Skip to main content
Log in

A review of photocatalytic CO2 reduction: exploring sustainable carbon emission mitigation from thermodynamics to kinetics and strategies for enhanced efficiency

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

To mitigate the increased CO2 emission, CO2 reduction to multi-carbon fuels or other useable substances is an appealing yet essential approach. Since, reduction of CO2 is a thermodynamically uphill process, an economical CO2 fixation is only achievable if energy source used is of renewable energy such as solar energy. Photocatalytic CO2 reduction is a complex process due to its dependency on catalyst design, selectivity, efficiency, and photostability. The competence of a photocatalytic CO2 reduction reaction is effected by factors, such as the type of photocatalyst used their band-gap energy, surface area, and structure of the crystal. This review discusses the kinetics and thermodynamics of photocatalytic CO2 reduction and considers the effects of parameters like defects and impurity doping on photocatalysis. The study also focusses on the selectivity of products, i.e., methane, methanol, formaldehyde, etc. This comprehensive review provides insights into the development and improvement of photocatalytic efficiency for CO2 photoreduction, contributing to the reduction of carbon emissions and a more sustainable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun, A short review of catalysis for CO2 conversion. Catal. Today 148, 221–231 (2009)

    Article  CAS  Google Scholar 

  2. Z. Sun, J. Dong, C. Chen, S. Zhang, Y. Zhu, Photocatalytic and electrocatalytic CO2 conversion: from fundamental principles to design of catalysts. J. Chem. Technol. Biotechnol. 96, 1161–1175 (2021)

    Article  CAS  Google Scholar 

  3. S. Zhang, Q. Fan, R. Xia, T.J. Meyer, CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 53, 255–264 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 57, 70–100 (2014)

    Article  Google Scholar 

  5. A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995)

    Article  CAS  Google Scholar 

  6. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu, X. Zhang, X. Shan, Y. Liu, Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: a review. Biores. Technol. 299, 122654 (2020)

    Article  CAS  Google Scholar 

  9. S. Dahl, I. Chorkendorff, Towards practical implementation. Nat. Mater. 11, 100–101 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. V.N.H. Nguyen, T.H. Nguyen, M.S. Lee, Review on the comparison of the chemical reactivity of Cyanex 272, Cyanex 301 and Cyanex 302 for their application to metal separation from acid media. Metals 10, 1105 (2020)

    Article  CAS  Google Scholar 

  11. S. Lingampalli, M.M. Ayyub, C. Rao, Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2, 2740–2748 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Sato, T. Arai, T. Morikawa, K. Uemura, T.M. Suzuki, H. Tanaka, T. Kajino, Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J. Am. Chem. Soc. 133, 15240–15243 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. S.-Y. Liu, A. Zada, X. Yu, F. Liu, G. Jin, NiFe2O4/g-C3N4 heterostructure with an enhanced ability for photocatalytic degradation of tetracycline hydrochloride and antibacterial performance. Chemosphere 307, 135717 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. Z. Liao, Y. Wu, S. Cao, S. Zhao, X. Yan, S. Yuan, K. Dong, J. Qin, C. Ou, J. Zhu, Facile engineering of PES ultrafiltration membranes using polyoxometalates for enhanced filtration and antifouling performance. Sep. Purif. Technol. 308, 122911 (2023)

    Article  CAS  Google Scholar 

  15. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. K. Maeda, K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007)

    Article  CAS  Google Scholar 

  17. P. Dhull, A. Sudhaik, V. Sharma, P. Raizada, V. Hasija, N. Gupta, T. Ahamad, V.-H. Nguyen, A. Kim, M. Shokouhimehr, An overview on InVO4-based photocatalysts: electronic properties, synthesis, enhancement strategies, and photocatalytic applications. Mol. Catal. 539, 113013 (2023)

    Article  CAS  Google Scholar 

  18. N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, Improved interfacial bonding of graphene-TiO2 with enhanced photocatalytic reduction of CO2 into solar fuel. J. Environ. Chem. Eng. 6, 6947–6957 (2018)

    Article  CAS  Google Scholar 

  19. L. Wei, C. Yu, Q. Zhang, H. Liu, Y. Wang, TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J. Mater. Chem. A 6, 22411–22436 (2018)

    Article  CAS  Google Scholar 

  20. J. Cai, F. Shen, Z. Shi, Y. Lai, J. Sun, Nanostructured TiO2 for light-driven CO2 conversion into solar fuels. APL Mater. 8, 1 (2020)

    Article  ADS  Google Scholar 

  21. X. Yu, V.V. Ordomsky, A.Y. Khodakov, Selective deposition of cobalt and copper oxides on BiVO4 facets for enhancement of CO2 photocatalytic reduction to hydrocarbons. ChemCatChem 12, 740–749 (2020)

    Article  CAS  Google Scholar 

  22. X. Wang, Y. Wang, M. Gao, J. Shen, X. Pu, Z. Zhang, H. Lin, X. Wang, BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Appl. Catal. B 270, 118876 (2020)

    Article  CAS  Google Scholar 

  23. X. Li, D. Wei, L. Ye, Z. Li, Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light. Inorg. Chem. Commun. 104, 171–177 (2019)

    Article  ADS  CAS  Google Scholar 

  24. B. Han, X. Ou, Z. Deng, Y. Song, C. Tian, H. Deng, Y.J. Xu, Z. Lin, Nickel metal–organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity. Angew. Chem. Int. Ed. 57, 16811–16815 (2018)

    Article  CAS  Google Scholar 

  25. K. Song, X. Qiu, B. Han, S. Liang, Z. Lin, Efficient upcycling electroplating sludge and waste PET into Ni-MOF nanocrystals for the effective photoreduction of CO2. Environ. Sci. Nano 8, 390–398 (2021)

    Article  CAS  Google Scholar 

  26. H.-N. Wang, H.-X. Sun, Y.-M. Fu, X. Meng, Y.-H. Zou, Y.-O. He, R.-G. Yang, Varied proton conductivity and photoreduction CO2 performance of isostructural heterometallic cluster based metal–organic frameworks. Inorgan. Chem. Front. 8, 4062–4071 (2021)

    Article  CAS  Google Scholar 

  27. M. Que, Y. Zhao, Y. Yang, L. Pan, W. Lei, W. Cai, H. Yuan, J. Chen, G. Zhu, Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 13, 6180–6187 (2021)

    Article  CAS  PubMed  Google Scholar 

  28. K. Ren, S. Yue, C. Li, Z. Fang, K.A. Gasem, J. Leszczynski, S. Qu, Z. Wang, M. Fan, Metal halide perovskites for photocatalysis applications. J. Mater. Chem. A 10, 407–429 (2022)

    Article  CAS  Google Scholar 

  29. S. Park, S. Choi, S. Kim, K.T. Nam, Metal halide perovskites for solar fuel production and photoreactions. J. Phys. Chem. Lett. 12, 8292–8301 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Cui, P. Ge, M. Chen, L. Xu, Research progress in semiconductor materials with application in the photocatalytic reduction of CO2. Catalysts 12, 372 (2022)

    Article  CAS  Google Scholar 

  31. R. Sharma, M. Khanuja, S.N. Sharma, O.P. Sinha, Reduced band gap & charge recombination rate in Se doped α-Bi2O3 leads to enhanced photoelectrochemical and photocatalytic performance: theoretical and experimental insight. Int. J. hydrog. Energy 42, 20638–20648 (2017)

    Article  CAS  Google Scholar 

  32. J. Xiong, M. Zhang, M. Lu, K. Zhao, C. Han, G. Cheng, Z. Wen, Achieving simultaneous Cu particles anchoring in meso-porous TiO2 nanofabrication for enhancing photo-catalytic CO2 reduction through rapid charge separation. Chin. Chem. Lett. 33, 1313–1316 (2022)

    Article  CAS  Google Scholar 

  33. H. Yu, J. Huang, L. Jiang, X. Yuan, K. Yi, W. Zhang, J. Zhang, H. Chen, Steering photo-excitons towards active sites: intensified substrates affinity and spatial charge separation for photocatalytic molecular oxygen activation and pollutant removal. Chem. Eng. J. 408, 127334 (2021)

    Article  CAS  Google Scholar 

  34. F. Khodabandeloo, S. Shahsavarifar, B. Nayebi, K.P. Niavol, B. Nayebi, R.S. Varma, J.H. Cha, H.W. Jang, D. Kim, M. Shokouhimehr, Applications of nanostructured semiconductor photocatalysts for the decontamination of assorted pollutants from wastewater. Inorgan. Chem. Commun. 2023, 111357 (2023)

    Article  Google Scholar 

  35. M. Zhu, X. Zhang, H. Feng, J. Dai, J. Li, Q. Che, Q. Gu, T. Zhu, D. Li, Penicisulfuranols A–F, alkaloids from the mangrove endophytic fungus Penicillium janthinellum HDN13-309. J. Nat. Prod. 80, 71–75 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. H. Maleki-Ghaleh, M. Shakeri, Z. Dargahi, M. Kavanlouei, H.K. Garabagh, E. Moradpur-Tari, A. Yourdkhani, A. Fallah, A. Zarrabi, B. Koç, Characterization and optical properties of mechanochemically synthesized molybdenum-doped rutile nanoparticles and their electronic structure studies by density functional theory. Mater. Today Chem. 24, 100820 (2022)

    Article  CAS  Google Scholar 

  37. N.U.M. Nor, E. Mazalan, C. Risko, M. Crocker, N.A.S. Amin, Unveiling the structural, electronic, and optical effects of carbon-doping on multi-layer anatase TiO2 (1 0 1) and the impact on photocatalysis. Appl. Surf. Sci. 586, 152641 (2022)

    Article  CAS  Google Scholar 

  38. C. Feng, Z. Chen, W. Li, F. Zhang, X. Li, L. Xu, M. Sun, First-principle calculation of the electronic structures and optical properties of the metallic and nonmetallic elements-doped ZnO on the basis of photocatalysis. Physica B 555, 53–60 (2019)

    Article  ADS  CAS  Google Scholar 

  39. M. Kapilashrami, Y. Zhang, Y.-S. Liu, A. Hagfeldt, J. Guo, Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114, 9662–9707 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. S. Xu, E.A. Carter, Theoretical insights into heterogeneous (photo) electrochemical CO2 reduction. Chem. Rev. 119, 6631–6669 (2018)

    Article  PubMed  Google Scholar 

  41. H. Yang, F. Teng, W. Gu, Z. Liu, Y. Zhao, A. Zhang, Z. Liu, Y. Teng, A simple post-synthesis conversion approach to Zn (OH) F and the effects of fluorine and hydroxyl on the photodegradation properties of dye wastewater. J. Hazard. Mater. 333, 250–258 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. Z. Zhang, L. Wang, W. Liu, Z. Yan, Y. Zhu, S. Zhou, S. Guan, Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. Natl. Sci. Rev. 8, naa155 (2021)

    Article  Google Scholar 

  43. I. Okeke, C. Okeke, Molecular docking and analysis of in silico generated ligands against SARS-CoV-2 spike and replicase proteins (2022). https://doi.org/10.21203/rs.3.rs-2069911/v1.

  44. C.O.L. Mbuya, C.G. Okoye-Chine, K. Ramutsindela, L.L. Jewell, M. Scurrell, Microwave modification of iron supported on beta silicon carbide catalysts for Fischer–Tropsch synthesis. React. Chem. Eng. 7, 1307–1314 (2022)

    Article  CAS  Google Scholar 

  45. R. Gandhi, A. Moses, S.S. Baral, Fundamental study of the photocatalytic reduction of CO2: a short review of thermodynamics, kinetics and mechanisms. Chem. Process. Eng. 43, 223–228 (2022)

    CAS  Google Scholar 

  46. T. Mavrič, Synthesis and characterization of metal/semiconductor nanocomposites for photocatalysis (Univerza v Novi Gorici, Fakulteta za podiplomski študij, 2017)

    Google Scholar 

  47. H. Liang, H. Zhang, P. Zhao, X. Zhao, H. Sun, Z. Geng, D. She, Synthesis of a novel three-dimensional porous carbon material and its highly selective Cr(VI) removal in wastewater. J. Clean. Prod. 306, 127204 (2021)

    Article  CAS  Google Scholar 

  48. J.R. Bolton, Solar fuels: the production of energy-rich compounds by the photochemical conversion and storage of solar energy. Science 202, 705–711 (1978)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. J.-M. Lehn, R. Ziessel, Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc. Natl. Acad. Sci. 79, 701–704 (1982)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. X. Tan, Y. Jiang, Y. Chen, A. Tong, J. Li, Y. Sun, Roles of different components of complex inclusion in pitting of 321 stainless steel: induction effect of CaS and inhibition effect of TiN. Corros. Sci. 209, 110692 (2022)

    Article  CAS  Google Scholar 

  51. G. Yasin, S. Ibraheem, S. Ali, M. Arif, S. Ibrahim, R. Iqbal, A. Kumar, M. Tabish, M. Mushtaq, A. Saad, Defects-engineered tailoring of tri-doped interlinked metal-free bifunctional catalyst with lower Gibbs free energy of OER/HER intermediates for overall water splitting. Mater. Today Chem. 23, 100634 (2022)

    Article  CAS  Google Scholar 

  52. X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13, 169–189 (2012)

    Article  CAS  Google Scholar 

  54. A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  CAS  Google Scholar 

  55. A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia, Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 5, 9217–9233 (2012)

    Article  CAS  Google Scholar 

  56. V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2, 745–758 (2009)

    Article  CAS  Google Scholar 

  57. T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637–638 (1979)

    Article  ADS  CAS  Google Scholar 

  58. J. Nunez, P. Jana, J.M. Coronado, D.P. Serrano, Effect of copper on the performance of ZnO and ZnO1xNx oxides as CO2 photoreduction catalysts. Catal. Today 209, 21–27 (2013)

    Article  CAS  Google Scholar 

  59. G. Xi, S. Ouyang, J. Ye, General synthesis of hybrid TiO2 mesoporous “French fries” toward improved photocatalytic conversion of CO2 into hydrocarbon fuel: a case of TiO2/ZnO. Chem. A Eur. J. 17, 9057–9061 (2011)

    Article  CAS  Google Scholar 

  60. G. Guan, T. Kida, A. Yoshida, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl. Catal. B 41, 387–396 (2003)

    Article  CAS  Google Scholar 

  61. G. Mahmodi, S. Sharifnia, F. Rahimpour, S. Hosseini, Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: effect of operational parameters and optimization. Sol. Energy Mater. Sol. Cells 111, 31–40 (2013)

    Article  CAS  Google Scholar 

  62. H. Inoue, H. Moriwaki, K. Maeda, H. Yoneyama, Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals. J. Photochem. Photobiol. A 86, 191–196 (1995)

    Article  CAS  Google Scholar 

  63. H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, Surface characteristics of ZnS nanocrystallites relating to their photocatalysis for CO2 reduction1. Langmuir 14, 5154–5159 (1998)

    Article  CAS  Google Scholar 

  64. K. Kočí, M. Reli, O. Kozák, Z. Lacný, D. Plachá, P. Praus, L. Obalová, Influence of reactor geometry on the yield of CO2 photocatalytic reduction. Catal. Today 176, 212–214 (2011)

    Article  Google Scholar 

  65. H. Zhou, J. Guo, P. Li, T. Fan, D. Zhang, J. Ye, Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 3, 1667 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. B. Aurian-Blajeni, M. Halmann, J. Manassen, Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Sol. Energy 25, 165–170 (1980)

    Article  ADS  CAS  Google Scholar 

  67. D. Sui, X. Yin, H. Dong, S. Qin, J. Chen, W. Jiang, Photocatalytically reducing CO2 to methyl formate in methanol over Ag loaded SrTiO3 nanocrystal catalysts. Catal. Lett. 142, 1202–1210 (2012)

    Article  CAS  Google Scholar 

  68. W.-H. Lee, C.-H. Liao, M.-F. Tsai, C.-W. Huang, J.C. Wu, A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis. Appl. Catal. B 132, 445–451 (2013)

    Article  Google Scholar 

  69. S. Yamamura, H. Kojima, J. Iyoda, W. Kawai, Formation of ethyl alcohol in the photocatalytic reduction of carbon dioxide by SiC and ZnSe/metal powders. J. Electroanal. Chem. Interfacial Electrochem. 225, 287–290 (1987)

    Article  CAS  Google Scholar 

  70. H. Li, Y. Lei, Y. Huang, Y. Fang, Y. Xu, L. Zhu, X. Li, Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. J. Nat. Gas Chem. 20, 145–150 (2011)

    Article  CAS  Google Scholar 

  71. T.-C. Yang, F.-C. Chang, C.-Y. Peng, H.P. Wang, Y.-L. Wei, Photocatalytic reduction of CO2 with SiC recovered from silicon sludge wastes. Environ. Technol. 36, 2987–2990 (2015)

    Article  CAS  PubMed  Google Scholar 

  72. Y. Li, W.-N. Wang, Z. Zhan, M.-H. Woo, C.-Y. Wu, P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl. Catal. B 100, 386–392 (2010)

    Article  CAS  Google Scholar 

  73. I.-H. Tseng, W.-C. Chang, J.C. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B 37, 37–48 (2002)

    Article  CAS  Google Scholar 

  74. Y. Bessekhouad, D. Robert, J.-V. Weber, Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal. Today 101, 315–321 (2005)

    Article  CAS  Google Scholar 

  75. D. Robert, Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catal. Today 122, 20–26 (2007)

    Article  CAS  Google Scholar 

  76. H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, T. Okada, H. Kobayashi, Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites. J. Phys. Chem. B 101, 8270–8278 (1997)

    Article  CAS  Google Scholar 

  77. B.-J. Liu, T. Torimoto, H. Yoneyama, Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J. Photochem. Photobiol. A 113, 93–97 (1998)

    Article  CAS  Google Scholar 

  78. X. Li, J. Chen, H. Li, J. Li, Y. Xu, Y. Liu, J. Zhou, Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation. J. Nat. Gas Chem. 20, 413–417 (2011)

    Article  CAS  Google Scholar 

  79. P. Praus, O. Kozák, K. Kočí, A. Panáček, R. Dvorský, CdS nanoparticles deposited on montmorillonite: preparation, characterization and application for photoreduction of carbon dioxide. J. Colloid Interface Sci. 360, 574–579 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Y.S. Chaudhary, T.W. Woolerton, C.S. Allen, J.H. Warner, E. Pierce, S.W. Ragsdale, F.A. Armstrong, Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem. Commun. 48, 58–60 (2012)

    Article  CAS  Google Scholar 

  81. X. Li, H. Liu, D. Luo, J. Li, Y. Huang, H. Li, Y. Fang, Y. Xu, L. Zhu, Adsorption of CO2 on heterostructure CdS (Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J. 180, 151–158 (2012)

    Article  CAS  Google Scholar 

  82. E.E. Barton, D.M. Rampulla, A.B. Bocarsly, Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344 (2008)

    Article  CAS  PubMed  Google Scholar 

  83. K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J. Am. Chem. Soc. 135, 4596–4599 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. M. Hara, J. Nunoshige, T. Takata, J.N. Kondo, K. Domen, Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chem. Commun. 2003, 3000–3001 (2003)

    Article  Google Scholar 

  85. E.S. Kim, N. Nishimura, G. Magesh, J.Y. Kim, J.-W. Jang, H. Jun, J. Kubota, K. Domen, J.S. Lee, Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 135, 5375–5383 (2013)

    Article  CAS  PubMed  Google Scholar 

  86. K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858–5868 (2010)

    Article  CAS  PubMed  Google Scholar 

  87. J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal. Sci. Technol. 3, 1253–1260 (2013)

    Article  CAS  Google Scholar 

  88. J. Yu, S. Wang, B. Cheng, Z. Lin, F. Huang, Noble metal-free Ni (OH) 2–gC3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catal. Sci. Technol. 3, 1782–1789 (2013)

    Article  CAS  Google Scholar 

  89. J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X. Fu, M. Antonietti, X. Wang, Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. 49, 441–444 (2010)

    Article  CAS  Google Scholar 

  90. A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett. 53, 229–230 (1998)

    Article  CAS  Google Scholar 

  91. A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999)

    Article  CAS  Google Scholar 

  92. S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 13, 4624–4628 (2001)

    Article  CAS  Google Scholar 

  93. H. Jiang, H. Dai, X. Meng, K. Ji, L. Zhang, J. Deng, Porous olive-like BiVO4: alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol. Appl. Catal. B 105, 326–334 (2011)

    Article  CAS  Google Scholar 

  94. H. Jiang, X. Meng, H. Dai, J. Deng, Y. Liu, L. Zhang, Z. Zhao, R. Zhang, High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. J. Hazard. Mater. 217, 92–99 (2012)

    Article  PubMed  Google Scholar 

  95. W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J.N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen, Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798–1803 (2003)

    Article  CAS  Google Scholar 

  96. M. Higashi, K. Domen, R. Abe, Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ. Sci. 4, 4138–4147 (2011)

    Article  CAS  Google Scholar 

  97. Y. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota, K. Domen, Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv. Mater. 25, 125–131 (2013)

    Article  CAS  PubMed  Google Scholar 

  98. S.S.K. Ma, T. Hisatomi, K. Maeda, Y. Moriya, K. Domen, Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J. Am. Chem. Soc. 134, 19993–19996 (2012)

    Article  CAS  PubMed  Google Scholar 

  99. X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde, Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J. Catal. 260, 128–133 (2008)

    Article  CAS  Google Scholar 

  100. D. Jiang, Y. Xu, D. Wu, Y. Sun, Isocyanate-modified TiO2 visible-light-activated photocatalyst. Appl. Catal. B 88, 165–172 (2009)

    Article  CAS  Google Scholar 

  101. K. Villa, A. Black, X. Domenech, J. Peral, Nitrogen doped TiO2 for hydrogen production under visible light irradiation. Sol. Energy 86, 558–566 (2012)

    Article  ADS  CAS  Google Scholar 

  102. S. Qin, S.L. Chan, S. Gu, Y. Bai, Z. Ren, X. Lin, Z. Chen, W. Jia, Y. Jin, Y. Guo, Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. The Lancet 402, 1133–1146 (2023)

    Article  CAS  Google Scholar 

  103. Y. Zou, S. Wang, An investigation of active sites for electrochemical CO2 reduction reactions: from in situ characterization to rational design. Adv. Sci. 8, 2003579 (2021)

    Article  CAS  Google Scholar 

  104. M. Dunwell, W. Luc, Y. Yan, F. Jiao, B. Xu, Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond. ACS Catal. 8, 8121–8129 (2018)

    Article  CAS  Google Scholar 

  105. A.J. Morris, G.J. Meyer, E. Fujita, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42, 1983–1994 (2009)

    Article  CAS  PubMed  Google Scholar 

  106. Z. Yu, K. Zheng, X. Li, P. Xia, J. Xu, J. Sun, N. Zhou, F. Pan, Effect of Ti6Al4V reinforcement particles on the mechanical, wear, and corrosion properties of AZ91D magnesium matrix composites. J. Market. Res. 26, 7395–7411 (2023)

    CAS  Google Scholar 

  107. I. Willner, R. Maidan, D. Mandler, H. Duerr, G. Doerr, K. Zengerle, Photosensitized reduction of carbon dioxide to methane and hydrogen evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution. J. Am. Chem. Soc. 109, 6080–6086 (1987)

    Article  CAS  Google Scholar 

  108. A. Yahaya, M. Gondal, A. Hameed, Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem. Phys. Lett. 400, 206–212 (2004)

    Article  ADS  CAS  Google Scholar 

  109. W.A. Thompson, E. Sanchez Fernandez, M.M. Maroto-Valer, Review and analysis of CO2 photoreduction kinetics. ACS Sustain. Chem. Eng. 8, 4677–4692 (2020)

    Article  CAS  Google Scholar 

  110. M. Tahir, N.S. Amin, Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor. Chem. Eng. J. 230, 314–327 (2013)

    Article  CAS  Google Scholar 

  111. L.-L. Tan, W.-J. Ong, S.-P. Chai, A.R. Mohamed, Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: process and kinetic studies. Chem. Eng. J. 308, 248–255 (2017)

    Article  CAS  Google Scholar 

  112. A. Khalilzadeh, A. Shariati, Photoreduction of CO2 over heterogeneous modified TiO2 nanoparticles under visible light irradiation: synthesis, process and kinetic study. Sol. Energy 164, 251–261 (2018)

    Article  ADS  CAS  Google Scholar 

  113. S. Delavari, N.A.S. Amin, Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: optimization and kinetic study. Appl. Energy 162, 1171–1185 (2016)

    Article  ADS  CAS  Google Scholar 

  114. M. Tahir, N.S. Amin, Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl. Catal. B 162, 98–109 (2015)

    Article  CAS  Google Scholar 

  115. J.C. Wu, H.-M. Lin, C.-L. Lai, Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl. Catal. A 296, 194–200 (2005)

    Article  CAS  Google Scholar 

  116. Y. Ku, W.-H. Lee, W.-Y. Wang, Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process. J. Mol. Catal. A: Chem. 212, 191–196 (2004)

    Article  CAS  Google Scholar 

  117. S. Jain, G. Dangi, J. Vardia, S.C. Ameta, Photocatalytic reduction of some alkali carbonates in the presence of methylene blue. Int. J. Energy Res. 23, 71–77 (1999)

    Article  CAS  Google Scholar 

  118. J. Ran, M. Jaroniec, S.Z. Qiao, Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 30, 1704649 (2018)

    Article  Google Scholar 

  119. J. Ângelo, L. Andrade, L.M. Madeira, A. Mendes, An overview of photocatalysis phenomena applied to NOx abatement. J. Environ. Manag. 129, 522–539 (2013)

    Article  Google Scholar 

  120. H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 112, 5919–5948 (2012)

    Article  CAS  PubMed  Google Scholar 

  121. S. Nahar, M. Zain, A.A.H. Kadhum, H.A. Hasan, M.R. Hasan, Advances in photocatalytic CO2 reduction with water: a review. Materials 10, 629 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  122. J.M. Luo, C.F. Lam, Travel anxiety, risk attitude and travel intentions towards “travel bubble” destinations in Hong Kong: effect of the fear of COVID-19. Int. J. Environ. Res. Public Health 17, 7859 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. M. Cheng, P. He, L. Lei, X. Tan, X. Wang, Y. Sun, J. Li, Y. Jiang, Comparative studies on microstructure evolution and corrosion resistance of 304 and a newly developed high Mn and N austenitic stainless steel welded joints. Corros. Sci. 183, 109338 (2021)

    Article  CAS  Google Scholar 

  124. W. Fan, Q. Zhang, Y. Wang, Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys. 15, 2632–2649 (2013)

    Article  CAS  PubMed  Google Scholar 

  125. S. Shen, J. Shi, P. Guo, L. Guo, Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 8, 523–591 (2011)

    Article  ADS  CAS  Google Scholar 

  126. P. Rajesh, F.H. Shajin, B.N. Kommula, An efficient integration and control approach to increase the conversion efficiency of high-current low-voltage DC/DC converter. Energy Syst. 13, 939–958 (2022)

    Article  Google Scholar 

  127. J. Yu, J. Jin, B. Cheng, M. Jaroniec, A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A 2, 3407–3416 (2014)

    Article  CAS  Google Scholar 

  128. J. Lin, Z. Pan, X. Wang, Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustain. Chem. Eng. 2, 353–358 (2014)

    Article  CAS  Google Scholar 

  129. J. Yu, K. Wang, W. Xiao, B. Cheng, Photocatalytic reduction of CO2 into hydrocarbon solar fuels over gC3N4–Pt nanocomposite photocatalysts. Phys. Chem. Chem. Phys. 16, 11492–11501 (2014)

    Article  CAS  PubMed  Google Scholar 

  130. Y. Liu, Z. Wang, B. Huang, Y. Dai, X. Qin, X. Zhang, Microstructure modulation of semiconductor photocatalysts for CO2 reduction. Curr. Org. Chem. 18, 620–628 (2014)

    Article  CAS  Google Scholar 

  131. Y.P. Xie, G. Liu, L. Yin, H.-M. Cheng, Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J. Mater. Chem. 22, 6746–6751 (2012)

    Article  CAS  Google Scholar 

  132. Y. Matsumoto, Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J. Solid State Chem. 126, 227–234 (1996)

    Article  ADS  CAS  Google Scholar 

  133. L. Jia, J. Li, W. Fang, Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide. Catal. Commun. 11, 87–90 (2009)

    Article  CAS  Google Scholar 

  134. Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, M.-H. Whangbo, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal. Commun. 11, 210–213 (2009)

    Article  CAS  Google Scholar 

  135. J. Mao, T. Peng, X. Zhang, K. Li, L. Zan, Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catal. Commun. 28, 38–41 (2012)

    Article  CAS  Google Scholar 

  136. Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, J. Gao, S. Yan, Z. Zou, High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces 3, 3594–3601 (2011)

    Article  CAS  PubMed  Google Scholar 

  137. H. Cheng, B. Huang, Y. Liu, Z. Wang, X. Qin, X. Zhang, Y. Dai, An anion exchange approach to Bi2 WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem. Commun. 48, 9729–9731 (2012)

    Article  CAS  Google Scholar 

  138. P. Li, Y. Zhou, W. Tu, Q. Liu, S. Yan, Z. Zou, Direct growth of Fe2V4O13 nanoribbons on a stainless-steel mesh for visible-light photoreduction of CO2 into renewable hydrocarbon fuel and degradation of gaseous isopropyl alcohol. ChemPlusChem 78, 274–278 (2013)

    Article  CAS  Google Scholar 

  139. Z.-Y. Wang, H.-C. Chou, J.C. Wu, D.P. Tsai, G. Mul, CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Appl. Catal. A 380, 172–177 (2010)

    Article  CAS  Google Scholar 

  140. P.-W. Pan, Y.-W. Chen, Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catal. Commun. 8, 1546–1549 (2007)

    Article  CAS  Google Scholar 

  141. H.-C. Chen, H.-C. Chou, J.C. Wu, H.-Y. Lin, Sol–gel prepared InTaO4 and its photocatalytic characteristics. J. Mater. Res. 23, 1364–1370 (2008)

    Article  ADS  CAS  Google Scholar 

  142. C.-W. Tsai, H.M. Chen, R.-S. Liu, K. Asakura, T.-S. Chan, Ni@ NiO core–shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol. J. Phys. Chem. C 115, 10180–10186 (2011)

    Article  CAS  Google Scholar 

  143. W. Shi, M. Laabs, M. Reinmoeller, L. Kong, S.V. Vassilev, S. Guhl, J. Bai, B. Meyer, W. Li, The fusion mechanism of complex minerals mixture and prediction model for flow temperature of coal ash for gasification. Fuel 305, 121448 (2021)

    Article  CAS  Google Scholar 

  144. S. Li, Y. Wu, H. Zheng, H. Li, Y. Zheng, J. Nan, J. Ma, D. Nagarajan, J.-S. Chang, Antibiotics degradation by advanced oxidation process (AOPs): recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. Chemosphere 311, 136977 (2023)

    Article  CAS  PubMed  Google Scholar 

  145. N. Serpone, A. Emeline, Semiconductor Photocatalysis—Past, Present, and Future Outlook (ACS Publications, London, 2012), pp.673–677

    Google Scholar 

  146. J.-X. Wang, Y. Zhao, M.-S. Chen, H. Zhang, J.-G. Cui, J.-L. Li, Heme-oxygenase-1 as a target for phthalate-induced cardiomyocytes ferroptosis. Environ. Pollut. 317, 120717 (2023)

    Article  CAS  PubMed  Google Scholar 

  147. L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B 140, 559–587 (2013)

    Article  Google Scholar 

  148. R. Huang, J. Wu, M. Zhang, B. Liu, Z. Zheng, D. Luo, Strategies to enhance photocatalytic activity of graphite carbon nitride-based photocatalysts. Mater. Des. 210, 110040 (2021)

    Article  CAS  Google Scholar 

  149. F.A. Qaraah, S.A. Mahyoub, Q.A. Drmosh, A. Qaraah, F. Xin, One-step fabrication of unique 3D/2D S, O-doped g-C3N4 S-scheme isotype heterojunction for boosting CO2 photoreduction. Mater. Today Sustain. 23, 100437 (2023)

    Article  Google Scholar 

  150. N. Serpone, Is the Band Gap of Pristine TiO2 Narrowed by Anion-and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? (ACS Publications, London, 2006), pp. 24287–24293.

  151. S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M. Jyothi, A. Raghu, K.R. Reddy, Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrog. Energy 44, 13022–13039 (2019)

    Article  CAS  Google Scholar 

  152. N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency. J. CO2 Util. 26, 98–122 (2018).

  153. Y. Yan, Y. Yu, S. Huang, Y. Yang, X. Yang, S. Yin, Y. Cao, Adjustment and matching of energy band of TiO2-based photocatalysts by metal ions (Pd, Cu, Mn) for photoreduction of CO2 into CH4. J. Phys. Chem. C 121, 1089–1098 (2017)

    Article  CAS  Google Scholar 

  154. Y. Sohn, W. Huang, F. Taghipour, Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials. Appl. Surf. Sci. 396, 1696–1711 (2017)

    Article  ADS  CAS  Google Scholar 

  155. J. Jiao, Y. Wei, K. Chi, Z. Zhao, A. Duan, J. Liu, G. Jiang, Y. Wang, X. Wang, C. Han, Platinum nanoparticles supported on TiO2 photonic crystals as highly active photocatalyst for the reduction of CO2 in the presence of water. Energ. Technol. 5, 877–883 (2017)

    Article  CAS  Google Scholar 

  156. M. Tahir, B. Tahir, N.A.S. Amin, H. Alias, Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst. Appl. Surf. Sci. 389, 46–55 (2016)

    Article  ADS  CAS  Google Scholar 

  157. B. Yu, Y. Zhou, P. Li, W. Tu, P. Li, L. Tang, J. Ye, Z. Zou, Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale 8, 11870–11874 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  158. M. Tahir, B. Tahir, N.A.S. Amin, A. Muhammad, Photocatalytic CO2 methanation over NiO/In2O3 promoted TiO2 nanocatalysts using H2O and/or H2 reductants. Energy Convers. Manag. 119, 368–378 (2016)

    Article  CAS  Google Scholar 

  159. X. Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang, J. Ye, Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem. Commun. 50, 11517–11519 (2014)

    Article  CAS  Google Scholar 

  160. L. Collado, A. Reynal, J. Coronado, D. Serrano, J. Durrant, V. De la Peña O'Shea, Effect of Au surface plasmon nanoparticles on the selective CO2 photoreduction to CH4. Appl. Catal. B Environ. 178, 177–185 (2015).

  161. Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, S. Yoshida, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J. Photochem. Photobiol. A 126, 117–123 (1999)

    Article  CAS  Google Scholar 

  162. Y.T. Liang, B.K. Vijayan, O. Lyandres, K.A. Gray, M.C. Hersam, Effect of dimensionality on the photocatalytic behavior of carbon–titania nanosheet composites: charge transfer at nanomaterial interfaces. J. Phys. Chem. Lett. 3, 1760–1765 (2012)

    Article  CAS  PubMed  Google Scholar 

  163. J.F. de Brito, M.V.B. Zanoni, On the application of Ti/TiO2/CuO np junction semiconductor: a case study of electrolyte, temperature and potential influence on CO2 reduction. Chem. Eng. J. 318, 264–271 (2017)

    Article  Google Scholar 

  164. J. Fan, E.-Z. Liu, L. Tian, X.-Y. Hu, Q. He, T. Sun, Synergistic effect of N and Ni2+ on nanotitania in photocatalytic reduction of CO2. J. Environ. Eng. 137, 171–176 (2011)

    Article  CAS  Google Scholar 

  165. A. Sharma, B.-K. Lee, Photocatalytic reduction of carbon dioxide to methanol using nickel-loaded TiO2 supported on activated carbon fiber. Catal. Today 298, 158–167 (2017)

    Article  CAS  Google Scholar 

  166. X. Li, Q. Wang, Y. Zhao, W. Wu, J. Chen, H. Meng, Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites. J. Colloid Interface Sci. 411, 69–75 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  167. Q. Zhang, C.-F. Lin, Y.H. Jing, C.-T. Chang, Photocatalytic reduction of carbon dioxide to methanol and formic acid by graphene-TiO2. J. Air Waste Manag. Assoc. 64, 578–585 (2014)

    Article  CAS  PubMed  Google Scholar 

  168. K. Thamaraiselvi, T. Sivakumar, Photocatalytic reduction of carbon dioxide by using bare and copper oxide impregnated nano titania catalysts. J. Nanosci. Nanotechnol. 17, 313–322 (2017)

    Article  CAS  PubMed  Google Scholar 

  169. T. Zhang, J. Low, X. Huang, J.F. Al-Sharab, J. Yu, T. Asefa, Copper-decorated microsized nanoporous titanium dioxide photocatalysts for carbon dioxide reduction by water. ChemCatChem 9, 3054–3062 (2017)

    Article  CAS  Google Scholar 

  170. G. Xi, S. Ouyang, P. Li, J. Ye, Q. Ma, N. Su, H. Bai, C. Wang, Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem. Int. Ed. 51, 2395–2399 (2012)

    Article  CAS  Google Scholar 

  171. X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5, 3601–3614 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  172. M. Huang, T. Tang, P. Pang, M. Li, R. Ma, J. Lu, J. Shu, Y. You, B. Chen, J. Liang, Treating COVID-19 with chloroquine. J. Mol. Cell Biol. 12, 322–325 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. L. Liu, H. Zhao, J.M. Andino, Y. Li, Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2, 1817–1828 (2012)

    Article  CAS  Google Scholar 

  174. D.R. Eddy, M.D. Permana, L.K. Sakti, G.A.N. Sheha, Solihudin, S. Hidayat, T. Takei, N. Kumada, I. Rahayu, Heterophase polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for efficient photocatalyst: fabrication and activity. Nanomaterials 13 (2023) 704.

  175. G. Tompsett, G. Bowmaker, R. Cooney, J. Metson, K. Rodgers, J. Seakins, The Raman spectrum of brookite, TiO2 (PBCA, Z = 8). J. Raman Spectrosc. 26, 57–62 (1995)

    Article  ADS  CAS  Google Scholar 

  176. A. Beltran, L. Gracia, J. Andres, Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. J. Phys. Chem. B 110, 23417–23423 (2006)

    Article  CAS  PubMed  Google Scholar 

  177. Z. Li, S. Cong, Y. Xu, Brookite vs anatase TiO2 in the photocatalytic activity for organic degradation in water. ACS Catal. 4, 3273–3280 (2014)

    Article  CAS  Google Scholar 

  178. Z. Zhang, Y. Li, J. Shi, L. Zhu, Y. Dai, P. Fu, S. Liu, M. Hong, J. Zhang, J. Wang, Lymphocyte-related immunomodulatory therapy with siponimod (BAF-312) improves outcomes in mice with acute intracerebral hemorrhage. Aging Dis. 14, 966 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  179. B.A. Malla, S. Ramanjeneya, J. Vergis, S.S. Malik, S.B. Barbuddhe, D.B. Rawool, Comparison of recombinant and synthetic listeriolysin-O peptide-based indirect ELISA vis-à-vis cultural isolation for detection of listeriosis in caprine and ovine species. J. Microbiol. Methods 188, 106278 (2021)

    Article  CAS  PubMed  Google Scholar 

  180. A.S. Malik, H. Bali, F. Czirok, Á. Szamosvölgyi, G. Halasi, A. Efremova, B. Šmíd, A. Sápi, Á. Kukovecz, Z. Kónya, Turning CO2 to CH4 and CO over CeO2 and MCF-17 supported Pt, Ru and Rh nanoclusters—influence of nanostructure morphology, supporting materials and operating conditions. Fuel 326, 124994 (2022)

    Article  CAS  Google Scholar 

  181. F. Bibi, M.I. Ali, M. Ahmad, A. Bokhari, K.S. Khoo, M. Zafar, S. Asif, M. Mubashir, N. Han, P.L. Show, Production of lipids biosynthesis from Tetradesmus nygaardii microalgae as a feedstock for biodiesel production. Fuel 326, 124985 (2022)

    Article  CAS  Google Scholar 

  182. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.-E. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  183. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  184. K. Thodkar, F. Gramm, Enhanced mobility in suspended chemical vapor-deposited graphene field-effect devices in ambient conditions. ACS Appl. Mater. Interfaces 15, 37756–37763 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. C. Shu, H.-Y. Zhao, S. Zhao, W. Deng, P. Min, X.-H. Lu, X. Li, Z.-Z. Yu, Highly thermally conductive phase change composites with anisotropic graphene/cellulose nanofiber hybrid aerogels for efficient temperature regulation and solar-thermal-electric energy conversion applications. Compos. B Eng. 248, 110367 (2023)

    Article  CAS  Google Scholar 

  186. A.R. Urade, I. Lahiri, K. Suresh, Graphene properties, synthesis and applications: a review. JOM 75, 614–630 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  187. R. Wazalwar, M. Sahu, Novel Applications of Graphene in the Aerospace Industry, Novel Applications of Carbon Based Nano-Materials (CRC Press, Boca Raton, 2022), pp.180–198

    Book  Google Scholar 

  188. A. Armano, S. Agnello, Two-dimensional carbon: a review of synthesis methods, and electronic, optical, and vibrational properties of single-layer graphene. C 5, 67 (2019)

    CAS  Google Scholar 

  189. S. Chakraborty, R. Saha, S. Saha, A critical review on graphene and graphene-based derivatives from natural sources emphasizing on CO2 adsorption potential. Environ. Sci. Pollut. Res. 2023, 1–31 (2023)

    Google Scholar 

  190. S.-Y. Lee, S.-J. Park, A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2015)

    Article  Google Scholar 

  191. N.A.F. Mazri, A. Arifutzzaman, M.K. Aroua, M.E. Rahman, S.A. Mazari, Graphene and its tailoring as emerging 2D nanomaterials in efficient CO2 absorption: a state-of-the-art interpretative review. Alex. Eng. J. 77, 479–502 (2023)

    Article  Google Scholar 

  192. A. Ghosh, K. Subrahmanyam, K.S. Krishna, S. Datta, A. Govindaraj, S.K. Pati, C. Rao, Uptake of H2 and CO2 by graphene. J. Phys. Chem. C 112, 15704–15707 (2008)

    Article  CAS  Google Scholar 

  193. L. Ekhlasi, H. Younesi, A. Rashidi, N. Bahramifar, Populus wood biomass-derived graphene for high CO2 capture at atmospheric pressure and estimated cost of production. Process. Saf. Environ. Prot. 113, 97–108 (2018)

    Article  CAS  Google Scholar 

  194. M.O. Aquatar, J.S. Mankar, U. Bhatia, S.S. Rayalu, R.J. Krupadam, Graphene nanosheets from hazardous/solid wastes: an efficient CO2 capture material. J. Environ. Chem. Eng. 9, 105839 (2021)

    Article  CAS  Google Scholar 

  195. S. Chowdhury, R. Balasubramanian, Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets. J. CO2 Util. 13 (2016) 50–60.

  196. L.-Y. Meng, S.-J. Park, Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates. J. Colloid Interface Sci. 386, 285–290 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  197. J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, G.N. Karanikolos, CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous Mesoporous Mater. 267, 53–67 (2018)

    Article  CAS  Google Scholar 

  198. N. Politakos, I. Barbarin, L.S. Cantador, J.A. Cecilia, E. Mehravar, R. Tomovska, Graphene-based monolithic nanostructures for CO2 capture. Ind. Eng. Chem. Res. 59, 8612–8621 (2020)

    Article  CAS  Google Scholar 

  199. M. Aggarwal, S. Basu, N.P. Shetti, M.N. Nadagouda, T.M. Aminabhavi, Photocatalytic conversion of CO2 into valuable products using emerging two-dimensional graphene-based nanomaterials: a step towards sustainability. Chem. Eng. J. 425, 131401 (2021)

    Article  CAS  Google Scholar 

  200. Y. Kuang, J. Shang, T. Zhu, Photoactivated graphene oxide to enhance photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 12, 3580–3591 (2019)

    Article  Google Scholar 

  201. X. Wang, K. Li, J. He, J. Yang, F. Dong, W. Mai, M. Zhu, Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr 6 pervoskite hole-in-microdisk structure. Nano Energy 78, 105388 (2020)

    Article  CAS  Google Scholar 

  202. P. Devi, J. Singh, Visible light induced selective photocatalytic reduction of CO2 to CH4 on In2O3-rGO nanocomposites. J. CO2 Util. 43 (2021) 101376.

  203. L.-Y. Lin, Y. Nie, S. Kavadiya, T. Soundappan, P. Biswas, N-doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: Effect of N species. Chem. Eng. J. 316, 449–460 (2017)

    Article  CAS  Google Scholar 

  204. C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv. Mater. 31, 1902868 (2019)

    Article  CAS  Google Scholar 

  205. C.B. Hiragond, J. Lee, H. Kim, J.-W. Jung, C.-H. Cho, S.-I. In, A novel N-doped graphene oxide enfolded reduced titania for highly stable and selective gas-phase photocatalytic CO2 reduction into CH4: an in-depth study on the interfacial charge transfer mechanism. Chem. Eng. J. 416, 127978 (2021)

    Article  CAS  Google Scholar 

  206. M.R.U.D. Biswas, A. Ali, K.Y. Cho, W.-C. Oh, Novel synthesis of WSe2-graphene-TiO2 ternary nanocomposite via ultrasonic technics for high photocatalytic reduction of CO2 into CH3OH. Ultrason. Sonochem. 42, 738–746 (2018)

    Article  PubMed  Google Scholar 

  207. L. Zhang, N. Li, H. Jiu, G. Qi, Y. Huang, ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2. Ceram. Int. 41, 6256–6262 (2015)

    Article  CAS  Google Scholar 

  208. J.O. Olowoyo, M. Kumar, B. Singh, V.O. Oninla, J.O. Babalola, H. Valdés, A.V. Vorontsov, U. Kumar, Self-assembled reduced graphene oxide-TiO2 nanocomposites: synthesis, DFTB+ calculations, and enhanced photocatalytic reduction of CO2 to methanol. Carbon 147, 385–397 (2019)

    Article  CAS  Google Scholar 

  209. W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene–gC3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem. Commun. 51, 858–861 (2015)

    Article  CAS  Google Scholar 

  210. Z. Tong, D. Yang, J. Shi, Y. Nan, Y. Sun, Z. Jiang, Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance. ACS Appl. Mater. Interfaces 7, 25693–25701 (2015)

    Article  CAS  PubMed  Google Scholar 

  211. W.-J. Ong, L.-L. Tan, S.-P. Chai, S.-T. Yong, A.R. Mohamed, Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13, 757–770 (2015)

    Article  CAS  Google Scholar 

  212. C. Han, Y. Lei, B. Wang, Y. Wang, In situ-fabricated 2D/2D heterojunctions of ultrathin SiC/reduced graphene oxide nanosheets for efficient CO2 photoreduction with high CH4 selectivity. Chemsuschem 11, 4237–4245 (2018)

    Article  CAS  PubMed  Google Scholar 

  213. A. Bafaqeer, M. Tahir, N.A.S. Amin, Synergistic effects of 2D/2D ZnV2O6/RGO nanosheets heterojunction for stable and high performance photo-induced CO2 reduction to solar fuels. Chem. Eng. J. 334, 2142–2153 (2018)

    Article  CAS  Google Scholar 

  214. Z. Otgonbayar, K.Y. Cho, W.-C. Oh, Enhanced photocatalytic activity of CO2 reduction to methanol through the use of a novel-structured CuCaAg2Se–graphene–TiO2 ternary nanocomposite. New J. Chem. 44, 16795–16809 (2020)

    Article  CAS  Google Scholar 

  215. Z. Otgonbayar, Y. Liu, K.Y. Cho, C.-H. Jung, W.-C. Oh, Novel ternary composite of LaYAgO4 and TiO2 united with graphene and its complement: Photocatalytic performance of CO2 reduction into methanol. Mater. Sci. Semicond. Process. 121, 105456 (2021)

    Article  CAS  Google Scholar 

  216. X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016)

    Article  CAS  Google Scholar 

  217. S. Xie, Q. Zhang, G. Liu, Y. Wang, Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 52, 35–59 (2016)

    Article  CAS  Google Scholar 

  218. C.-W. Huang, V.-H. Nguyen, S.-R. Zhou, S.-Y. Hsu, J.-X. Tan, K.C.-W. Wu, Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis. Sustain. Energy Fuels 4, 504–521 (2020)

    Article  CAS  Google Scholar 

  219. Q. Chen, S. Sun, Y. Wang, Q. Zhang, L. Zhu, Y. Liu, In-situ remediation of phosphogypsum in a cement-free pathway: utilization of ground granulated blast furnace slag and NaOH pretreatment. Chemosphere 313, 137412 (2023)

    Article  CAS  PubMed  Google Scholar 

  220. Z. Zhang, Y. Zheng, L. Qian, D. Luo, H. Dou, G. Wen, A. Yu, Z. Chen, Emerging trends in sustainable CO2-management materials. Adv. Mater. 34, 2201547 (2022)

    Article  CAS  Google Scholar 

  221. S. Wang, M. Xu, T. Peng, C. Zhang, T. Li, I. Hussain, J. Wang, B. Tan, Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 10, 676 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  222. S. Wang, K. Song, C. Zhang, Y. Shu, T. Li, B. Tan, A novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditions. J. Mater. Chem. A 5, 1509–1515 (2017)

    Article  CAS  Google Scholar 

  223. K. Yuan, Y. Xu, J. Uihlein, G. Brunklaus, L. Shi, R. Heiderhoff, M. Que, M. Forster, T. Chassé, T. Pichler, Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors. Adv. Mater. 27, 6714–6721 (2015)

    Article  CAS  PubMed  Google Scholar 

  224. S. Wang, C. Zhang, Y. Shu, S. Jiang, Q. Xia, L. Chen, S. Jin, I. Hussain, A.I. Cooper, B. Tan, Layered microporous polymers by solvent knitting method. Sci. Adv. 3, e1602610 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  225. Y. Liu, S. Wang, X. Meng, Y. Ye, X. Song, Z. Liang, Increasing the surface area and CO2 uptake of conjugated microporous polymers via a post-knitting method. Mater. Chem. Frontiers 5, 5319–5327 (2021)

    Article  CAS  Google Scholar 

  226. Y. Sun, C. Liu, W. Su, Y. Zhou, L. Zhou, Principles of methane adsorption and natural gas storage. Adsorption 15, 133–137 (2009)

    Article  CAS  Google Scholar 

  227. Z. Xu, C. Zhuang, Z. Zou, J. Wang, X. Xu, T. Peng, Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Res. 10, 2193–2209 (2017)

    Article  CAS  Google Scholar 

  228. J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hare, Z. Zhong, Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518 (2014)

    Article  CAS  Google Scholar 

  229. L. Tan, B. Tan, Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev. 46, 3322–3356 (2017)

    Article  CAS  PubMed  Google Scholar 

  230. X. Yang-Fan, Y. Mu-Zi, C. Bai-Xue, W. Xu-Dong, C. Hong-Yan, K. Dai-Bin, S. Cheng-Yong, A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction (2017).

  231. Z. Gu, B. Zhang, Y. Asakura, S. Tsukuda, H. Kato, M. Kakihana, S. Yin, Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity. Appl. Surf. Sci. 521, 146213 (2020)

    Article  CAS  Google Scholar 

  232. A. Kumar, K. Sharma, M. Thakur, D. Pathania, A. Sharma, Fabrication of high visible light active LaFeO3/Cl-g-C3N4/RGO heterojunction for solar assisted photo-degradation of aceclofenac. J. Environ. Chem. Eng. 10, 108098 (2022)

    Article  CAS  Google Scholar 

  233. Z. Zhan, H. Wang, Q. Huang, S. Li, X. Yi, Q. Tang, J. Wang, B. Tan, Grafting hypercrosslinked polymers on TiO2 surface for anchoring ultrafine Pd nanoparticles: dramatically enhanced efficiency and selectivity toward photocatalytic reduction of CO2 to CH4. Small 18, 2105083 (2022)

    Article  CAS  Google Scholar 

  234. G.E. Schukraft, R.T. Woodward, S. Kumar, M. Sachs, S. Eslava, C. Petit, Hypercrosslinked polymers as a photocatalytic platform for visible-light-driven CO2 photoreduction using H2O. Chemsuschem 14, 1720–1727 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. T. Garg, A. Goyal, A. Kaushik, S. Singhal, State-of-the-art evolution of g-C3N4 based Z-scheme heterostructures towards energy and environmental applications: a review. Mater. Res. Bull. 2023, 11248 (2023)

    Google Scholar 

  236. M. Mirzaei, A.H. Rasouli, A. Saedi, HOMO–LUMO photosensitization analyses of coronene-cytosine complexes. Main Group Chem. 20, 565–573 (2021)

    Article  CAS  Google Scholar 

  237. K. Suenaga, A. Watanabe, K. Tanaka, Y. Chujo, Design for a pure-blue-emissive polymer film through the selective perturbation of the energy level of the highest occupied molecular orbital in a boron complex. Macromolecules 56, 6419–6425 (2023)

    Article  ADS  CAS  Google Scholar 

  238. Y. Chai, Y. Kong, M. Lin, W. Lin, J. Shen, J. Long, R. Yuan, W. Dai, X. Wang, Z. Zhang, Metal to non-metal sites of metallic sulfides switching products from CO to CH4 for photocatalytic CO2 reduction. Nat. Commun. 14, 6168 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  239. H. Hu, Y. He, H. Yu, D. Li, M. Sun, Y. Feng, C. Zhang, H. Chen, C. Deng, Constructing a noble-metal-free 0D/2D CdS/SnS2 heterojunction for efficient visible-light-driven photocatalytic pollutant degradation and hydrogen generation. Nanotechnology 34, 505712 (2023)

    Article  Google Scholar 

  240. F. Zhang, Y.-H. Li, M.-Y. Qi, Y.M. Yamada, M. Anpo, Z.-R. Tang, Y.-J. Xu, Photothermal catalytic CO2 reduction over nanomaterials. Chem. Catal. 1, 272–297 (2021)

    Article  CAS  Google Scholar 

  241. P. Netzsch, F. Pielnhofer, H.A. Höppe, From S-O–S to B–O–S to B–O–B Bridges: Ba [B (S2O7) 2] 2 as a model system for the structural diversity in borosulfate chemistry. Inorg. Chem. 59, 15180–15188 (2020)

    Article  CAS  PubMed  Google Scholar 

  242. H. Chen, J. Xu, H. Lin, Z. Wang, Z. Liu, Multi-cycle aqueous arsenic removal by novel magnetic n/s-doped hydrochars activated via one-pot and two-stage schemes. Chem. Eng. J. 429, 132071 (2022)

    Article  CAS  Google Scholar 

  243. X. Xiong, C. Mao, Z. Yang, Q. Zhang, G.I. Waterhouse, L. Gu, T. Zhang, Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 10, 2002928 (2020)

    Article  CAS  Google Scholar 

  244. L. Zhang, X. Yang, F. Zhang, G. Long, T. Zhang, K. Leng, Y. Zhang, Y. Huang, Y. Ma, M. Zhang, Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J. Am. Chem. Soc. 135, 5921–5929 (2013)

    Article  CAS  PubMed  Google Scholar 

  245. D. Sundar, C.-H. Liu, S. Anandan, J.J. Wu, Photocatalytic CO2 conversion into solar fuels using carbon-based materials—a review. Molecules 28, 5383 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. S. Peng, J. Gao, D. Stojkov, S. Yousefi, H.U. Simon, Established and emerging roles for mitochondria in neutrophils. Immunol. Rev. 314, 413–426 (2023)

    Article  CAS  PubMed  Google Scholar 

  247. M. Yang, P. Wang, Y. Li, S. Tang, X. Lin, H. Zhang, Z. Zhu, F. Chen, Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction. Appl. Catal. B 306, 121065 (2022)

    Article  CAS  Google Scholar 

  248. S. Gong, M. Hou, Y. Niu, X. Teng, X. Liu, M. Xu, C. Xu, V.K.-M. Au, Z. Chen, Molybdenum phosphide coupled with highly dispersed nickel confined in porous carbon nanofibers for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 427, 131717 (2022)

    Article  CAS  Google Scholar 

  249. X.-Q. Zhang, W.-C. Li, A.-H. Lu, Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater. 30, 481–501 (2015)

    Article  CAS  Google Scholar 

  250. X.-Q. Zhang, W.-C. Li, A.-H. Lu, Designed porous carbon materials for efficient CO2 adsorption and separation. Carbon 100, 260 (2016)

    Article  Google Scholar 

  251. P. Zhang, Y. Dong, Z. Ren, G. Wang, Y. Guo, C. Wang, Z. Ma, Rapid urbanization and meteorological changes are reshaping the urban vegetation pattern in urban core area: a national 315-city study in China. Sci. Total. Environ. 904, 167269 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  252. U. Kamran, S.-J. Park, Chemically modified carbonaceous adsorbents for enhanced CO2 capture: a review. J. Clean. Prod. 290, 125776 (2021)

    Article  CAS  Google Scholar 

  253. M. Zhang, C. Lai, B. Li, F. Xu, D. Huang, S. Liu, L. Qin, X. Liu, H. Yi, Y. Fu, Insightful understanding of charge carrier transfer in 2D/2D heterojunction photocatalyst: Ni–Co layered double hydroxides deposited on ornamental g-C3N4 ultrathin nanosheet with boosted molecular oxygen activation. Chem. Eng. J. 422, 130120 (2021)

    Article  CAS  Google Scholar 

  254. K. Fan, Z. Jin, H. Yang, D. Liu, H. Hu, Y. Bi, Promotion of the excited electron transfer over Ni-and Co-sulfide co-doped g-C3N4 photocatalyst (g-C3N4/NixCo1− xS2) for hydrogen production under visible light irradiation. Sci. Rep. 7, 7710 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  255. J. Lian, W. Liu, L. Meng, J. Wu, A. Zeb, L. Cheng, Y. Lian, H. Sun, Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties. J. Clean. Prod. 318, 128571 (2021)

    Article  CAS  Google Scholar 

  256. Y. Li, Z. He, L. Liu, Y. Jiang, W.-J. Ong, Y. Duan, W. Ho, F. Dong, Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via defect engineering for energy and environmental science. Nano Energy 105, 108032 (2023)

    Article  CAS  Google Scholar 

  257. J. Wang, Y. Song, C. Zuo, R. Li, Y. Zhou, Y. Zhang, B. Wu, Few-layer porous carbon nitride anchoring Co and Ni with charge transfer mechanism for photocatalytic CO2 reduction. J. Colloid Interface Sci. 625, 722–733 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  258. V.S. Vyas, V.W.-H. Lau, B.V. Lotsch, Soft photocatalysis: organic polymers for solar fuel production. Chem. Mater. 28, 5191–5204 (2016)

    Article  CAS  Google Scholar 

  259. T. Banerjee, F. Podjaski, J. Kröger, B.P. Biswal, B.V. Lotsch, Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 6, 168–190 (2021)

    Article  ADS  CAS  Google Scholar 

  260. J. Hou, T. Jiang, X. Wang, G. Zhang, J.-J. Zou, C. Cao, Variable dimensional structure and interface design of g-C3N4/BiOI composites with oxygen vacancy for improving visible-light photocatalytic properties. J. Clean. Prod. 287, 125072 (2021)

    Article  CAS  Google Scholar 

  261. H. An, B. Lin, C. Xue, X. Yan, Y. Dai, J. Wei, G. Yang, Formation of BiOI/g-C3N4 nanosheet composites with high visible-light-driven photocatalytic activity. Chin. J. Catal. 39, 654–663 (2018)

    Article  CAS  Google Scholar 

  262. J. Liang, X. Li, J. Zuo, J. Lin, Z. Liu, Hybrid 0D/2D heterostructures: in-situ growth of 0D g-C 3 N 4 on 2D BiOI for efficient photocatalyst. Adv. Compos. Hybrid Mater. 4, 1122–1136 (2021)

    Article  CAS  Google Scholar 

  263. W. Shen, Y. Lu, J.A. Hu, H. Le, W. Yu, W. Xu, W. Yu, J. Zheng, Mechanism of miR-320 in regulating biological characteristics of ischemic cerebral neuron by mediating Nox2/ROS pathway. J. Mol. Neurosci. 70, 449–457 (2020)

    Article  CAS  PubMed  Google Scholar 

  264. Z. You, C. Wu, Q. Shen, Y. Yu, H. Chen, Y. Su, H. Wang, C. Wu, F. Zhang, H. Yang, A novel efficient gC3N4@ BiOI p–n heterojunction photocatalyst constructed through the assembly of gC3N4 nanoparticles. Dalton Trans. 47, 7353–7361 (2018)

    Article  CAS  PubMed  Google Scholar 

  265. F. Kuttassery, H. Kumagai, R. Kamata, Y. Ebato, M. Higashi, H. Suzuki, R. Abe, O. Ishitani, Supramolecular photocatalysts fixed on the inside of the polypyrrole layer in dye sensitized molecular photocathodes: application to photocatalytic CO2 reduction coupled with water oxidation. Chem. Sci. 12, 13216–13232 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. D.H. Apaydin, E. Tordin, E. Portenkirchner, G. Aufischer, S. Schlager, M. Weichselbaumer, K. Oppelt, N.S. Sariciftci, Photoelectrochemical reduction of CO2 using third-generation conjugated polymers. ChemistrySelect 1, 1156–1162 (2016)

    Article  CAS  Google Scholar 

  267. Z. Wang, X.-F. Zhang, L. Shu, J. Yao, Copper sulfide integrated functional cellulose hydrogel for efficient solar water purification. Carbohydr. Polym. 319, 121161 (2023)

    Article  CAS  PubMed  Google Scholar 

  268. M.A. Rosen, Environmental sustainability tools in the biofuel industry. Biofuel Res. J. 5, 751–752 (2018)

    Article  Google Scholar 

  269. M. Aghbashlo, Z. Khounani, H. Hosseinzadeh-Bandbafha, V.K. Gupta, H. Amiri, S.S. Lam, T. Morosuk, M. Tabatabaei, Exergoenvironmental analysis of bioenergy systems: a comprehensive review. Renew. Sustain. Energy Rev. 149, 111399 (2021)

    Article  Google Scholar 

  270. M. Aghbashlo, H. Hosseinzadeh-Bandbafha, H. Shahbeik, M. Tabatabaei, The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 9, 1697–1706 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asghar Ali or Won-Chun Oh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, H., Javed, M.S., Iqbal, S.T. et al. A review of photocatalytic CO2 reduction: exploring sustainable carbon emission mitigation from thermodynamics to kinetics and strategies for enhanced efficiency. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00365-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00365-1

Keywords

Navigation