Skip to main content
Log in

A Review on Intense Pulsed Light Sintering Technologies for Conductive Electrodes in Printed Electronics

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Intense pulsed light (IPL) sintering or annealing technology has attracted tremendous attention from many researchers and a variety of industries owing to its unique features. In IPL process, the pulsed white flash-light from xenon lamp is irradiated on the target materials and converts it to the desired conductive layer. The IPL process is ambient condition and room temperature process. The irradiated IPL on the materials can induce an extremely quick heating (several milliseconds) to the certain temperature by the synergetic opto-chemical, opto-thermal phenomena without damage on the low temperature substrates such as polymer and paper. The exact mechanisms of these opto-synergetic phenomena has been intensively studied by many researchers for a decade. Also, the applications of IPL techniques have become more extensive in printed electronics. In this review, we summarized the brief history and various applications of the intense pulsed light technology to conductive electrodes as well as several applications. The IPL process can provide a paved route to revolutionary eco-benign and low-cost manufacturing process for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Kim, H.-S., Dhage, S. R., Shim, D.-E., & Hahn, H. T. (2009). Intense pulsed light sintering of copper nanoink for printed electronics. Applied Physics A, 97, 791.

    Google Scholar 

  2. Kinney, L. C. & Tompkins, E. H. (1969). Method of making printed circuits. U.S. patent US3451813A.

  3. Ryu, J., Kim, H.-S., & Hahn, H. T. (2011). Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. Journal of Electronic Materials, 40, 42–50.

    Google Scholar 

  4. Kang, H., Sowade, E., & Baumann, R. R. (2014). Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds. ACS Applied Materials & Interfaces, 6, 1682–1687.

    Google Scholar 

  5. Han, W.-S., Hong, J.-M., Kim, H.-S., & Song, Y.-W. (2011). Multi-pulsed white light sintering of printed Cu nanoinks. Nanotechnology, 22, 395705.

    Google Scholar 

  6. Shankar, A., Salcedo, E., Berndt, A., Choi, D., & Ryu, J. E. (2018). Pulsed light sintering of silver nanoparticles for large deformation of printed stretchable electronics. Advanced Composites and Hybrid Materials, 1, 193–198.

    Google Scholar 

  7. Lee, D. J., et al. (2011). Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polymer substrate. Journal of Micromechanics and Microengineering, 21, 125023.

    Google Scholar 

  8. Weise, D., Mitra, K. Y., Sowade, E., & Baumann, R. R. (2015). Intense pulsed light sintering of inkjet printed silver nanoparticle ink: Influence of flashing parameters and substrate. MRS Online Proceedings Library Archive, 1761, 1–6.

    Google Scholar 

  9. Jang, K., Yu, S., Park, S.-H., Kim, H.-S., & Ahn, H. (2015). Intense pulsed light-assisted facile and agile fabrication of cobalt oxide/nickel cobaltite nanoflakes on nickel-foam for high performance supercapacitor applications. Journal of Alloys and Compounds, 618, 227–232.

    Google Scholar 

  10. Park, C., et al. (2017). Intense pulsed white light assisted fabrication of Co-CoOx core-shell nanoflakes on graphite felt for flexible hybrid supercapacitors. Electrochimica Acta, 246, 757–765.

    Google Scholar 

  11. Hwang, H.-J., Oh, K.-H., & Kim, H.-S. (2016). All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink. Scientific Reports, 6, 19696.

    Google Scholar 

  12. Oh, G.-H., Hwang, H.-J., & Kim, H.-S. (2017). Effect of copper oxide shell thickness on flash light sintering of copper nanoparticle ink. RSC Advances, 7, 17724–17731.

    Google Scholar 

  13. Hwang, H.-J., Chung, W.-H., & Kim, H.-S. (2012). In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics. Nanotechnology, 23, 485205.

    Google Scholar 

  14. Joo, S.-J., Hwang, H.-J., & Kim, H.-S. (2014). Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Nanotechnology, 25, 265601.

    Google Scholar 

  15. Chung, W.-H., Hwang, H.-J., & Kim, H.-S. (2015). Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics. Thin Solid Films, 580, 61–70.

    Google Scholar 

  16. Chung, W.-H., Hwang, H.-J., Lee, S.-H., & Kim, H.-S. (2012). In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics. Nanotechnology, 24, 035202.

    Google Scholar 

  17. Yung, K., Gu, X., Lee, C., & Choy, H. (2010). Ink-jet printing and camera flash sintering of silver tracks on different substrates. Journal of Materials Processing Technology, 210, 2268–2272.

    Google Scholar 

  18. Park, S.-H., Jang, S., Lee, D.-J., Oh, J., & Kim, H.-S. (2012). Two-step flash light sintering process for crack-free inkjet-printed Ag films. Journal of Micromechanics and Microengineering, 23, 015013.

    Google Scholar 

  19. Moon, C.-J., et al. (2017). Flash light sintering of ag mesh films for printed transparent conducting electrode. Thin Solid Films, 629, 60–68.

    Google Scholar 

  20. Chung, W.-H., Hwang, Y.-T., Lee, S.-H., & Kim, H.-S. (2016). Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity. Nanotechnology, 27, 205704.

    Google Scholar 

  21. Lee, C., et al. (2018). Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices. Scientific Reports, 8, 2763.

    Google Scholar 

  22. Chung, W.-H., Kim, S.-H., & Kim, H.-S. (2016). Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes. Scientific Reports, 6, 32086.

    Google Scholar 

  23. Park, J. H., et al. (2017). Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Advanced Materials, 29, 1603473.

    Google Scholar 

  24. Kang, C., Kim, H., Oh, Y.-W., Baek, K.-H., & Do, L.-M. (2016). High-performance, solution-processed indium-oxide TFTs using rapid flash lamp annealing. IEEE Electron Device Letters, 37, 595–598.

    Google Scholar 

  25. Eom, T.-Y., et al. (2018). Investigation of the evolution of nitrogen defects in flash-lamp-annealed InGaZnO films and their effects on transistor characteristics. Applied Physics Express, 11, 061104.

    Google Scholar 

  26. Hwang, H.-J., & Kim, H.-S. (2015). Ultra-high speed fabrication of TiO2 photoanode by flash light for dye-sensitized solar cell. Journal of Nanoscience and Nanotechnology, 15, 5028–5034.

    Google Scholar 

  27. Patil, S. A., Hwang, H.-J., Yu, M.-H., Shrestha, N. K., & Kim, H.-S. (2017). Photonic sintering of a ZnO nanosheet photoanode using flash white light combined with deep UV irradiation for dye-sensitized solar cells. RSC Advances, 7, 6565–6573.

    Google Scholar 

  28. Park, S.-H., & Kim, H.-S. (2014). Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Films, 550, 575–581.

    Google Scholar 

  29. Song, Y.-W., Park, S.-H., Han, W.-S., Hong, J.-M., & Kim, H.-S. (2011). Single-step high-speed nanogranulation of metal alloy around carbon nanotubes by flash light irradiation. Materials Letters, 65, 2510–2513.

    Google Scholar 

  30. Park, S.-H., Jung, H.-M., Um, S., Song, Y.-W., & Kim, H.-S. (2012). Rapid synthesis of Pt-based alloy/carbon nanotube catalysts for a direct methanol fuel cell using flash light irradiation. International Journal of Hydrogen Energy, 37, 12597–12604.

    Google Scholar 

  31. Park, S.-H., & Kim, H.-S. (2015). Flash light-assisted facile and eco-friendly synthesis of platinum-based alloy nanoparticle/carbon nano-tube catalysts for a direct methanol fuel cell. Journal of the Electrochemical Society, 162, F204–F210.

    Google Scholar 

  32. Cote, L. J., Cruz-Silva, R., & Huang, J. (2009). Flash reduction and patterning of graphite oxide and its polymer composite. Journal of the American Chemical Society, 131, 11027–11032.

    Google Scholar 

  33. Park, S.-H., & Kim, H.-S. (2015). Environmentally benign and facile reduction of graphene oxide by flash light irradiation. Nanotechnology, 26, 205601.

    Google Scholar 

  34. Chung, W.-H., Park, S.-H., Joo, S.-J., & Kim, H.-S. (2018). UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes. Nano Research, 11, 2190–2203.

    Google Scholar 

  35. Jeon, E.-B., Joo, S.-J., Ahn, H., & Kim, H.-S. (2016). Two-step flash light sintering process for enhanced adhesion between copper complex ion/silane ink and a flexible substrate. Thin Solid Films, 603, 382–390.

    Google Scholar 

  36. Ryu, C.-H., Joo, S.-J., & Kim, H.-S. (2016). Two-step flash light sintering of copper nanoparticle ink to remove substrate warping. Applied Surface Science, 384, 182–191.

    Google Scholar 

  37. Hwang, Y.-T., Chung, W.-H., Jang, Y.-R., & Kim, H.-S. (2016). Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics. ACS Applied Materials & Interfaces, 8, 8591–8599.

    Google Scholar 

  38. Son, Y.-H., Jang, J.-Y., Kang, M. K., Ahn, S., & Lee, C. S. (2018). Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles. Thin Solid Films, 656, 61–67.

    Google Scholar 

  39. Hwang, H.-J., et al. (2018). Multi-pulsed flash light sintering of copper nanoparticle pastes on silicon wafer for highly-conductive copper electrodes in crystalline silicon solar cells. Applied Surface Science, 462, 378–386.

    Google Scholar 

  40. Sarkar, S. K., Gupta, H., & Gupta, D. (2017). Flash light sintering of silver nanoink for inkjet-printed thin-film transistor on flexible substrate. IEEE Transactions on Nanotechnology, 16, 375–382.

    Google Scholar 

  41. Takahashi, K., Namiki, K., Fujimura, T., Jeon, E.-B., & Kim, H.-S. (2015). Instant electrode fabrication on carbon-fiber-reinforced plastic structures using metal nano-ink via flash light sintering for smart sensing. Composites Part B: Engineering, 76, 167–173.

    Google Scholar 

  42. Skorupa, W. et al. (2004). Advanced thermal processing of semiconductor materials by flash lamp annealing. MRS Online Proceedings Library Archive, 810.

  43. Park, J.-S., Chung, W.-H., Kim, H.-S., & Kim, Y.-B. (2017). Rapid fabrication of chemical-solution-deposited La0.6Sr0.4CoO3−δ thin films via flashlight sintering. Journal of Alloys and Compounds, 696, 102–108.

    Google Scholar 

  44. Schroder, K., McCool, S., & Furlan, W. (2006). Broadcast photonic curing of metallic nanoparticle films. NSTI Nanotech, 7, 11.

    Google Scholar 

  45. Ding, S., et al. (2016). One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Applied Materials & Interfaces, 8, 6190–6199.

    Google Scholar 

  46. SeonáYoon, I., & HongáKim, S. (2017). Selective photonic sintering of Ag flakes embedded in silicone elastomers to fabricate stretchable conductors. Journal of Materials Chemistry C, 5, 11733–11740.

    Google Scholar 

  47. Hösel, M., & Krebs, F. C. (2012). Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes. Journal of Materials Chemistry, 22, 15683–15688.

    Google Scholar 

  48. Galagan, Y., et al. (2013). Photonic sintering of inkjet printed current collecting grids for organic solar cell applications. Organic Electronics, 14, 38–46.

    Google Scholar 

  49. Albrecht, A., Rivadeneyra, A., Abdellah, A., Lugli, P., & Salmerón, J. F. (2016). Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns. Journal of Materials Chemistry C, 4, 3546–3554.

    Google Scholar 

  50. Su, B.-Y., Chu, S.-Y., Juang, Y.-D., & Chen, H.-C. (2013). High-performance low-temperature solution-processed InGaZnO thin-film transistors via ultraviolet-ozone photo-annealing. Applied Physics Letters, 102, 192101.

    Google Scholar 

  51. Gilje, S., et al. (2010). Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Advanced Materials, 22, 419–423.

    Google Scholar 

  52. Zhang, Y. L., et al. (2014). Photoreduction of graphene oxides: Methods, properties, and applications. Advanced Optical Materials, 2, 10–28.

    Google Scholar 

  53. Schroder, K. A. (2011). Mechanisms of Photonic Curing™: Processing high temperature films on low temperature substrates. Nanotechnology, 2, 220–223.

    Google Scholar 

  54. Gu, W. & Cui, Z. (2016). In: Electronic System-Integration Technology Conference (ESTC), 2016 6th (pp. 1–4). IEEE.

  55. Jo, Y., et al. (2014). Extremely flexible, printable Ag conductive features on PET and paper substrates via continuous millisecond photonic sintering in a large area. Journal of Materials Chemistry C, 2, 9746–9753.

    Google Scholar 

  56. Araki, T., et al. (2013). Cu salt ink formulation for printed electronics using photonic sintering. Langmuir, 29, 11192–11197.

    Google Scholar 

  57. Kim, I., et al. (2018). A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring. Nanoscale, 10, 7890–7897.

    Google Scholar 

  58. Cronin, H. M., et al. (2018). Photonic curing of low-cost aqueous silver flake inks for printed conductors with increased yield. ACS Applied Materials & Interfaces, 10, 21398–21410.

    Google Scholar 

  59. Paglia, F., et al. (2015). Photonic sintering of copper through the controlled reduction of printed CuO nanocrystals. ACS Applied Materials & Interfaces, 7, 25473–25478.

    Google Scholar 

  60. Tetzner, K., Schroder, K. A., & Bock, K. (2014). Photonic curing of sol–gel derived HfO2 dielectrics for organic field-effect transistors. Ceramics International, 40, 15753–15761.

    Google Scholar 

  61. Cui, H.-W., et al. (2014). Ultra-fast photonic curing of electrically conductive adhesives fabricated from vinyl ester resin and silver micro-flakes for printed electronics. RSC Advances, 4, 15914–15922.

    Google Scholar 

  62. Norita, S., et al. (2015). Inkjet-printed copper electrodes using photonic sintering and their application to organic thin-film transistors. Organic Electronics, 25, 131–134.

    Google Scholar 

  63. Wikipedia. https://en.wikipedia.org/wiki/Flashtube. Accessed 11 Jan 2020.

  64. Moores, A., & Goettmann, F. (2006). The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New Journal of Chemistry, 30, 1121–1132.

    Google Scholar 

  65. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B., 107, 668–677.

    Google Scholar 

  66. Zhang, J. Z., & Noguez, C. (2008). Plasmonic optical properties and applications of metal nanostructures. Plasmonics, 3, 127–150.

    Google Scholar 

  67. Park, B. K., Kim, D., Jeong, S., Moon, J., & Kim, J. S. (2007). Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films, 515, 7706–7711.

    Google Scholar 

  68. Rager, M. S., Aytug, T., Veith, G. M., & Joshi, P. (2016). Low-thermal-budget photonic processing of highly conductive cu interconnects based on CuO nanoinks: Potential for flexible printed electronics. ACS Applied Materials & Interfaces, 8, 2441–2448.

    Google Scholar 

  69. Perelaer, J., De Gans, B. J., & Schubert, U. S. (2006). Ink-jet printing and microwave sintering of conductive silver tracks. Advanced Materials, 18, 2101–2104.

    Google Scholar 

  70. Reinhold, I., et al. (2009). Argon plasma sintering of inkjet printed silver tracks on polymer substrates. Journal of Materials Chemistry, 19, 3384–3388.

    Google Scholar 

  71. Allen, M. L., et al. (2008). Electrical sintering of nanoparticle structures. Nanotechnology, 19, 175201.

    Google Scholar 

  72. Hong, S., et al. (2013). Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano, 7, 5024–5031.

    Google Scholar 

  73. Zenou, M., Ermak, O., Saar, A., & Kotler, Z. (2013). Laser sintering of copper nanoparticles. Journal of Physics D: Applied Physics, 47, 025501.

    Google Scholar 

  74. Yu, J. H., Rho, Y., Kang, H., Jung, H. S., & Kang, K.-T. (2015). Electrical behavior of laser-sintered Cu based metal-organic decomposition ink in air environment and application as current collectors in supercapacitor. International Journal of Precision Engineering and Manufacturing-Green Technology, 2, 333–337.

    Google Scholar 

  75. Allabergenov, B., & Kim, S. (2013). Investigation of electrophysical and mechanical characteristics of porous copper-carbon composite materials prepared by spark plasma sintering. International Journal of Precision Engineering and Manufacturing, 14, 1177–1183.

    Google Scholar 

  76. Luo, X.-L., et al. (2018). Microwave synthesis of hierarchical porous materials with various structures by controllable desilication and recrystallization. Microporous and Mesoporous Materials, 262, 148–153.

    Google Scholar 

  77. Luo, X., et al. (2018). In situ growth of hollow Cu2O spheres using anionic vesicles as soft templates. Journal of Industrial and Engineering Chemistry, 59, 410–415.

    Google Scholar 

  78. Pan, D., et al. (2018). Synthesis and characterization of ZnNiIn layered double hydroxides derived mixed metal oxides with highly efficient photoelectrocatalytic activities. Industrial & Engineering Chemistry Research, 58, 836–848.

    Google Scholar 

  79. Tian, J., et al. (2019). Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. Journal of Colloid and Interface Science, 541, 18–29.

    Google Scholar 

  80. Zhang, Y., et al. (2019). Facile bioactive yeast cell templated synthesis of laser stealth antimony doped tin oxide hollow microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123965.

    Google Scholar 

  81. Tong, Y., et al. (2018). Thermal shock resistance of continuous carbon fiber reinforced ZrC based ultra-high temperature ceramic composites prepared via Zr-Si alloyed melt infiltration. Materials Science and Engineering: A, 735, 166–172.

    Google Scholar 

  82. Tong, Y., et al. (2018). Microstructures and properties of Si-Zr alloy based CMCs reinforced by various porous C/C performs. Ceramics International, 44, 16577–16582.

    Google Scholar 

  83. Tong, Y., et al. (2018). Different-shaped ultrafine MoNbTaW HEA powders prepared via mechanical alloying. Materials, 11, 1250.

    Google Scholar 

  84. Tong, Y., et al. (2018). Laser ablation resistance and mechanism of Si-Zr alloyed melt infiltrated C/C-SiC composite. Ceramics International, 44, 3692–3698.

    Google Scholar 

  85. Zhao, Y.-H., et al. (2018). Precipitation sequence of middle Al concentration alloy using the inversion algorithm and microscopic phase field model. Science of Advanced Materials, 10, 1793–1804.

    Google Scholar 

  86. Zhao, Z., et al. (2019). AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis. Journal of Alloys and Compounds, 792, 203–214.

    Google Scholar 

  87. Zhao, Y., et al. (2018). First-principle investigation of pressure and temperature influence on structural, mechanical and thermodynamic properties of Ti3AC2 (A = Al and Si). Computational Materials Science, 154, 365–370.

    Google Scholar 

  88. Yim, C., Greco, K., Sandwell, A., & Park, S. S. (2017). Eco-friendly and rapid fabrication method for producing polyethylene terephthalate (PET) mask using intensive pulsed light. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 155–159.

    Google Scholar 

  89. Miyashita, T. (2004). Film deposition method, and film deposition system. Japan patent JP2004277832A.

  90. Jiang, Z., Liu, Q., & Liu, S. (2002). Resonance scattering spectral analysis of chlorides based on the formation of (AgCl) n (Ag) s nanoparticle. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58, 2759–2764.

    Google Scholar 

  91. Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C., & Van Duyne, R. P. (2007). Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Letters, 7, 1947–1952.

    Google Scholar 

  92. de Moraes, A. C. M., Lima, B. A., de Faria, A. F., Brocchi, M., & Alves, O. L. (2015). Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. International Journal of Nanomedicine, 10, 6847.

    Google Scholar 

  93. Gabrion, X., Placet, V., Trivaudey, F., & Boubakar, L. J. (2016). About the thermomechanical behaviour of a carbon fibre reinforced high-temperature thermoplastic composite. Composites Part B: Engineering, 95, 386–394.

    Google Scholar 

  94. Kim, D., & Moon, J. (2005). Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochemical and Solid-State Letters, 8, J30–J33.

    Google Scholar 

  95. Liu, Z., Su, Y., & Varahramyan, K. J. (2005). Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films, 478, 275–279.

    Google Scholar 

  96. Jang, S., et al. (2010). Sintering of inkjet printed copper nanoparticles for flexible electronics. Scripta Materialia, 62, 258–261.

    Google Scholar 

  97. Rozenberg, G. G., Bresler, E., Speakman, S. P., Jeynes, C., & Steinke, J. H. (2002). Patterned low temperature copper-rich deposits using inkjet printing. Applied Physics Letters, 81, 5249–5251.

    Google Scholar 

  98. Zhang, Z.-H., Wang, F.-C., Wang, L., & Li, S.-K. (2008). Ultrafine-grained copper prepared by spark plasma sintering process. Materials Science and Engineering: A, 476, 201–205.

    Google Scholar 

  99. Ghosh, M., & Mittal, K. (1996). Polyimides: Fundamentals and applications. New York: Marcel Dekker; Tomikawa, M., Yoshida, S., Okamoto, N. (2009). Polymer Journal, 41, 604.

    Google Scholar 

  100. Deng, D., Cheng, Y., Jin, Y., Qi, T., & Xiao, F. J. (2012). Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. Journal of Materials Chemistry, 22, 23989–23995.

    Google Scholar 

  101. Kim, Y.-J., Ryu, C.-H., Park, S.-H., & Kim, H.-S. (2014). The effect of poly (N-vinylpyrrolidone) molecular weight on flash light sintering of copper nanopaste. Thin Solid Films, 570, 114–122.

    Google Scholar 

  102. Wang, B.-Y., Yoo, T.-H., Song, Y.-W., Lim, D.-S., & Oh, Y.-J. (2013). Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. ACS Applied Materials & Interfaces, 5, 4113–4119.

    Google Scholar 

  103. Kanzaki, M., Kawaguchi, Y., & Kawasaki, H. (2017). Fabrication of conductive copper films on flexible polymer substrates by low-temperature sintering of composite Cu ink in air. ACS Applied Materials & Interfaces, 9, 20852–20858.

    Google Scholar 

  104. Choi, Y.-H., & Hong, S.-H. (2015). Effect of the Amine concentration on phase evolution and densification in printed films using Cu (II) complex ink. Langmuir, 31, 8101–8110.

    Google Scholar 

  105. Liu, Y., et al. (2017). Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Letters, 17, 1090–1096.

    Google Scholar 

  106. Tam, S. K., Fung, K. Y., & Ng, K. M. (2016). Copper pastes using bimodal particles for flexible printed electronics. Journal of Materials Science, 51, 1914–1922.

    Google Scholar 

  107. Patil, S. A., Ryu, C.-H., & Kim, H.-S. (2018). Synthesis and characterization of copper nanoparticles (Cu-Nps) using rongalite as reducing agent and photonic sintering of Cu-Nps ink for printed electronics. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 239–245.

    Google Scholar 

  108. Wong, D., Yim, C. & Park, S. S. (2019). Hybrid manufacturing of oxidation resistant cellulose nanocrystals-copper-graphene nanoplatelets based electrodes. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–15.

  109. Rosen, Y. S., Yakushenko, A., usser, A., & Magdassi, S. (2017). Self-reducing copper precursor inks and photonic additive yield conductive patterns under intense pulsed light. ACS Omega, 2, 573–581.

    Google Scholar 

  110. Hwang, H.-J., Joo, S.-J., & Kim, H.-S. (2015). Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering. ACS Applied Materials & Interfaces, 7, 25413–25423.

    Google Scholar 

  111. Joo, S.-J., Park, S.-H., Moon, C.-J., & Kim, H.-S. (2015). A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. ACS Applied Materials & Interfaces, 7, 5674–5684.

    Google Scholar 

  112. Yu, M.-H., Joo, S.-J., & Kim, H.-S. (2017). Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes. Nanotechnology, 28, 205205.

    Google Scholar 

  113. Ryu, C.-H., Joo, S.-J., & Kim, H.-S. (2019). Intense pulsed light sintering of Cu nano particles/micro particles-ink assisted with heating and vacuum holding of substrate for warpage free printed electronic circuit. Thin Solid Films, 675, 23–33.

    Google Scholar 

  114. Park, H. J., et al. (2018). Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: Flash-light-sintered, kinetically-controlled microstructure. Nanoscale, 10, 5047–5053.

    Google Scholar 

  115. Kang, J., Ryu, J., Kim, H., & Hahn, H. (2011). Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. Journal of Electronic Materials, 40, 2268.

    Google Scholar 

  116. Niittynen, J., et al. (2014). Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films, 556, 452–459.

    Google Scholar 

  117. Tobjörk, D., et al. (2012). IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films, 520, 2949–2955.

    Google Scholar 

  118. Kwak, J. H., Chun, S. J., Shon, C.-H., & Jung, S. (2018). Back-irradiation photonic sintering for defect-free high-conductivity metal patterns on transparent plastic. Applied Physics Letters, 112, 153103.

    Google Scholar 

  119. Ahn, B. Y., et al. (2009). Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 323, 1590–1593.

    Google Scholar 

  120. Woo, K., Kim, Y., Lee, B., Kim, J., & Moon, J. (2011). Effect of carboxylic acid on sintering of inkjet-printed copper nanoparticulate films. ACS Applied Materials & Interfaces, 3, 2377–2382.

    Google Scholar 

  121. Weast, R. C., & Selby, S. (1971). Handbook of chemistry and physics (vol. 77). Boca Raton: The Chemical Rubber Co.

  122. Jeong, S., et al. (2008). Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Advanced Functional Materials, 18, 679–686.

    Google Scholar 

  123. Choi, C. S., Jo, Y. H., Kim, M. G., & Lee, H. M. (2012). Control of chemical kinetics for sub-10 nm Cu nanoparticles to fabricate highly conductive ink below 150 C. Nanotechnology, 23, 065601.

    Google Scholar 

  124. Kim, Y. H., Lee, D. K., Jo, B. G., Jeong, J. H., & Kang, Y. S. (2006). Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 284, 364–368.

    Google Scholar 

  125. Xia, X., Xie, C., Cai, S., Yang, Z., & Yang, X. (2006). Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water. Corrosion Science, 48, 3924–3932.

    Google Scholar 

  126. Chen, Y., Yang, F., Dai, Y., Wang, W., & Chen, S. (2008). Ni@ Pt core—shell nanoparticles: Synthesis, structural and electrochemical properties. The Journal of Physical Chemistry C, 112, 1645–1649.

    Google Scholar 

  127. Bala, T., Bhame, S., Joy, P., Prasad, B., & Sastry, M. (2004). A facile liquid foam based synthesis of nickel nanoparticles and their subsequent conversion to Ni core Ag shell particles: Structural characterization and investigation of magnetic properties. Journal of Materials Chemistry, 14, 2941–2945.

    Google Scholar 

  128. Xu, X., Luo, X., Zhuang, H., Li, W., & Zhang, B. (2003). Electroless silver coating on fine copper powder and its effects on oxidation resistance. Materials Letters, 57, 3987–3991.

    Google Scholar 

  129. Muzikansky, A., Nanikashvili, P., Grinblat, J., & Zitoun, D. (2013). Ag dewetting in Cu@ Ag monodisperse core–shell nanoparticles. The Journal of Physical Chemistry C, 117, 3093–3100.

    Google Scholar 

  130. Grouchko, M., Kamyshny, A., & Magdassi, S. (2009). Formation of air-stable copper–silver core–shell nanoparticles for inkjet printing. Journal of Materials Chemistry, 19, 3057–3062.

    Google Scholar 

  131. Kwon, S. G., et al. (2015). Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nature Materials, 14, 215.

    Google Scholar 

  132. Hatamura, M., Yamaguchi, S., Takane, S.-Y., Chen, Y., & Suganuma, K. (2015). Decarboxylation and simultaneous reduction of silver (i) β-ketocarboxylates with three types of coordinations. Dalton Transactions, 44, 8993–9003.

    Google Scholar 

  133. Li, W., et al. (2017). Printable and flexible copper–silver alloy electrodes with high conductivity and ultrahigh oxidation resistance. ACS Applied Materials & Interfaces, 9, 24711–24721.

    Google Scholar 

  134. Malviya, K. D., & Chattopadhyay, K. (2016). Temperature-and size-dependent compositionally tuned microstructural landscape for Ag-46 atom% Cu nanoalloy prepared by laser ablation in liquid. The Journal of Physical Chemistry C, 120, 27699–27706.

    Google Scholar 

  135. Chu, J.-H., Joo, S.-J., & Kim, H.-S. (2019). Development of a via-hole connection process via intense pulsed light sintering with Cu micro/Ag nano-hybrid ink for a multi-layered flexible printed circuit board. Thin Solid Films, 680, 1–11.

    Google Scholar 

  136. Leem, D. S., et al. (2011). Efficient organic solar cells with solution-processed silver nanowire electrodes. Advanced Materials, 23, 4371–4375.

    Google Scholar 

  137. Zou, J., Yip, H.-L., Hau, S. K., & Jen, A. K.-Y. (2010). Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Applied Physics Letters, 96, 96.

    Google Scholar 

  138. Yang, Y., & Heeger, A. J. (1994). Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency. Applied Physics Letters, 64, 1245–1247.

    Google Scholar 

  139. Haight, R. A., & Troutman, R. R. (1998). Optically transparent diffusion barrier and top electrode in organic light emitting diode structures. U.S. patent US5714838A.

  140. Trung, T. Q., Ramasundaram, S., Hwang, B. U., & Lee, N. E. (2016). An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Advanced Materials, 28, 502–509.

    Google Scholar 

  141. Hecht, D. S., et al. (2009). Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. Journal of the Society for Information Display, 17, 941–946.

    Google Scholar 

  142. Madaria, A. R., Kumar, A., & Zhou, C. (2011). Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology, 22, 245201.

    Google Scholar 

  143. Yamamoto, N., et al. (2012). Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels. Thin Solid Films, 520, 4131–4138.

    Google Scholar 

  144. Fu, W., Liu, L., Jiang, K., Li, Q., & Fan, S. (2010). Super-aligned carbon nanotube films as aligning layers and transparent electrodes for liquid crystal displays. Carbon, 48, 1876–1879.

    Google Scholar 

  145. Lee, J.-Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano letters, 8, 689–692.

    Google Scholar 

  146. Rathmell, A. R., & Wiley, B. J. (2011). The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Advanced Materials, 23, 4798–4803.

    Google Scholar 

  147. Guo, H., et al. (2013). Copper nanowires as fully transparent conductive electrodes. Scientific Reports, 3, 2323.

    Google Scholar 

  148. Van De Lagemaat, J., et al. (2006). Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Applied Physics Letters, 88, 233503.

    Google Scholar 

  149. Kim, K. S., et al. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706.

    Google Scholar 

  150. Pang, S., Hernandez, Y., Feng, X., & Müllen, K. (2011). Graphene as transparent electrode material for organic electronics. Advanced Materials, 23, 2779–2795.

    Google Scholar 

  151. Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 4, 2955–2963.

    Google Scholar 

  152. Garnett, E. C., et al. (2012). Self-limited plasmonic welding of silver nanowire junctions. Nature Materials, 11, 241.

    Google Scholar 

  153. Kholmanov, I. N., et al. (2013). Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano, 7, 1811–1816.

    Google Scholar 

  154. Qian, F., et al. (2017). Ultralight conductive silver nanowire aerogels. Nano Letters, 17, 7171–7176.

    Google Scholar 

  155. Spechler, J. A., & Arnold, C. B. (2012). Direct-write pulsed laser processed silver nanowire networks for transparent conducting electrodes. Applied Physics A, 108, 25–28.

    Google Scholar 

  156. Zhu, S., et al. (2013). Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology, 24, 335202.

    Google Scholar 

  157. Jang, Y.-R., et al. (2018). Selective wavelength plasmonic flash light welding of silver nanowires for transparent electrodes with high conductivity. ACS Applied Materials & Interfaces, 10, 24099–24107.

    Google Scholar 

  158. Wang, Z., et al. (2008). The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. The Journal of Chemical Physics, 128, 094705.

    Google Scholar 

  159. Wei, H., & Xu, H. (2013). Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale, 5, 10794–10805.

    Google Scholar 

  160. Dexter, M., et al. (2018). Modeling nanoscale temperature gradients and conductivity evolution in pulsed light sintering of silver nanowire networks. Nanotechnology, 29, 505205.

    Google Scholar 

  161. Lee, D. J., Oh, Y., Hong, J.-M., Park, Y. W., & Ju, B.-K. (2018). Light sintering of ultra-smooth and robust silver nanowire networks embedded in poly (vinyl-butyral) for flexible OLED. Scientific Reports, 8, 14170.

    Google Scholar 

  162. Jiu, J., et al. (2012). Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. Journal of Materials Chemistry, 22, 23561–23567.

    Google Scholar 

  163. Yang, S. B., et al. (2015). Improved optical sintering efficiency at the contacts of silver nanowires encapsulated by a graphene layer. Small (Weinheim an der Bergstrasse, Germany), 11, 1293–1300.

    Google Scholar 

  164. Hwang, H.-J., & Malhotra, R. (2018). Shape-tuned junction resistivity and self-damping dynamics in intense pulsed light sintering of silver nanostructure films. ACS Applied Materials & Interfaces, 11, 3536–3546.

    Google Scholar 

  165. Dexter, M., Bhandari, R., Chang, C., & Malhotra, R. (2017). Controlling processing temperatures and self-limiting behaviour in intense pulsed sintering by tailoring nanomaterial shape distribution. RSC Advances, 7, 56395–56405.

    Google Scholar 

  166. MacNeill, W., Choi, C.-H., Chang, C.-H., & Malhotra, R. (2015). On the self-damping nature of densification in photonic sintering of nanoparticles. Scientific Reports, 5, 14845.

    Google Scholar 

  167. Bansal, S., & Malhotra, R. (2016). Nanoscale-shape-mediated coupling between temperature and densification in intense pulsed light sintering. Nanotechnology, 27, 495602.

    Google Scholar 

  168. Meng, F., & Huang, J. (2019). Evolution mechanism of photonically sintered nano-silver conductive patterns. Nanomaterials, 9, 258.

    Google Scholar 

  169. Sun, Y., Jin, S., Yang, G., Wang, J., & Wang, C. (2015). Germanium nanowires-in-graphite tubes via self-catalyzed synergetic confined growth and shell-splitting enhanced Li-storage performance. ACS Nano, 9, 3479–3490.

    Google Scholar 

  170. Zhong, Z., et al. (2016). Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications. ACS Nano, 10, 7847–7854.

    Google Scholar 

  171. Park, J. H., et al. (2017). Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Advanced Functional Materials, 27, 1701138.

    Google Scholar 

  172. Kim, D., Lee, S. H., Jeong, S., Moon, J. J. E., & Letters, S.-S. (2009). All-ink-jet printed flexible organic thin-film transistors on plastic substrates. Electrochemical and Solid-State Letters, 12, H195–H197.

    Google Scholar 

  173. Krivec, M., et al. (2018). Inkjet printing of multi-layered, via-free conductive coils for inductive sensing applications. Microsystem Technology, 24, 2673–2682.

    Google Scholar 

  174. Mu, Q., et al. (2018). Intense pulsed light sintering of thick conductive wires on elastomeric dark substrate for hybrid 3D printing applications. Smart Materials and Structures, 27, 115007.

    Google Scholar 

  175. Gu, H., et al. (2019). Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. Carbon, 147, 550–558.

    Google Scholar 

  176. Guo, Y., et al. (2019). Constructing fully carbon-based fillers with hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites. Journal of Materials Chemistry C, 7, 7035–7044.

    Google Scholar 

  177. Guo, Y., et al. (2019). Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Applied Materials & Interfaces, 11, 25465–25473.

    Google Scholar 

  178. He, Y., et al. (2019). Friction and wear of MoO3/graphene oxide modified glass fiber reinforced epoxy nanocomposites. Macromolecular Materials and Engineering, 304, 1900166.

    Google Scholar 

  179. Huang, C., et al. (2019). Boosted selectivity and enhanced capacity of As (V) removal from polluted water by triethylenetetramine activated lignin-based adsorbents. International Journal of Biological Macromolecules, 140, 1167–1174.

    Google Scholar 

  180. Jiang, D., et al. (2019). Flexible sandwich structural strain sensor based on silver nanowires decorated with self‐healing substrate. Macromolecular Materials and Engineering, 304, 1900074.

    Google Scholar 

  181. Liu, M., et al. (2017). Extraordinary rate capability achieved by a 3D “skeleton/skin” carbon aerogel–polyaniline hybrid with vertically aligned pores. Chemical Communications, 53, 2810–2813.

    Google Scholar 

  182. Ma, L., et al. (2019). Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Composites Part B: Engineering, 176, 107078.

    Google Scholar 

  183. Ma, L., et al. (2019). Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface. Composites Science and Technology, 170, 148–156.

    Google Scholar 

  184. Shi, Z., et al. (2019). Synthesis and characterization of porous tree gum grafted copolymer derived from Prunus cerasifera gum polysaccharide. International Journal of Biological Macromolecules, 133, 964–970.

    Google Scholar 

  185. Xu, G., et al. (2019). Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). International Journal of Biological Macromolecules, 126, 376–384.

    Google Scholar 

  186. Yang, J., et al. (2019). Synergistically toughening polyoxymethylene by methyl methacrylate–butadiene–styrene copolymer and thermoplastic polyurethane. Macromolecular Chemistry and Physics, 220, 1800567.

    Google Scholar 

  187. Zhang, Y., et al. (2019). Metal-free energy storage systems: Combining batteries with capacitors based on a methylene blue functionalized graphene cathode. Journal of Materials Chemistry A, 7, 19668–19675.

    Google Scholar 

  188. Zhu, G., et al. (2019). Poly (vinyl butyral)/graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer, 172, 415–422.

    Google Scholar 

  189. Devaraj, H., & Malhotra, R. (2019). Scalable forming and flash light sintering of polymer-supported interconnects for surface-conformal electronics. Journal of Manufacturing Science and Engineering, 141, 041014.

    Google Scholar 

  190. Gaynor, W., Burkhard, G. F., McGehee, M. D., & Peumans, P. J. A. M. (2011). Smooth nanowire/polymer composite transparent electrodes. Advanced Materials, 23, 2905–2910.

    Google Scholar 

  191. Kwon, Y.-T., et al. (2018). Ultrahigh conductivity and superior interfacial adhesion of a nanostructured, photonic sintered copper membrane for printed flexible hybrid electronics. ACS Applied Materials & Interfaces, 10, 44071–44079.

    Google Scholar 

  192. Oh, S.-J., et al. (2016). Newly designed Cu/Cu10Sn3 core/shell nanoparticles for liquid phase-photonic sintered copper electrodes: Large-area, low-cost transparent flexible electronics. Chemistry of Materials, 28, 4714–4723.

    Google Scholar 

  193. Jang, J., et al. (2017). Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, 9, e432.

    Google Scholar 

  194. Ding, S., et al. (2015). Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air. Physical Chemistry Chemical Physics, 17, 31110–31116.

    Google Scholar 

  195. Hwang, H.-J., et al. (2018). Rapid pulsed light sintering of silver nanowires on woven polyester for personal thermal management with enhanced performance, durability and cost-effectiveness. Scientific Reports, 8, 17159.

    Google Scholar 

  196. Shen, C., et al. (2019). Brain-like navigation scheme based on MEMS-INS and place recognition. Applied Sciences, 9, 1708.

    Google Scholar 

  197. Berndt, A. J., et al. (2019). Poly (sulfur-random-(1, 3-diisopropenylbenzene)) based mid-wavelength infrared polarizer: Optical property experimental and theoretical analysis. Polymer, 176, 118–126.

    Google Scholar 

  198. Gu, H., et al. (2019). Controllable organic magnetoresistance in polyaniline coated poly (p-phenylene-2, 6-benzobisoxazole) short fibers. Chemical Communications, 55, 10068–10071.

    Google Scholar 

  199. Yang, P., et al. (2019). Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation. Chemical Communications, 55, 9011–9014.

    Google Scholar 

  200. Shi, Z., et al. (2019). Optimization of epoxypinane synthesis by silicotungstic acid supported on SBA-15 catalyst using response surface methodology. Science of Advanced Materials, 11, 699–707.

    Google Scholar 

  201. Shi, Z., et al. (2019). Preparation and characterization of mesoporous CuO/ZSM-5 catalysts for automotive exhaust purification. Science of Advanced Materials, 11, 1198–1205.

    Google Scholar 

  202. Lin, B., et al. (2019). Surface intercalated spherical MoS 2x Se 2 (1− x) nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Transactions, 48, 8279–8287.

    Google Scholar 

  203. Lin, Z., et al. (2019). Facile preparation of 1T/2H-Mo (S1-xSex) 2 nanoparticles for boosting hydrogen evolution reaction. ChemCatChem, 11, 2217–2222.

    Google Scholar 

  204. Zhai, Y., et al. (2019). Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li-O2 batteries. Journal of Catalysis, 377, 534–542.

    Google Scholar 

  205. Le, K., et al. (2019). MOF-derived hierarchical core-shell hollow iron-cobalt sulfides nanoarrays on Ni foam with enhanced electrochemical properties for high energy density asymmetric supercapacitors. Electrochimica Acta, 323, 134826.

    Google Scholar 

  206. Ren, J., et al. (2019). Suppressing charge recombination and ultraviolet light degradation of perovskite solar cells using silicon oxide passivation. ChemElectroChem, 6, 3167–3174.

    Google Scholar 

  207. Le, K., et al. (2019). Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Transactions, 48, 5193–5202.

    Google Scholar 

  208. Ma, Y., et al. (2019). Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes. Electrochimica Acta, 315, 114–123.

    Google Scholar 

  209. Liang, T., et al. (2019). Experimental study on thermal expansion coefficient of composite multi-layered flaky gun propellants. Composites Part B: Engineering, 166, 428–435.

    Google Scholar 

  210. Sun, H., et al. (2019). Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. Journal of Colloid and Interface Science, 547, 40–49.

    Google Scholar 

  211. Han, C. J., Park, B.-G., Oh, M. S., Jung, S.-B., & Kim, J.-W. (2017). Photo-induced fabrication of Ag nanowire circuitry for invisible, ultrathin, conformable pressure sensors. Journal of Materials Chemistry C, 5, 9986–9994.

    Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF), funded by the Ministry of Education (2012R1A6A1029029, 2018R1D1A1A09083236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Sung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, YR., Joo, SJ., Chu, JH. et al. A Review on Intense Pulsed Light Sintering Technologies for Conductive Electrodes in Printed Electronics. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 327–363 (2021). https://doi.org/10.1007/s40684-020-00193-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00193-8

Keywords

Navigation