, P., Huang, J., Pantovich, S. A., Carl, A. D., Fenton, T. G., Caputo, C. A., et al. (2018). Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. Journal of the American Chemical Society, 140, 16042–16047.

    Article  Google Scholar 

  116. Zhu, W., Zhang, C., Li, Q., Xiong, L., Chen, R., Wan, X., et al. (2018). Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Applied Catalysis B: Environmental, 238, 339–345. https://doi.org/10.1016/J.APCATB.2018.07.024

    Article  Google Scholar 

  117. Li X, Sun Y, Xu J, Shao Y, Wu J, Xu X, et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat Energy 2019 48 2019;4:690–9. https://doi.org/10.1038/s41560-019-0431-1.

  118. Jeong C, Joung C, Lee S, Feng MQ, Park Y Bin. Carbon Nanocomposite Based Mechanical Sensing and Energy Harvesting. Int J Precis Eng Manuf - Green Technol 2020;7:247–67. https://doi.org/10.1007/S40684-019-00154-W/FIGURES/10.

  119. Devi P, Singh JP. Visible light induced selective photocatalytic reduction of CO2 to CH4 on In2O3-rGO nanocomposites. J CO2 Util 2021;43:101376. https://doi.org/10.1016/J.JCOU.2020.101376.

  120. Barman, S., Singh, A., Rahimi, F. A., & Maji, T. K. (2021). Metal-free catalysis: a redox-active donor-acceptor conjugated microporous polymer for selective visible-light-driven CO2Reduction to CH4. Journal of the American Chemical Society, 143, 16284–16292. https://doi.org/10.1021/JACS.1C07916/SUPPL_FILE/JA1C07916_SI_001.PDF

    Article  Google Scholar 

  121. Zhang, X., Cibian, M., Call, A., Yamauchi, K., & Sakai, K. (2019). Photochemical CO2 reduction driven by water-soluble copper(I) photosensitizer with the catalysis accelerated by multi-electron chargeable cobalt porphyrin. ACS Catalysis, 9, 11263–11273. https://doi.org/10.1021/ACSCATAL.9B04023/SUPPL_FILE/CS9B04023_SI_001.PDF

    Article  Google Scholar 

  122. Gong S, Niu Y, Teng X, Liu X, Xu M, Xu C, et al. Visible light-driven, selective CO2 reduction in water by In-doped Mo2C based on defect engineering. Appl Catal B Environ 2022;310:121333. https://doi.org/10.1016/J.APCATB.2022.121333.

  123. Niu, Q., Cheng, Z., Chen, Q., Huang, G., Lin, J., Bi, J., et al. (2021). Constructing nitrogen self-doped covalent triazine-based frameworks for visible-light-driven photocatalytic conversion of CO2 into CH4. ACS Sustain Chem Eng, 9, 1333–1340. https://doi.org/10.1021/ACSSUSCHEMENG.0C07930/SUPPL_FILE/SC0C07930_SI_001.PDF

    Article  Google Scholar 

  124. Hou, T., Luo, N., Cui, Y. T., Lu, J., Li, L., MacArthur, K. E., et al. (2019). Selective reduction of CO2 to CO under visible light by controlling coordination structures of CeOx-S/ZnIn2S4 hybrid catalysts. Applied Catalysis B, 245, 262–270. https://doi.org/10.1016/J.APCATB.2018.12.059

    Article  Google Scholar 

  125. Wang Y, Li C, Zhang Y, Yang M, Li BK, Dong L, et al. Processing Characteristics of Vegetable Oil-based Nanofluid MQL for Grinding Different Workpiece Materials. Int J Precis Eng Manuf Technol 2018 52 2018;5:327–39. https://doi.org/10.1007/S40684-018-0035-4.

  126. Gao, C., Wang, J., Xu, H., & Xiong, Y. (2017). Coordination chemistry in the design of heterogeneous photocatalysts. Chemical Society Reviews, 46, 2799–2823. https://doi.org/10.1039/C6CS00727A

    Article  Google Scholar 

  127. Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., & Matsumura, M. (2004). Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis, A, 265, 115–121. https://doi.org/10.1016/J.APCATA.2004.01.007

    Article  Google Scholar 

  128. Thompson, W. A., Fernandez, E. S., & Maroto-Valer, M. M. (2020). Review and Analysis of CO2 Photoreduction Kinetics. ACS Sustain Chem Eng, 8, 4677–4692. https://doi.org/10.1021/ACSSUSCHEMENG.9B06170

    Article  Google Scholar 

  129. Qi, J., Finzel, J., Robatjazi, H., Xu, M., Hoffman, A. S., Bare, S. R., et al. (2020). Selective methanol carbonylation to acetic acid on heterogeneous atomically dispersed ReO4/SiO2 catalysts. Journal of the American Chemical Society, 142, 14178–14189. https://doi.org/10.1021/JACS.0C05026/ASSET/IMAGES/LARGE/JA0C05026_0008.JPEG

    Article  Google Scholar 

  130. Liu DD-C, Ouyang T, Xiao R, Liu W-JW, Zhong D-C, Xu Z, et al. Anchoring CoII Ions into a Thiol-Laced Metal–Organic Framework for Efficient Visible-Light-Driven Conversion of CO2 into CO. ChemSusChem 2019;12:2166–70. https://doi.org/10.1002/CSSC.201900338.

  131. Han A, Li M, Zhang S, Zhu X, Han J, Ge Q, et al. Ti3+ Defective SnS2/TiO2 Heterojunction Photocatalyst for Visible-Light Driven Reduction of CO2 to CO with High Selectivity. Catal 2019, Vol 9, Page 927 2019;9:927. https://doi.org/10.3390/CATAL9110927.

  132. Wang, Y., Zeng, Y., Wan, S., Cai, W., Song, F., Zhang, S., et al. (2018). In situ fabrication of 3D octahedral g-C3N4/BiFeWOx double-heterojunction for highly selective CO2 photoreduction to CO under visible light. ChemCatChem, 10, 4578–4585. https://doi.org/10.1002/CCTC.201800959

    Article  Google Scholar 

  133. Bhosale, R., Jain, S., Prabhakaran Vinod, C., Kumar, S., Ogale, S., Vinod, C. P., et al. (2019). Direct Z-Scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic co2 reduction under visible light. ACS Applied Materials & Interfaces, 11, 6174–6183.

    Article  Google Scholar 

  134. Huang, S., Long, Y., Ruan, S., & Zeng, Y. J. (2019). Enhanced photocatalytic CO2 reduction in defect-engineered Z-scheme WO3-x/g-C3N4 heterostructures. ACS Omega, 4, 15593–15599. https://doi.org/10.1021/ACSOMEGA.9B01969/ASSET/IMAGES/LARGE/AO9B01969_0008.JPEG

    Article  Google Scholar 

  135. Yang Y, Wu J, Xiao T, Tang Z, Shen J, Li H, et al. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. Appl Catal B Environ 2019;255:117771. https://doi.org/10.1016/J.APCATB.2019.117771.

  136. Jiang, Y., Liao, J. F., Chen, H. Y., Zhang, H. H., Li, J. Y., Wang, X. D., et al. (2020). All-solid-state Z-scheme α-Fe2O3/Amine-RGO/CsPbBr 3 hybrids for visible-light-driven photocatalytic Co2 reduction. Chem, 6, 766–780. https://doi.org/10.1016/J.CHEMPR.2020.01.005

    Article  Google Scholar 

  137. Huang, H., Zhao, J., Du, Y., Zhou, C., Zhang, M., Wang, Z., et al. (2020). Direct Z-scheme heterojunction of semicoherent FAPbBr 3/Bi2Wo6 interface for photoredox reaction with large driving force. ACS Nano, 14, 16689–16697. https://doi.org/10.1021/ACSNANO.0C03146/ASSET/IMAGES/MEDIUM/NN0C03146_M005.GIF

    Article  Google Scholar 

  138. Tahir, B., Tahir, M., & Mohd Nawawi, M. G. (2020). Well-designed 3D/2D/2D WO3/Bt/g-C3N4Z-scheme heterojunction for tailoring photocatalytic CO2Methanation with 2D-layered bentonite-clay as the electron moderator under visible light. Energy and Fuels, 34, 14400–14418. https://doi.org/10.1021/ACS.ENERGYFUELS.0C02637/ASSET/IMAGES/LARGE/EF0C02637_0015.JPEG

    Article  Google Scholar 

  139. Lin Z dong, Guo R tang, Yuan Y, Ji X yin, Hong L fei, Pan W guo. Fabrication of flower spherical-like Z-scheme FeWO4/NiAl-LDH photocatalysts with excellent activity for CO2 photoreduction under visible light. Appl Surf Sci 2021;567:150805. https://doi.org/10.1016/J.APSUSC.2021.150805.

  140. Song H, Liu S, Sun Z, Han Y, Xu J, Xu Y, et al. Rational design of direct Z-scheme heterostructure NiCoP/ZIS for highly efficient photocatalytic hydrogen evolution under visible light irradiation. Sep Purif Technol 2021;275:119153. https://doi.org/10.1016/J.SEPPUR.2021.119153.

  141. Bi, J., Xu, B., Sun, L., Huang, H., Fang, S., Li, L., et al. (2019). A cobalt-modified covalent triazine-based framework as an efficient cocatalyst for visible-light-driven photocatalytic CO2 reduction. ChemPlusChem, 84, 1149–1154. https://doi.org/10.1002/CPLU.201900329

    Article  Google Scholar 

  142. Kozlova EA, Lyulyukin MN, Markovskaya D V., Selishchev DS, Cherepanova S V., Kozlov D V. Synthesis of Cd1 − xZnxS photocatalysts for gas-phase CO2 reduction under visible light. Photochem Photobiol Sci 2019 184 2020;18:871–7. https://doi.org/10.1039/C8PP00332G.

  143. Li, Y., Li, X., Fan, S., Mu, J., Yin, Z., Ma, H., et al. (2019). Facile tailoring of Co-based spinel hierarchical hollow microspheres for highly efficient catalytic conversion of CO2. Journal of Colloid and Interface Science, 552, 476–484. https://doi.org/10.1016/J.JCIS.2019.05.054

    Article  Google Scholar 

  144. Chen, L., Qin, Y., Chen, G., Li, M., Cai, L., Qiu, Y., et al. (2019). A molecular noble metal-free system for efficient visible light-driven reduction of CO2 to CO. Dalt Trans, 48, 9596–9602. https://doi.org/10.1039/C9DT00425D

    Article  Google Scholar 

  145. Fu Z-C, Moore JT, Liang F, Fu W-F, Li R, Chemcomm /, et al. Highly efficient photocatalytic reduction of CO2 to CO using cobalt oxide-coated spherical mesoporous silica particles as catalysts. Chem Commun 2019;55:11523–6. https://doi.org/10.1039/C9CC01861A.

  146. Li, M., Zhang, S., Liu, X., Han, J., Zhu, X., Ge, Q., et al. (2019). Polydopamine and barbituric acid Co-modified carbon nitride nanospheres for highly active and selective photocatalytic CO2 reduction. European Journal of Inorganic Chemistry, 2019, 2058–2064. https://doi.org/10.1002/EJIC.201801249

    Article  Google Scholar 

  147. Wang, L., Wan, J., Zhao, Y., Yang, N., & Wang, D. (2019). Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. Journal of the American Chemical Society, 141, 2238–2241. https://doi.org/10.1021/JACS.8B13528/ASSET/IMAGES/LARGE/JA-2018-13528W_0003.JPEG

    Article  Google Scholar 

  148. Dao, X. Y., Xie, X. F., Guo, J. H., Zhang, X. Y., Kang, Y. S., & Sun, W. Y. (2020). Boosting photocatalytic CO2Reduction efficiency by heterostructures of NH2-MIL-101(Fe)/g-C3N4. ACS Appl Energy Mater, 3, 3946–3954. https://doi.org/10.1021/ACSAEM.0C00352/ASSET/IMAGES/LARGE/AE0C00352_0008.JPEG

    Article  Google Scholar 

  149. Schukraft, G. E. M., Woodward, R. T., Kumar, S., Sachs, M., Eslava, S., & Petit, C. (2021). Hypercrosslinked polymers as a photocatalytic platform for visible-light-driven CO2 photoreduction using H2O. Chemsuschem, 14, 1720–1727. https://doi.org/10.1002/CSSC.202002824

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2022R1F1A1071156), by Nano·Material Technology Development Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning. (2009–0082580) and by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2022M3C1C3095083).

Author information

Authors and Affiliations

Authors

Contributions

Hazina Charles: Conceptualization and writing draft for Sects. 1, 3, 4, & 5 as well as overall compilation. Rajendra C. Pawar writing draft for Sects. 2, 3 & technical advices. Haritham Khan: writing draft for Sects. 2, 3 & technical advices. Caroline Sunyong Lee: Review and overall supervision.

Corresponding author

Correspondence to Caroline Sunyong Lee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no competing of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charles, H., Pawar, R.C., Khan, H. et al. Photocatalyst Engineering for Water-Based CO2 Reduction Under Visible Light Irradiation to Enhance CO Selectivity: A Review of Recent Advances. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 1061–1091 (2023). https://doi.org/10.1007/s40684-023-00511-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00511-w

Keywords

Navigation