Skip to main content
Log in

Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Wearable sensors are attracting great attentions due to their potential applications in human health monitoring and caring systems. The wide utilization of wearable electronics may cause great burden to the environment, due to the vast contaminants generated in their fabrication and after their usage. Consequently, great efforts are devoted to the eco-friendly strategies for the material and fabrication in wearable sensors. Herein, recent advantages in developing wearable sensors with eco-friendly materials and green manufacturing approaches are reviewed. The functional materials with accessibility, recoverability and degradability have participated in the sensors as substrates, sensing elements and conductors. The fabrication strategies, from facile manual schemes to low-emission automated techniques are also introduced with their merits and demerits. Finally, the existing challenges and future opportunities in this field are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lim, H. R., Kim, H. S., Qazi, R., Kwon, Y. T., Jeong, J. W., & Yeo, W. H. (2020). Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Advanced Materials, 32(15), 1901924.

    Google Scholar 

  2. Sun, W., Lee, J., Zhang, S., Benyshek, C., Dokmeci, M. R., & Khademhosseini, A. (2019). Engineering precision medicine. Advanced Science, 6(1), 1801039.

    Google Scholar 

  3. Lou, Z., Wang, L., & Shen, G. (2018). Recent advances in smart wearable sensing systems. Advanced Materials Technologies, 3(12), 1800444.

    Google Scholar 

  4. Liu, Y., Wang, H., Zhao, W., Zhang, M., Qin, H., & Xie, Y. (2018). Flexible, stretchable sensors for wearable health monitoring: Sensing mechanisms, materials, fabrication strategies and features. Sensors (Basel), 18(2), 645.

    Google Scholar 

  5. Nakata, S., Arie, T., Akita, S., & Takei, K. (2017). Wearable, flexible, and multifunctional healthcare device with an ISFET chemical sensor for simultaneous sweat pH and skin temperature monitoring. ACS Sensors, 2(3), 443–448.

    Google Scholar 

  6. Gao, W., Emaminejad, S., Nyein, H. Y., Challa, S., Chen, K., Peck, A., et al. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509–514.

    Google Scholar 

  7. Armas, S. M., Manhan, A. J., Younce, O., Calvo-Marzal, P., & Chumbimuni-Torres, K. Y. (2018). Ready-to-use single-strip paper based sensor for multiplex ion detection. Sensors and Actuators B: Chemical, 255, 1781–1787.

    Google Scholar 

  8. Mazzeo, A. D., Kalb, W. B., Chan, L., Killian, M. G., Bloch, J. F., Mazzeo, B. A., et al. (2012). Paper-based, capacitive touch pads. Advanced Materials, 24(21), 2850–2856.

    Google Scholar 

  9. Kanaparthi, S., Sekhar, V. R., & Badhulika, S. (2016). Flexible, eco-friendly and highly sensitive paper antenna based electromechanical sensor for wireless human motion detection and structural health monitoring. Extreme Mechanics Letters, 9, 324–330.

    Google Scholar 

  10. Shin, J., Liu, Z., Bai, W., Liu, Y., Yan, Y., & Xue, Y., et al. (2019). Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Science Advances, 5(7), eaaw1899.

  11. Zhu, Z., Xia, K., Xu, Z., Lou, H., & Zhang, H. (2018). Starch paper-based triboelectric nanogenerator for human perspiration sensing. Nano Research Letters, 13(1), 365.

    Google Scholar 

  12. Kim, K., & Yun, K.-S. (2019). Stretchable power-generating sensor array in textile structure using piezoelectric functional threads with hemispherical dome structures. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 699–710.

    Google Scholar 

  13. Ra, Y., La, M., Cho, S., Park, S. J., & Choi, D. (2020). Scalable batch fabrication of flexible, transparent and self-triggered tactile sensor array based on triboelectric effect. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00267-7

  14. Zhao, G., Gong, S., Wang, H., Ren, J., Wang, N., & Yang, Y., et al. (2020). Ultrathin biocompatible electrospun fiber films for self-powered human motion sensor. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00246-y

  15. Amjadi, M., Kyung, K.-U., Park, I., & Sitti, M. (2016). Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials, 26(11), 1678–1698.

    Google Scholar 

  16. Jeong, C., Joung, C., Lee, S., Feng, M. Q., & Park, Y.-B. (2020). Carbon nanocomposite based mechanical sensing and energy harvesting. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 247–267.

    Google Scholar 

  17. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., & Park, I. (2014). Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 8(5), 5154–5163.

    Google Scholar 

  18. Liang, S., & Liu, J. (2017). Colorful liquid metal printed electronics. Science China Technological Sciences, 61(1), 110–116.

    Google Scholar 

  19. Zahid, M., Papadopoulou, E. L., Athanassiou, A., & Bayer, I. S. (2017). Strain-responsive mercerized conductive cotton fabrics based on PEDOT:PSS/graphene. Materials & Design, 135, 213–222.

    Google Scholar 

  20. Lin, Y., Gritsenko, D., Liu, Q., Lu, X., & Xu, J. (2016). Recent advancements in functionalized paper-based electronics. ACS Applied Materials & Interfaces, 8(32), 20501–20515.

    Google Scholar 

  21. Yuen, A. C., Bakir, A. A., Rajdi, N. N. Z. M., Lam, C. L., Saleh, S. M., & Wicaksono, D. H. B. (2014). Proprioceptive sensing system for therapy assessment using cotton fabric-based biomedical microelectromechanical system. IEEE Sensors Journal, 14(8), 2872–2880.

    Google Scholar 

  22. Kong, J.-H., Jang, N.-S., Kim, S.-H., & Kim, J.-M. (2014). Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon, 77, 199–207.

    Google Scholar 

  23. Cui, Z. (2019). Printing practice for the fabrication of flexible and stretchable electronics. Science China Technological Sciences, 62(2), 224–232.

    Google Scholar 

  24. Wang, C., Xia, K., Wang, H., Liang, X., Yin, Z., & Zhang, Y. (2019). Advanced carbon for flexible and wearable electronics. Advanced Materials, 31(9), 1801072.

    Google Scholar 

  25. Huang, Q., & Zhu, Y. (2019). Printing conductive nanomaterials for flexible and stretchable electronics: A review of materials, processes, and applications. Advanced Materials Technologies, 4(5), 1800546.

    Google Scholar 

  26. Li, W., Sun, Q., Li, L., Jiu, J., Liu, X.-Y., Kanehara, M., et al. (2019). The rise of conductive copper inks: challenges and perspectives. Applied Materials Today, 100451.

  27. Wang, S., Oh, J. Y., Xu, J., Tran, H., & Bao, Z. (2018). Skin-inspired electronics: An emerging paradigm. Accounts of Chemical Research, 51(5), 1033–1045.

    Google Scholar 

  28. Homayounfar, S. Z., & Andrew, T. L. (2019). Wearable sensors for monitoring human motion: A review on mechanisms, materials, and challenges. SLAS Technology, 25(1), 9–24.

    Google Scholar 

  29. Kim, S. J., Song, W., Yi, Y., Min, B. K., Mondal, S., An, K. S., et al. (2018). High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection. ACS Applied Materials & Interfaces, 10(4), 3921–3928.

    Google Scholar 

  30. Liu, H., Jiang, H., Du, F., Zhang, D., Li, Z., & Zhou, H. (2017). Flexible and degradable paper-based strain sensor with low cost. ACS Sustainable Chemistry & Engineering, 5(11), 10538–10543.

    Google Scholar 

  31. Curry, E. J., Ke, K., Chorsi, M. T., Wrobel, K. S., Miller, A. N. I., Patel, A., et al. (2018). Biodegradable piezoelectric force sensor. Proceedings of the National Academy of Sciences, 115(5), 909–914.

    Google Scholar 

  32. Yao, B., Yuan, L., Xiao, X., Zhang, J., Qi, Y., Zhou, J., et al. (2013). Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy, 2(6), 1071–1078.

    Google Scholar 

  33. Wang, C., Xia, K., Jian, M., Wang, H., Zhang, M., & Zhang, Y. (2017). Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. Journal of Materials Chemistry C, 5(30), 7604–7611.

    Google Scholar 

  34. Khalid, M. A. U., Ali, M., Soomro, A. M., Kim, S. W., Kim, H. B., Lee, B.-G., et al. (2019). A highly sensitive biodegradable pressure sensor based on nanofibrous dielectric. Sensors and Actuators A: Physical, 294, 140–147.

    Google Scholar 

  35. Teng, L., Ye, S., Handschuh-Wang, S., Zhou, X., Gan, T., & Zhou, X. (2019). Liquid metal-based transient circuits for flexible and recyclable electronics. Advanced Functional Materials, 29(11), 1808739.

    Google Scholar 

  36. Sajid, M., Dang, H. W., Na, K.-H., & Choi, K. H. (2015). Highly stable flex sensors fabricated through mass production roll-to-roll micro-gravure printing system. Sensors and Actuators A: Physical, 236, 73–81.

    Google Scholar 

  37. Wang, Z., Guan, X., Huang, H., Wang, H., Lin, W., & Peng, Z. (2019). Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture. Advanced Functional Materials, 29(11), 1807569.

    Google Scholar 

  38. Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E. L., et al. (2014). Laser-induced porous graphene films from commercial polymers. Nature Communications, 5, 5714.

    Google Scholar 

  39. Tao, L. Q., Tian, H., Liu, Y., Ju, Z. Y., Pang, Y., Chen, Y. Q., et al. (2017). An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nature Communications, 8, 14579.

    Google Scholar 

  40. Kim, J., Imani, S., de Araujo, W. R., Warchall, J., Valdes-Ramirez, G., Paixao, T. R., et al. (2015). Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosensors and Bioelectronics, 74, 1061–1068.

    Google Scholar 

  41. Yetisen, A. K., Jiang, N., Castaneda Gonzalez, C. M., Erenoglu, Z. I., Dong, J., Dong, X., et al. (2020). Scleral lens sensor for ocular electrolyte analysis. Advanced materials, 32(6), 1906762.

    Google Scholar 

  42. Kanaparthi, S. (2017). Pencil-drawn paper-based non-invasive and wearable capacitive respiration sensor. Electroanalysis, 29(12), 2680–2684.

    Google Scholar 

  43. Yamamoto, Y., Harada, S., Yamamoto, D., Honda, W., Arie, T., Akita, S., et al. (2016). Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Science Advances, 2(11), e1601473.

    Google Scholar 

  44. Li, H., Xu, Y., Li, X., Chen, Y., Jiang, Y., Zhang, C., et al. (2017). Epidermal inorganic optoelectronics for blood oxygen measurement. Advanced Healthcare Materials, 6(9), 1601013.

    Google Scholar 

  45. Zhang, X., Chai, R., Wang, H., & Ye, X. (2018). A plantar pressure sensing system with balancing sensitivity based on tailored MWCNTs/PDMS composites. Micromachines (Basel), 9(9), 466.

    Google Scholar 

  46. Eom, J., Jaisutti, R., Lee, H., Lee, W., Heo, J. S., Lee, J. Y., et al. (2017). Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Applied Materials & Interfaces, 9(11), 10190–10197.

    Google Scholar 

  47. Han, Z., Li, H., Xiao, J., Song, H., Li, B., Cai, S., et al. (2019). Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics. ACS Applied Materials & Interfaces, 11(36), 33370–33379.

    Google Scholar 

  48. Yang, T., Li, X., Jiang, X., Lin, S., Lao, J., Shi, J., et al. (2016). Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Materials Horizons, 3(3), 248–255.

    Google Scholar 

  49. Liao, X., Zhang, Z., Liang, Q., Liao, Q., & Zhang, Y. (2017). Flexible, cuttable, and self-waterproof bending strain sensors using microcracked gold nanofilms@paper substrate. ACS Applied Materials & Interfaces, 9(4), 4151–4158.

    Google Scholar 

  50. Li, C., Thostenson, E. T., & Chou, T.-W. (2007). Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Applied Physics Letters, 91(22), 223114.

    Google Scholar 

  51. Choong, C. L., Shim, M. B., Lee, B. S., Jeon, S., Ko, D. S., Kang, T. H., et al. (2014). Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Advanced Materials, 26(21), 3451–3458.

    Google Scholar 

  52. Chen, J., Yu, Q., Cui, X., Dong, M., Zhang, J., Wang, C., et al. (2019). An overview of stretchable strain sensors from conductive polymer nanocomposites. Journal of Materials Chemistry C, 7(38), 11710–11730.

    Google Scholar 

  53. Amjadi, M., & Park, I. (2014). Sensitive and stable strain sensors based on the wavy structured electrodes. Paper presented at the 14th IEEE International Conference on Nanotechnology, Toronto, Canada, August 18–21, 2014.

  54. Sheng, L., Teo, S., & Liu, J. (2016). Liquid-metal-painted stretchable capacitor sensors for wearable healthcare electronics. Journal of Medical and Biological Engineering, 36(2), 265–272.

    Google Scholar 

  55. Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B. T., Buric, M. P., et al. (2019). Distributed optical fiber sensing: Review and perspective. Applied Physics Reviews, 6(4), 041302.

    Google Scholar 

  56. Fu, R., Tu, L., Zhou, Y., Fan, L., Zhang, F., Wang, Z., et al. (2019). A tough and self-powered hydrogel for artificial skin. Chemistry of Materials, 31(23), 9850–9860.

    Google Scholar 

  57. Shi, M., Wu, H., Zhang, J., Han, M., Meng, B., & Zhang, H. (2017). Self-powered wireless smart patch for healthcare monitoring. Nano Energy, 32, 479–487.

    Google Scholar 

  58. Lee, H., Song, C., Hong, Y. S., Kim, M. S., Cho, H. R., Kang, T., et al. (2017). Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Science Advances, 3(3), e1601314.

    Google Scholar 

  59. Heikenfeld, J. (2016). Bioanalytical devices: Technological leap for sweat sensing. Nature, 529(7587), 475–476.

    Google Scholar 

  60. Choi, J., Xue, Y., Xia, W., Ray, T. R., Reeder, J. T., Bandodkar, A. J., et al. (2017). Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands. Lab on a Chip, 17(15), 2572–2580.

    Google Scholar 

  61. Tai, L. C., Liaw, T. S., Lin, Y., Nyein, H. Y. Y., Bariya, M., Ji, W., et al. (2019). Wearable Sweat Band for Noninvasive Levodopa Monitoring. Nano Letters, 19(9), 6346–6351.

    Google Scholar 

  62. Bandodkar, A. J., Jeang, W. J., Ghaffari, R., & Rogers, J. A. (2019). Wearable sensors for biochemical sweat analysis. Annual Review of Analytical Chemistry, 12(1), 1–22.

    Google Scholar 

  63. Bao, C., Kaur, M., & Kim, W. S. (2019). Toward a highly selective artificial saliva sensor using printed hybrid field effect transistors. Sensors and Actuators B: Chemical, 285, 186–192.

    Google Scholar 

  64. Kim, J., Campbell, A. S., de Avila, B. E., & Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nature Biotechnology, 37(4), 389–406.

    Google Scholar 

  65. de Castro, L. F., de Freitas, S. V., Duarte, L. C., de Souza, J. A. C., Paixao, T., & Coltro, W. K. T. (2019). Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Analytical and Bioanalytical Chemistry, 411(19), 4919–4928.

    Google Scholar 

  66. Kim, J., Valdes-Ramirez, G., Bandodkar, A. J., Jia, W., Martinez, A. G., Ramirez, J., et al. (2014). Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst, 139(7), 1632–1636.

    Google Scholar 

  67. Arakawa, T., Kuroki, Y., Nitta, H., Chouhan, P., Toma, K., Sawada, S., et al. (2016). Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor. Biosensors and Bioelectronics, 84, 106–111.

    Google Scholar 

  68. Donora, M., Vásquez Quintero, A., De Smet, H., & Underwood, I. (2020). Spatiotemporal electrochemical sensing in a smart contact lens. Sensors and Actuators B: Chemical, 303, 127203.

    Google Scholar 

  69. Yao, H., Shum, A. J., Cowan, M., Lahdesmaki, I., & Parviz, B. A. (2011). A contact lens with embedded sensor for monitoring tear glucose level. Biosensors and Bioelectronics, 26(7), 3290–3296.

    Google Scholar 

  70. Motha, L., Kim, J., & Kim, W. S. (2015). Instrumented rubber insole for plantar pressure sensing. Organic Electronics, 23, 82–86.

    Google Scholar 

  71. Zhang, J., Li, Y., Xing, Y., & Song, J. (2019). Three-dimensional thermomechanical analysis of epidermal electronic devices on human skin. International Journal of Solids and Structures, 167, 48–57.

    Google Scholar 

  72. Steinberg, C., Philippon, F., Sanchez, M., Fortier-Poisson, P., O’Hara, G., Molin, F., et al. (2019). A novel wearable device for continuous ambulatory ECG recording: proof of concept and assessment of signal quality. Biosensors (Basel), 9(1), 17.

    Google Scholar 

  73. Xu, X., Luo, M., He, P., Guo, X., & Yang, J. (2019). Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Applied Physics A, 125(10), 714.

    Google Scholar 

  74. Li, X., & Sun, Y. (2019). A wearable button-like system for long-term multiple biopotential monitoring using non-contact electrodes. Smart Health, 11, 2–15.

    Google Scholar 

  75. De Volder, M. F., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: Present and future commercial applications. Science, 339(6119), 535–539.

    Google Scholar 

  76. Wang, Z. L. (2009). ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering: R: Reports, 64(3–4), 33–71.

    Google Scholar 

  77. Rajala, S., & Lekkala, J. (2012). Film-type sensor materials PVDF and EMFi in measurement of cardiorespiratory signals—A review. IEEE Sensors Journal, 12(3), 439–446.

    Google Scholar 

  78. Liu, K., Yu, J., Li, Y., Yan, X., Bai, D., Liao, X., et al. (2019). Carbon black from diesel soot for high-performance wearable pressure sensors. Advanced Materials Technologies, 4(10), 1900475.

    Google Scholar 

  79. Yoder, M. A., Yan, Z., Han, M., Rogers, J. A., & Nuzzo, R. G. (2018). Semiconductor nanomembrane materials for high-performance soft electronic devices. Journal of the American Chemical Society, 140(29), 9001–9019.

    Google Scholar 

  80. Yang, H., Xue, T., Li, F., Liu, W., & Song, Y. (2019). Graphene: Diversified Flexible 2D Material for Wearable Vital Signs Monitoring. Advanced Materials Technologies, 4(2), 1800574.

    Google Scholar 

  81. Tang, W., Yan, T., Wang, F., Yang, J., Wu, J., Wang, J., et al. (2019). Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon, 147, 295–302.

    Google Scholar 

  82. Qian, Q., Wang, Y., Zhang, M., Chen, L., Feng, J., Wang, Y., et al. (2019). Ultrasensitive paper-based polyaniline/graphene composite strain sensor for sign language expression. Composites Science and Technology, 181, 107660.

    Google Scholar 

  83. Chen, S., Wei, Y., Wei, S., Lin, Y., & Liu, L. (2016). Ultrasensitive cracking-assisted strain sensors based on silver nanowires/graphene hybrid particles. ACS Applied Materials & Interfaces, 8(38), 25563–25570.

    Google Scholar 

  84. Lee, S., Shin, S., Lee, S., Seo, J., Lee, J., Son, S., et al. (2015). Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Advanced Functional Materials, 25(21), 3114–3121.

    Google Scholar 

  85. Ling, W., Hao, Y., Wang, H., Xu, H., & Huang, X. (2019). A novel Cu-metal-organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. Nanotechnology, 30(42), 424002.

    Google Scholar 

  86. Zhang, Y., & Cui, Y. (2019). Development of flexible and wearable temperature sensors based on PEDOT:PSS. IEEE Transactions on Electron Devices, 66(7), 3129–3133.

    Google Scholar 

  87. Fan, X., Nie, W., Tsai, H., Wang, N., Huang, H., Cheng, Y., et al. (2019). PEDOT:PSS for flexible and stretchable electronics: Modifications, strategies, and applications. Advanced Science, 6(19), 1900813.

    Google Scholar 

  88. Liao, Y., Zhang, R., Wang, H., Ye, S., Zhou, Y., Ma, T., et al. (2019). Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics. RSC Advances, 9(27), 15184–15189.

    Google Scholar 

  89. Viry, L., Levi, A., Totaro, M., Mondini, A., Mattoli, V., Mazzolai, B., et al. (2014). Flexible three-axial force sensor for soft and highly sensitive artificial touch. Advanced Materials, 26(17), 2659–2664.

    Google Scholar 

  90. Cholleti, E. R., Stringer, J., Assadian, M., Battmann, V., Bowen, C., & Aw, K. (2018). Highly stretchable capacitive sensor with printed carbon black electrodes on barium titanate elastomer composite. Sensors (Basel), 19(1), 42.

    Google Scholar 

  91. Kanaparthi, S., & Badhulika, S. (2017). Low cost, flexible and biodegradable touch sensor fabricated by solvent-free processing of graphite on cellulose paper. Sensors and Actuators B: Chemical, 242, 857–864.

    Google Scholar 

  92. Chen, J., Zhu, Y., & Jiang, W. (2020). A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Composites Science and Technology, 186, 107938.

    Google Scholar 

  93. Song, D., Li, X., Li, X. P., Jia, X., Min, P., & Yu, Z. Z. (2019). Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range. Journal of Colloid and Interface Science, 555, 751–758.

    Google Scholar 

  94. Chen, Y., Carmichael, R. S., & Carmichael, T. B. (2019). Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes. ACS Applied Materials & Interfaces, 11(34), 31210–31219.

    Google Scholar 

  95. Huang, Q., Al-Milaji, K. N., & Zhao, H. (2018). Inkjet printing of silver nanowires for stretchable heaters. ACS Applied Nano Materials, 1(9), 4528–4536.

    Google Scholar 

  96. Park, K., Woo, K., Kim, J., Lee, D., Ahn, Y., Song, D., et al. (2019). High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation. ACS Applied Materials & Interfaces, 11(16), 14882–14891.

    Google Scholar 

  97. Li, W., Meredov, A., & Shamim, A. (2019). Coat-and-print patterning of silver nanowires for flexible and transparent electronics. NPJ Flexible Electronics, 3(1), 19.

    Google Scholar 

  98. Ren, T. L., Tian, H., Xie, D., & Yang, Y. (2012). Flexible graphite-on-paper piezoresistive sensors. Sensors (Basel), 12(5), 6685–6694.

    Google Scholar 

  99. Kurra, N., Dutta, D., & Kulkarni, G. U. (2013). Field effect transistors and RC filters from pencil-trace on paper. Physical Chemistry Chemical Physics: PCCP, 15(21), 8367–8372.

    Google Scholar 

  100. Lin, C. W., Zhao, Z., Kim, J., & Huang, J. (2014). Pencil drawn strain gauges and chemiresistors on paper. Scientific Reports, 4, 3812.

    Google Scholar 

  101. Kang, T.-K. (2014). Tunable piezoresistive sensors based on pencil-on-paper. Applied Physics Letters, 104(7), 073117.

    Google Scholar 

  102. Liao, X., Liao, Q., Yan, X., Liang, Q., Si, H., Li, M., et al. (2015). Flexible and highly sensitive strain sensors fabricated by Pencil Drawn for wearable monitor. Advanced Functional Materials, 25(16), 2395–2401.

    Google Scholar 

  103. Khurana, V., Kaur, M., Kumar, S., Gupta, D., & Goswamy, J. K. (2019). Multifunctional graphitic tracks on flexible polymer sheet as strain, acoustic vibration and human motion sensor. Measurement, 146, 9–14.

    Google Scholar 

  104. Zhu, J., Song, W., & Huang, R. (2018). Modulated pencil-drawn U-shaped piezoresistive graphite on compound fibers for wind sensing. Journal of Electronic Materials, 47(11), 6518–6524.

    Google Scholar 

  105. Liu, Y., Wang, H., Zhao, W., Zhang, M., & Qin, H. (2019). Pencil-on-paper flexible electronics for daily sensing applications. Circuit World, 45(4), 189–195.

    Google Scholar 

  106. Rashidi, R., Alenezi, J., Czechowski, J., Niver, J., & Mohammad, S. (2019). Graphite-on-paper-based resistive sensing device for aqueous chemical identification. Chemical Papers, 73(11), 2845–2855.

    Google Scholar 

  107. Kanaparthi, S., & Badhulika, S. (2016a). Solvent-free fabrication of paper based all-carbon disposable multifunctional sensors and passive electronic circuits. RSC Advances, 6(98), 95574–95583.

    Google Scholar 

  108. Kanaparthi, S., & Badhulika, S. (2016b). Eco-friendly all-carbon paper electronics fabricated by a solvent-free drawing method. Nanotechnology, 27(9), 095206.

    Google Scholar 

  109. Foster, C. W., Brownson, D. A., Ruas de Souza, A. P., Bernalte, E., Iniesta, J., Bertotti, M., et al. (2016). Pencil it in: pencil drawn electrochemical sensing platforms. Analyst, 141(13), 4055–4064.

  110. Zhang, Y., Duan, Z., Zou, H., & Ma, M. (2018). Drawn a facile sensor: A fast response humidity sensor based on pencil-trace. Sensors and Actuators B: Chemical, 261, 345–353.

    Google Scholar 

  111. Li, Y., Samad, Y. A., Taha, T., Cai, G., Fu, S.-Y., & Liao, K. (2016). Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustainable Chemistry & Engineering, 4(8), 4288–4295.

    Google Scholar 

  112. Chen, S., Song, Y., & Xu, F. (2018). Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Applied Materials & Interfaces, 10(40), 34646–34654.

    Google Scholar 

  113. Chen, S., Song, Y., Ding, D., Ling, Z., & Xu, F. (2018). Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Advanced Functional Materials, 28(42), 1802547.

    Google Scholar 

  114. Zhang, M., Wang, C., Wang, H., Jian, M., Hao, X., & Zhang, Y. (2017). Carbonized cotton fabric for high-performance wearable strain sensors. Advanced Functional Materials, 27(2), 1604795.

    Google Scholar 

  115. Li, Y., Samad, Y. A., & Liao, K. (2015). From cotton to wearable pressure sensor. Journal of Materials Chemistry A, 3(5), 2181–2187.

    Google Scholar 

  116. Ren, J., Du, X., Zhang, W., & Xu, M. (2017). From wheat bran derived carbonaceous materials to a highly stretchable and durable strain sensor. RSC Advances, 7(37), 22619–22626.

    Google Scholar 

  117. Lei, Z., Huang, J., & Wu, P. (2019). Traditional dough in the Era of internet of things: Edible, renewable, and reconfigurable skin-like Iontronics. Advanced Functional Materials, 30(29), 1908018.

    Google Scholar 

  118. Liu, H., Qing, H., Li, Z., Han, Y. L., Lin, M., Yang, H., et al. (2017). Paper: A promising material for human-friendly functional wearable electronics. Materials Science and Engineering: R: Reports, 112, 1–22.

    Google Scholar 

  119. Land, K. J., Boeras, D. I., Chen, X. S., Ramsay, A. R., & Peeling, R. W. (2019). REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nature Microbioloy, 4(1), 46–54.

    Google Scholar 

  120. Suntornsuk, W., & Suntornsuk, L. (2020). Recent applications of paper-based point-of-care devices for biomarker detection. Electrophoresis, 41(5–6), 287–305.

    Google Scholar 

  121. Anastasova, S., Crewther, B., Bembnowicz, P., Curto, V., Ip, H. M., Rosa, B., et al. (2017). A wearable multisensing patch for continuous sweat monitoring. Biosensors and Bioelectronics, 93, 139–145.

    Google Scholar 

  122. Gao, B., Yang, Y., Liao, J., He, B., & Liu, H. (2019). Bioinspired multistructured paper microfluidics for POCT. Lab on a Chip, 19(21), 3602–3608.

    Google Scholar 

  123. Amor-Gutierrez, O., Costa-Rama, E., & Fernandez-Abedul, M. T. (2019). Sampling and multiplexing in lab-on-paper bioelectroanalytical devices for glucose determination. Biosensors and Bioelectronics, 135, 64–70.

    Google Scholar 

  124. Labroo, P., & Cui, Y. (2014). Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites. Analytica Chimica Acta, 813, 90–96.

    Google Scholar 

  125. Witkowska Nery, E., Guimarães, J. A., & Kubota, L. T. (2015). Paper-based electronic tongue. Electroanalysis, 27(10), 2357–2362.

    Google Scholar 

  126. Yamada, K., Shibata, H., Suzuki, K., & Citterio, D. (2017). Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab on a Chip, 17(7), 1206–1249.

    Google Scholar 

  127. Guder, F., Ainla, A., Redston, J., Mosadegh, B., Glavan, A., Martin, T. J., et al. (2016). Paper-based electrical respiration sensor. Angewandte Chemie International Edition, 55(19), 5727–5732.

    Google Scholar 

  128. Duan, Z., Jiang, Y., Yan, M., Wang, S., Yuan, Z., Zhao, Q., et al. (2019). Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Applied Materials & Interfaces, 11(24), 21840–21849.

    Google Scholar 

  129. Carey, T., Cacovich, S., Divitini, G., Ren, J., Mansouri, A., Kim, J. M., et al. (2017). Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nature Communications, 8(1), 1202.

    Google Scholar 

  130. Ren, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., et al. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, 111, 622–630.

    Google Scholar 

  131. Qu, J., He, N., Patil, S. V., Wang, Y., Banerjee, D., & Gao, W. (2019). Screen printing of graphene oxide patterns onto viscose nonwovens with tunable penetration depth and electrical conductivity. ACS Applied Materials & Interfaces, 11(16), 14944–14951.

    Google Scholar 

  132. Zhao, J., Fu, Y., Xiao, Y., Dong, Y., Wang, X., & Lin, L. (2020). A naturally integrated smart textile for wearable electronics applications. Advanced Materials Technologies, 5(1), 1900781.

    Google Scholar 

  133. Duan, Z., Jiang, Y., Wang, S., Yuan, Z., Zhao, Q., Xie, G., et al. (2019). Inspiration from daily goods: A low-cost, facilely fabricated, and environment-friendly strain sensor based on common carbon ink and elastic core-spun Yarn. ACS Sustainable Chemistry & Engineering, 7(20), 17474–17481.

    Google Scholar 

  134. Shi, J., Liu, S., Zhang, L., Yang, B., Shu, L., Yang, Y., et al. (2020). Smart textile-integrated microelectronic systems for wearable applications. Advanced materials, 32(5), 1901958.

    Google Scholar 

  135. Ling, S., Wang, Q., Zhang, D., Zhang, Y., Mu, X., Kaplan, D. L., et al. (2018). Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Advanced Functional Materials, 28(9), 1705291.

    Google Scholar 

  136. Daeneke, T., Khoshmanesh, K., Mahmood, N., de Castro, I. A., Esrafilzadeh, D., Barrow, S. J., et al. (2018). Liquid metals: Fundamentals and applications in chemistry. Chemical Society Reviews, 47(11), 4073–4111.

    Google Scholar 

  137. Wang, Q., Yu, Y., & Liu, J. (2018). Preparations, characteristics and applications of the functional liquid metal materials. Advanced Engineering Materials, 20(5), 1700781.

    Google Scholar 

  138. Dickey, M. D. (2017). Stretchable and soft electronics using liquid metals. Advanced Materials, 29(27), 1606425.

    Google Scholar 

  139. Yun, G., Tang, S. Y., Sun, S., Yuan, D., Zhao, Q., Deng, L., et al. (2019). Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nature Communications, 10(1), 1300.

    Google Scholar 

  140. Yong-Lae, P., Bor-Rong, C., & Wood, R. J. (2012). Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sensors Journal, 12(8), 2711–2718.

    Google Scholar 

  141. Kramer, R. K., Majidi, C., & Wood, R. J. Wearable tactile keypad with stretchable artificial skin. In 2011 IEEE International Conference on Robotics and Automation, 9–13 May 2011 2011 (pp. 1103–1107).

  142. Yang, J., & Liu, J. (2014). Direct printing and assembly of FM radio at the user end via liquid metal printer. Circuit World, 40(4), 134–140.

    Google Scholar 

  143. Chang, H., Guo, R., Sun, Z., Wang, H., Hou, Y., Wang, Q., et al. (2018). Direct writing and repairable paper flexible electronics using nickel-liquid metal ink. Advanced Materials Interfaces, 5(20), 1800571.

    Google Scholar 

  144. Guo, R., Sun, X., Yao, S., Duan, M., Wang, H., Liu, J., et al. (2019). Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Advanced Materials Technologies, 4(8), 1900183.

    Google Scholar 

  145. Hwang, S. W., Park, G., Cheng, H., Song, J. K., Kang, S. K., Yin, L., et al. (2014). 25th anniversary article: Materials for high-performance biodegradable semiconductor devices. Advanced Materials, 26(13), 1992–2000.

    Google Scholar 

  146. Wang, L., Gao, Y., Dai, F., Kong, D., Wang, H., Sun, P., et al. (2019). Geometrical and chemical-dependent hydrolysis mechanisms of silicon nanomembranes for biodegradable electronics. ACS Applied Materials & Interfaces, 11(19), 18013–18023.

    Google Scholar 

  147. Phan, H. P., Zhong, Y., Nguyen, T. K., Park, Y., Dinh, T., Song, E., et al. (2019). Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano, 13(10), 11572–11581.

    Google Scholar 

  148. Yin, L., Cheng, H., Mao, S., Haasch, R., Liu, Y., Xie, X., et al. (2014). Dissolvable metals for transient electronics. Advanced Functional Materials, 24(5), 645–658.

    Google Scholar 

  149. Redlich, C., Quadbeck, P., Thieme, M., & Kieback, B. (2020). Molybdenum - A biodegradable implant material for structural applications? Acta Biomaterialia, 104, 241–251.

    Google Scholar 

  150. Chen, X., Park, Y. J., Kang, M., Kang, S. K., Koo, J., Shinde, S. M., et al. (2018). CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nature Communications, 9(1), 1690.

    Google Scholar 

  151. Feig, V. R., Tran, H., & Bao, Z. (2018). Biodegradable polymeric materials in degradable electronic devices. ACS Central Science, 4(3), 337–348.

    Google Scholar 

  152. Kenry, B., & Liu, B. (2018). Recent advances in biodegradable conducting polymers and their biomedical applications. Biomacromolecules, 19(6), 1783–1803.

    Google Scholar 

  153. Sugiyama, F., Kleinschmidt, A. T., Kayser, L. V., Alkhadra, M. A., Wan, J. M., Chiang, A. S., et al. (2018). Stretchable and degradable semiconducting block copolymers. Macromolecules, 51(15), 5944–5949.

    Google Scholar 

  154. Wilbon, P. A., Chu, F., & Tang, C. (2013). Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromolecular Rapid Communications, 34(1), 8–37.

    Google Scholar 

  155. Cao, Y., & Uhrich, K. E. (2018). Biodegradable and biocompatible polymers for electronic applications: A review. Journal of Bioactive and Compatible Polymers, 34(1), 3–15.

    Google Scholar 

  156. Hwang, S. W., Tao, H., Kim, D. H., Cheng, H., Song, J. K., Rill, E., et al. (2012). A physically transient form of silicon electronics. Science, 337(6102), 1640–1644.

    Google Scholar 

  157. Curry, E. J., Le, T. T., Das, R., Ke, K., Santorella, E. M., Paul, D., et al. (2019). Biodegradable nanofiber-based piezoelectric transducer. Proceedings of the National Academy of Sciences, 117(1), 214–220.

    Google Scholar 

  158. Chaitanya, S., & Singh, I. (2018). Ecofriendly treatment of aloe vera fibers for PLA based green composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 143–150.

    Google Scholar 

  159. Li, Z., Liu, H., He, X., Xu, F., & Li, F. (2018). Pen-on-paper strategies for point-of-care testing of human health. TrAC Trends in Analytical Chemistry, 108, 50–64.

    Google Scholar 

  160. Mirica, K. A., Weis, J. G., Schnorr, J. M., Esser, B., & Swager, T. M. (2012a). Mechanical drawing of gas sensors on paper. Angewandte Chemie (International ed. in English), 51(43), 10740–10745.

    Google Scholar 

  161. Dossi, N., Toniolo, R., Pizzariello, A., Impellizzieri, F., Piccin, E., & Bontempelli, G. (2013). Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis, 34(14), 2085–2091.

    Google Scholar 

  162. Dossi, N., Toniolo, R., Terzi, F., Impellizzieri, F., & Bontempelli, G. (2014). Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochimica Acta, 146, 518–524.

    Google Scholar 

  163. Wang, Q., Su, B., Liu, H., & Jiang, L. (2014). Chinese brushes: controllable liquid transfer in ratchet conical hairs. Advanced Materials, 26(28), 4889–4894.

    Google Scholar 

  164. Wang, Q., Meng, Q., Liu, H., & Jiang, L. (2015). Chinese brushes: From controllable liquid manipulation to template-free printing microlines. Nano Research, 8(1), 97–105.

    Google Scholar 

  165. Wang, X., & Liu, J. (2016a). Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines, 7(12), 206.

    Google Scholar 

  166. Guo, R., Sun, X., Yuan, B., Wang, H., & Liu, J. (2019). Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Advanced Science, 6(20), 1901478.

    Google Scholar 

  167. Gong, S., Lai, D. T., Wang, Y., Yap, L. W., Si, K. J., Shi, Q., et al. (2015). Tattoolike polyaniline microparticle-doped gold nanowire patches as highly durable wearable sensors. ACS Applied Materials & Interfaces, 7(35), 19700–19708.

    Google Scholar 

  168. Russo, A., Ahn, B. Y., Adams, J. J., Duoss, E. B., Bernhard, J. T., & Lewis, J. A. (2011). Pen-on-paper flexible electronics. Advanced Materials, 23(30), 3426–3430.

    Google Scholar 

  169. Liu, S., Cao, R., Wu, J., Guan, L., Li, M., Liu, J., et al. (2019). Directly writing barrier-free patterned biosensors and bioassays on paper for low-cost diagnostics. Sensors and Actuators B: Chemical, 285, 529–535.

    Google Scholar 

  170. Tao, X., Jia, H., He, Y., Liao, S., & Wang, Y. (2017). Ultrafast paper thermometers based on a green sensing ink. ACS Sensors, 2(3), 449–454.

    Google Scholar 

  171. Han, J.-W., Kim, B., Li, J., & Meyyappan, M. (2014). Carbon nanotube ink for writing on cellulose paper. Materials Research Bulletin, 50, 249–253.

    Google Scholar 

  172. Jia, H., Wang, J., Zhang, X., & Wang, Y. (2014). Pen-writing polypyrrole arrays on paper for versatile cheap sensors. ACS Macro Letters, 3(1), 86–90.

    Google Scholar 

  173. Mirica, K. A., Weis, J. G., Schnorr, J. M., Esser, B., & Swager, T. M. (2012b). Mechanical drawing of gas sensors on paper. Angewandte Chemie-International Edition, 51(43), 10740–10745.

    Google Scholar 

  174. Wang, X., & Liu, J. (2016b). Recent advancements in liquid metal flexible printed electronics: Properties, technologies, and applications. Micromachines (Basel), 7(12), 206.

    Google Scholar 

  175. Song, H., Zhang, J., Chen, D., Wang, K., Niu, S., Han, Z., et al. (2017). Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale, 9(3), 1166–1173.

    Google Scholar 

  176. Warren, H., Gately, R. D., Moffat, H. N., & Panhuis, M. (2013). Conducting carbon nanofibre networks: dispersion optimisation, evaporative casting and direct writing. RSC Advances, 3(44), 21936–21942.

    Google Scholar 

  177. Liao, X., Zhang, Z., Liao, Q., Liang, Q., Ou, Y., Xu, M., et al. (2016). Flexible and printable paper-based strain sensors for wearable and large-area green electronics. Nanoscale, 8(26), 13025–13032.

    Google Scholar 

  178. Sethy, D., Makireddi, S., Varghese, F. V., & Balasubramaniam, K. (2019). Piezoresistive behaviour of graphene nanoplatelet (GNP)/PMMA spray coated sensors on a polymer matrix composite beam. Express Polymer Letters, 13(11), 1018–1025.

    Google Scholar 

  179. Jo, H. S., An, S., Park, C. W., Woo, D. Y., Yarin, A. L., & Yoon, S. S. (2019). Wearable, stretchable, transparent all-in-one soft sensor formed from supersonically sprayed silver nanowires. ACS Applied Materials & Interfaces, 11(43), 40232–40242.

    Google Scholar 

  180. Choi, K. H., Khan, S., Dang, H. W., Doh, Y. H., & Hong, S. J. (2010). Electrohydrodynamic Spray Deposition of ZnO Nanoparticles. Japanese Journal of Applied Physics, 49(5S1), 05EC08.

  181. Zhang, Y., Lei, C., & Soo Kim, W. (2013). Design optimized membrane-based flexible paper accelerometer with silver nano ink. Applied Physics Letters, 103(7), 073304.

    Google Scholar 

  182. Zhang, Y., & Kim, W. S. (2014). Highly sensitive flexible printed accelerometer system for monitoring vital signs. Soft Robotics, 1(2), 132–135.

    Google Scholar 

  183. Li, W., Teng, C., Sun, Y., Cai, L., Xu, J. L., Sun, M., et al. (2018). Sprayed, scalable, wearable, and portable NO2 sensor array using fully flexible AgNPs-all-carbon nanostructures. ACS Applied Materials & Interfaces, 10(40), 34485–34493.

    Google Scholar 

  184. Xuan, X., Yoon, H. S., & Park, J. Y. (2018). A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosensors and Bioelectronics, 109, 75–82.

    Google Scholar 

  185. Yu, L., Yi, Y., Yao, T., Song, Y., Chen, Y., Li, Q., et al. (2018). All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Research, 12(2), 331–338.

    Google Scholar 

  186. Cao, W., Zhou, P., Liao, Y., Yang, X., Pan, D., Li, Y., et al. (2019). A spray-on, nanocomposite-based sensor network for in-situ active structural health monitoring. Sensors (Basel), 19(9), 2077.

    Google Scholar 

  187. Kim, D. H., Lu, N., Ma, R., Kim, Y. S., Kim, R. H., Wang, S., et al. (2011). Epidermal electronics. Science, 333(6044), 838–843.

    Google Scholar 

  188. Pan, Q., Zhang, S., Li, R., He, Y., & Wang, Y. (2019). A low-cost and reusable photothermal membrane for solar-light induced anti-bacterial regulation. Journal of Materials Chemistry B, 7(18), 2948–2953.

    Google Scholar 

  189. Zang, X., Jiang, Y., Wang, X., Wang, X., Ji, J., & Xue, M. (2018). Highly sensitive pressure sensors based on conducting polymer-coated paper. Sensors and Actuators B: Chemical, 273, 1195–1201.

    Google Scholar 

  190. Yang, M., Fu, C., Xia, Z., Cheng, D., Cai, G., Tang, B., et al. (2018). Conductive and durable CNT-cotton ring spun yarns. Cellulose, 25(7), 4239–4249.

    Google Scholar 

  191. Yang, M., Pan, J., Xu, A., Luo, L., Cheng, D., Cai, G., et al. (2018). Conductive cotton fabrics for motion sensing and heating applications. Polymers (Basel), 10(6), 568.

    Google Scholar 

  192. Jiang, X., Zhang, R., Yang, T., Lin, S., Chen, Q., Zhen, Z., et al. (2016). Foldable and electrically stable graphene film resistors prepared by vacuum filtration for flexible electronics. Surface and Coatings Technology, 299, 22–28.

    Google Scholar 

  193. Hassan, K., Uddin, A. S. M. I., & Chung, G.-S. (2017). Mesh of ultrasmall Pd/Mg bimetallic nanowires as fast response wearable hydrogen sensors formed on filtration membrane. Sensors and Actuators B: Chemical, 252, 1035–1044.

    Google Scholar 

  194. Liang, B., Zhang, Z., Chen, W., Lu, D., Yang, L., Yang, R., et al. (2019). Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Letters, 11(1), 92.

    Google Scholar 

  195. Kim, J., Wubs, K., Bae, B.-S., & Soo Kim, W. (2012). Direct stamping of silver nanoparticles toward residue-free thick electrode. Science and Technology of Advanced Materials, 13(3), 035004.

    Google Scholar 

  196. Lee, W. H., & Park, Y. D. (2017). Inkjet etching of polymers and its applications in organic electronic devices. Polymers (Basel), 9(9), 441.

    Google Scholar 

  197. Koo, J., Kim, J. W., Kim, M., Yoon, S., & Shim, J. H. (2020). Inkjet printing of silica aerogel for fabrication of 2-D patterned thermal insulation layers. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00189-4

    Article  Google Scholar 

  198. Gao, M., Li, L., & Song, Y. (2017). Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, 5(12), 2971–2993.

    Google Scholar 

  199. Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., et al. (2011). Inkjet printing of single-crystal films. Nature, 475(7356), 364–367.

    Google Scholar 

  200. Minemawari, H., Yamada, T., & Hasegawa, T. (2014). Crystalline film growth of TIPS-pentacene by double-shot inkjet printing technique. Japanese Journal of Applied Physics, 53(5S3), 05HC10.

  201. Zhang, H., Moon, S. K., & Ngo, T. H. (2020). 3D printed electronics of non-contact ink writing techniques: Status and promise. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 511–524.

    Google Scholar 

  202. Lee, J., Kim, H.-C., Choi, J.-W., & Lee, I. H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 373–383.

    Google Scholar 

  203. Sharma, A., Mondal, S., Mondal, A. K., Baksi, S., Patel, R. K., Chu, W.-S., et al. (2017). 3D printing: It’s microfluidic functions and environmental impacts. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 323–334.

    Google Scholar 

  204. Muth, J. T., Vogt, D. M., Truby, R. L., Menguc, Y., Kolesky, D. B., Wood, R. J., et al. (2014). Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials, 26(36), 6307–6312.

    Google Scholar 

  205. Ota, H., Emaminejad, S., Gao, Y., Zhao, A., Wu, E., Challa, S., et al. (2016). Application of 3D printing for smart objects with embedded electronic sensors and systems. Advanced Materials Technologies, 1(1), 1600013.

    Google Scholar 

  206. Guo, S. Z., Qiu, K., Meng, F., Park, S. H., & McAlpine, M. C. (2017). 3D printed stretchable tactile sensors. Advanced materials, 29(27), 1701218.

    Google Scholar 

  207. He, X., Lei, Z., Zhang, W., & Yu, K. (2019). Recyclable 3D printing of polyimine-based covalent adaptable network polymers. 3D Printing and Additive Manufacturing, 6(1), 31–39.

  208. Alkadi, F., Lee, J., Yeo, J.-S., Hwang, S.-H., & Choi, J.-W. (2019). 3D printing of ground tire rubber composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(2), 211–222.

    Google Scholar 

  209. Flowers, P. F., Reyes, C., Ye, S., Kim, M. J., & Wiley, B. J. (2017). 3D printing electronic components and circuits with conductive thermoplastic filament. Additive Manufacturing, 18, 156–163.

    Google Scholar 

  210. Lazarus, N., Bedair, S. S., & Smith, G. L. (2019). Creating 3D printed magnetic devices with ferrofluids and liquid metals. Additive Manufacturing, 26, 15–21.

    Google Scholar 

  211. Billah, K. M. M., Coronel, J. L., Halbig, M. C., Wicker, R. B., & Espalin, D. (2019). Electrical and thermal characterization of 3D printed thermoplastic parts with embedded wires for high current-carrying applications. IEEE Access, 7, 18799–18810.

    Google Scholar 

  212. MacDonald, E., & Wicker, R. (2016). Multiprocess 3D printing for increasing component functionality. Science, 353(6307), aaf2093.

  213. Lewis, J. A., & Ahn, B. Y. (2015). Device fabrication: Three-dimensional printed electronics. Nature, 518(7537), 42–43.

    Google Scholar 

  214. Jahangir, M. N., Cleeman, J., Hwang, H.-J., & Malhotra, R. (2019). Towards out-of-chamber damage-free fabrication of highly conductive nanoparticle-based circuits inside 3D printed thermally sensitive polymers. Additive Manufacturing, 30, 100886.

    Google Scholar 

  215. Nguyen, H. A. D., Lee, C., & Shin, K.-H. (2017). Approach to optimizing printed conductive lines in high-resolution roll-to-roll gravure printing. Robotics and Computer-Integrated Manufacturing, 46, 122–129.

    Google Scholar 

  216. Zhang, H., Ramm, A., Lim, S., Xie, W., Ahn, B. Y., Xu, W., et al. (2015). Wettability contrast gravure printing. Advanced Materials, 27(45), 7420–7425.

    Google Scholar 

  217. Kim, K., Kim, J., Kim, B., & Ko, S. (2018). Fabrication of microfluidic structure based biosensor using roll-to-roll gravure printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 369–374.

    Google Scholar 

  218. Kim, S., Sojoudi, H., Zhao, H., Mariappan, D., McKinley, G. H., Gleason, K. K., et al. (2016). Ultrathin high-resolution flexographic printing using nanoporous stamps. Science Advances, 2(12), e1601660.

    Google Scholar 

  219. Lee, J., Byeon, J., & Lee, C. (2020). Theories and control technologies for web handling in the roll-to-roll manufacturing process. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(2), 525–544.

    Google Scholar 

  220. Ye, R., James, D. K., & Tour, J. M. (2018). Laser-induced graphene. Accounts of Chemical Research, 51(7), 1609–1620.

    Google Scholar 

  221. Chyan, Y., Ye, R., Li, Y., Singh, S. P., Arnusch, C. J., & Tour, J. M. (2018). Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food. ACS Nano, 12(3), 2176–2183.

    Google Scholar 

  222. Luo, S., Hoang, P. T., & Liu, T. (2016). Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon, 96, 522–531.

    Google Scholar 

  223. Zheng, C., Hu, A., Li, R., Bridges, D., & Chen, T. (2015). Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser. Optics Express, 23(13), 17584–17598.

    Google Scholar 

  224. Yao, Y., Duan, X., Niu, M., Luo, J., Wang, R., & Liu, T. (2019). One-step process for direct laser writing carbonization of NH4H2PO4 treated cellulose paper and its use for facile fabrication of multifunctional force sensors with corrugated structures. Cellulose, 26(12), 7423–7435.

    Google Scholar 

  225. Gao, Y., Li, Q., Wu, R., Sha, J., Lu, Y., & Xuan, F. (2019). Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer toward electronic skins. Advanced Functional Materials, 29(2), 1806786.

    Google Scholar 

  226. Zhou, X., Guo, W., Fu, J., Zhu, Y., Huang, Y., & Peng, P. (2019). Laser writing of Cu/CuO integrated structure on flexible substrate for humidity sensing. Applied Surface Science, 494, 684–690.

    Google Scholar 

  227. Chung, W. H., Hwang, H. J., Lee, S. H., & Kim, H. S. (2013). In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics. Nanotechnology, 24(3), 035202.

    Google Scholar 

  228. Kim, H.-S., Dhage, S. R., Shim, D.-E., & Hahn, H. T. (2009). Intense pulsed light sintering of copper nanoink for printed electronics. Applied Physics A, 97(4), 791–798.

    Google Scholar 

  229. Jang, Y.-R., Joo, S.-J., Chu, J.-H., Uhm, H.-J., Park, J.-W., Ryu, C.-H., et al. (2020). A review on intense pulsed light sintering technologies for conductive electrodes in printed electronics. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00193-8

    Article  Google Scholar 

  230. Hwang, H.-J., Zeng, C., Pan, C., Dexter, M., Malhotra, R., & Chang, C.-H. (2020). Tuning electronic and photocatalytic properties in pulsed light synthesis of Cu2ZnSnS4 films from CuS-ZnS-SnS nanoparticles. Materials Research Bulletin, 122, 110645.

    Google Scholar 

  231. Hwang, H. J., & Malhotra, R. (2019). Shape-tuned junction resistivity and self-damping dynamics in intense pulsed light sintering of silver nanostructure films. ACS Applied Materials & Interfaces, 11(3), 3536–3546.

    Google Scholar 

  232. Jang, Y.-R., Ryu, C.-H., Hwang, Y.-T., & Kim, H.-S. (2020). Optimization of intense pulsed light sintering considering dimensions of printed Cu nano/micro-paste patterns for printed electronics. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00180-8

    Article  Google Scholar 

  233. Ryu, J., Kim, H.-S., & Hahn, H. T. (2010). Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. Journal of Electronic Materials, 40(1), 42–50.

    Google Scholar 

  234. Ryu, J., Kim, K., Kim, H. S., Hahn, H. T., & Lashmore, D. (2010). Intense pulsed light induced platinum-gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. Biosensors and Bioelectronics, 26(2), 602–607.

    Google Scholar 

  235. Park, S.-H., & Kim, H.-S. (2014). Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Films, 550, 575–581.

    Google Scholar 

  236. Dexter, M., Gao, Z., Bansal, S., Chang, C. H., & Malhotra, R. (2018). Temperature, crystalline phase and influence of substrate properties in intense pulsed light sintering of copper sulfide nanoparticle thin films. Scientific Reports, 8(1), 2201.

    Google Scholar 

  237. Dharmadasa, R., Dharmadasa, I. M., & Druffel, T. (2014). Intense pulsed light sintering of electrodeposited CdS thin films. Advanced Engineering Materials, 16(11), 1351–1361.

    Google Scholar 

  238. Hwang, H. J., & Kim, H. S. (2015). Ultra-high speed fabrication of TiO2 photoanode by flash light for dye-sensitized solar cell. Journal of Nanoscience and Nanotechnology, 15(7), 5028–5034.

    Google Scholar 

  239. Park, J.-W., Jang, Y.-R., Shin, H.-S., Kim, H.-S., & Kim, J. J. (2020). A Study on copper/silver core-shell microparticles with silver nanoparticles hybrid paste and its intense pulsed light sintering characteristics for high oxidation resistance. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-500271-x

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Grant No. 51505358), Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2020JQ-309) and start-up funds of Shaanxi University of Technology (Grant No. SLGQD1812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Shang, S., Mo, S. et al. Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1323–1346 (2021). https://doi.org/10.1007/s40684-020-00285-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00285-5

Keywords

Navigation