Skip to main content
Log in

Inkjet Printing of Silica Aerogel for Fabrication of 2-D Patterned Thermal Insulation Layers

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Aerogels have the lowest thermal conductivity (< 0.2 W m−1 K−1) among known materials owing to the presence of pores, which constitute over 90% of the structure. Aerogels have mainly been commercialized for use as a thermal insulation material for building applications, such as walls and pipes. Herein, a silica aerogel thin film was fabricated by using a commercial and cost-effective HP inkjet printer. Next, silica aerogel ink was synthesized by mixing hydrophilic silica aerogel powder, solvent, and other organic additives. The thickness and pattern of the silica aerogel thin films were easily controlled by increasing the number of printing cycles and patterning by using a drawing software. The printed silica aerogel thin film had a smooth surface and thickness with well-distributed ink particles. Further, the aerogel had a unique structure comprising nanopores and nanonetworks. The thermal conductivity of the silica aerogel thin film was approximately 0.05 W m−1 K−1 at 30–300 °C. Inkjet printing of silica aerogels is expected to be a strong candidate for thermal insulating applications in micro-scale systems such as batteries and electronic chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parmenter, K. E., & Milstein, F. (1998). Mechanical properties of silica aerogels. Journal of Non-Crystalline Solids, 223(3), 179–189.

    Article  Google Scholar 

  2. Schmidt, M., & Schwertfeger, F. (1998). Applications for silica aerogel products. Journal of Non-Crystalline Solids, 225, 364–368.

    Article  Google Scholar 

  3. Lu, X., Arduini-Schuster, M. C., Kuhn, J., Nilsson, O., Fricke, J., & Pekala, R. W. (1992). Thermal conductivity of monolithic organic aerogels. Science, 255(5047), 971.

    Article  Google Scholar 

  4. Fricke, J., & Tillotson, T. (1997). Aerogels: Production, characterization, and applications. Thin Solid Films, 297(1), 212–223.

    Article  Google Scholar 

  5. Hrubesh, L. W. (1998). Aerogel applications. Journal of Non-Crystalline Solids, 225, 335–342.

    Article  Google Scholar 

  6. Hüsing, N., & Schubert, U. (1998). Aerogels—airy materials: Chemistry, structure, and properties. Angewandte Chemie International Edition, 37(1–2), 22–45.

    Google Scholar 

  7. Soleimani Dorcheh, A., & Abbasi, M. H. (2008). Silica aerogel: Synthesis, properties and characterization. Journal of Materials Processing Technology, 199(1), 10–26.

    Article  Google Scholar 

  8. Tewari, P. H., Hunt, A. J., & Lofftus, K. D. (1985). Ambient-temperature supercritical drying of transparent silica aerogels. Materials Letters, 3(9), 363–367.

    Article  Google Scholar 

  9. García-González, C. A., Camino-Rey, M. C., Alnaief, M., Zetzl, C., & Smirnova, I. (2012). Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. The Journal of Supercritical Fluids, 66, 297–306.

    Article  Google Scholar 

  10. Wang, J., Zhang, Y., Wei, Y., & Zhang, X. (2015). Fast and one-pot synthesis of silica aerogels via a quasi-solvent-exchange-free ambient pressure drying process. Microporous and Mesoporous Materials, 218, 192–198.

    Article  Google Scholar 

  11. Wang, Z., Dai, Z., Wu, J., Zhao, N., & Xu, J. (2013). Vacuum-dried robust bridged silsesquioxane aerogels. Advanced Materials, 25(32), 4494–4497.

    Article  Google Scholar 

  12. Fenech, J., Viazzi, C., Ansart, F., & Bonino, J. P. (2010). Elaboration of sol-gel coatings from aerogels and xerogels of doped zirconia for TBC applications. Advanced Materials Research, 89–91, 184–189.

    Article  Google Scholar 

  13. Liu, J., Fan, C., Shi, F., Yu, L., Huang, X., Hu, S., et al. (2016). Fabrication of Cs0.32WO3/SiO2 aerogel multilayer composite coating for thermal insulation applications. Materials Letters, 181, 140–143.

    Article  Google Scholar 

  14. Tajiri, K., Igarashi, K., & Nishio, T. (1995). Effects of supercritical drying media on structure and properties of silica aerogel. Journal of Non-Crystalline Solids, 186, 83–87.

    Article  Google Scholar 

  15. Wang, J., Zhang, Y., & Zhang, X. (2016). Reversible superhydrophobic coatings on lifeless and biotic surfaces via dry-painting of aerogel microparticles. Journal of Materials Chemistry A, 4(29), 11408–11415.

    Article  Google Scholar 

  16. de Gans, B.-J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: State of the art and future developments. Advanced Materials, 16(3), 203–2013.

    Article  Google Scholar 

  17. Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing—process and its applications. Advanced Materials, 22(6), 673–685.

    Article  Google Scholar 

  18. Chu, W. S., Kim, M. S., Jang, K. H., Song, J. H., Rodrigue, H., Chun, D. M., et al. (2016). From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory: A review and perspective of paradigm shift. International Journal of Precision Engineering and Manufacturing, Green Technology, 3(2), 209–222.

    Article  Google Scholar 

  19. Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., et al. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 111–128.

    Article  Google Scholar 

  20. Lee, J., Kim, H.-C., Choi, J.-W., & Lee, I. H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 373–383.

    Article  Google Scholar 

  21. Chu, W.-S., Kim, C.-S., Lee, H.-T., Choi, J.-O., Park, J.-I., Song, J.-H., et al. (2014). Hybrid manufacturing in micro/nano scale: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 75–92.

    Article  Google Scholar 

  22. Shin, D.-G., Kim, T.-H., & Kim, D.-E. (2017). Review of 4D printing materials and their properties. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 349–357.

    Article  Google Scholar 

  23. Kang, M., & Kang, K.-T. (2018). Flexible 2-Layer paper printed circuit board fabricated by inkjet printing for 3-D origami electronics. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 421–426.

    Article  Google Scholar 

  24. Liu, X., Tarn, T.-J., Huang, F., & Fan, J. (2015). Recent advances in inkjet printing synthesis of functional metal oxides. Particuology, 19, 1–13.

    Article  Google Scholar 

  25. Li, Y., Lan, L., Sun, S., Lin, Z., Gao, P., Song, W., et al. (2017). All inkjet-printed metal oxide thin-film transistor array with good stability and uniformity using surface-energy patterns. ACS Applied Materials and Interfaces, 9(9), 8194–8200.

    Article  Google Scholar 

  26. Rieu, M., Camara, M., Tournier, G., Viricelle, J.-P., Pijolat, C., de Rooij, N. F., et al. (2016). Fully inkjet printed SnO2 gas sensor on plastic substrate. Sensors and Actuators B: Chemical, 236, 1091–1097.

    Article  Google Scholar 

  27. Delannoy, P. E., Riou, B., Brousse, T., Le Bideau, J., Guyomard, D., & Lestriez, B. (2015). Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries. Journal of Power Sources, 287, 261–268.

    Article  Google Scholar 

  28. Jung, S., Sou, A., Banger, K., Ko, D.-H., Chow, P. C. Y., McNeill, C. R., et al. (2014). All inkjet-printed, all-air-processed solar cells. Advanced Energy Materials, 4(14), 1400432.

    Article  Google Scholar 

  29. He, S., Huang, Y., Chen, G., Feng, M., Dai, H., Yuan, B., et al. (2019). Effect of heat treatment on hydrophobic silica aerogel. Journal of Hazardous materials, 362, 294–302.

    Article  Google Scholar 

  30. Han, G. D., Neoh, K. C., Bae, K., Choi, H. J., Park, S. W., Son, J.-W., et al. (2016). Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer. Journal of Power Sources, 306, 503–509.

    Article  Google Scholar 

  31. Han, G. D., Choi, H. J., Bae, K., Choi, H. R., Jang, D. Y., & Shim, J. H. (2017). Fabrication of lanthanum strontium cobalt ferrite–gadolinium-doped ceria composite cathodes using a low-price inkjet printer. ACS Applied Materials and Interfaces, 9(45), 39347–39356.

    Article  Google Scholar 

  32. Kim, J. H., Feldman, A., & Novotny, D. (1999). Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness. Journal of Applied Physics, 86(7), 3959–3963.

    Article  Google Scholar 

  33. Wang, H., & Sen, M. (2009). Analysis of the 3-omega method for thermal conductivity measurement. International Journal of Heat and Mass Transfer, 52(7–8), 2102–2109.

    Article  Google Scholar 

  34. Kaul, P. B., Day, K. A., & Abramson, A. R. (2007). Application of the three omega method for the thermal conductivity measurement of polyaniline. Journal of Applied Physics, 101, 083507.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Hydrogen Energy Innovation Technology Development Program of the National Research Foundation of Korea(NRF) funded by the Korean government (Ministry of Science and ICT(MSIT)) (No. NRF-2019M3E6A1064697) and Korea Electric Power Corporation (Grant No. R17XA05-57).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Hyung Shim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, J., Kim, J.W., Kim, M. et al. Inkjet Printing of Silica Aerogel for Fabrication of 2-D Patterned Thermal Insulation Layers. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 445–451 (2021). https://doi.org/10.1007/s40684-020-00189-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00189-4

Keywords

Navigation