Skip to main content

Advertisement

Log in

Synthesis and comparison of different spinel ferrites and their catalytic activity during chemical vapor deposition of polymorphic nanocarbons

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD) is considered as a low-cost industrial technique for the mass production of carbon nanotubes (CNTs) which exhibit remarkable performance in various fields especially, in green technologies like, energy storage, green composites, solar cells etc. To optimize the yields, it is necessary to understand the role of different parameters affecting their production. In this research, the role of different spinel ferrites has been studied for the catalytic production of the CNTs with different morphologies (polymorphic nano carbons- PNCs) via CVD process. The characterization of the produced PNCs is done using X-ray diffraction, high-resolution Raman spectroscopy, field emission-scanning electron microscopy, and field emission-transmission electron microscopy. It is found that all the spinel ferrites behave differently during synthesis and produces different morphology of nanocarbons (tubes, fibers, beads etc.). Additionally, the thermal and magnetic properties of the produced PNCs are also compared through thermo-gravimetric analysis and vibrating sample magnetometer, respectively. It is found that all the samples show different thermal stability and weak ferromagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, S. M., “Bioinspired Design and Fabrication of Green- Environmental Dry Adhesive with Robust Wide-Tip Shape,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp 189–192, 2016.

    Article  Google Scholar 

  2. Liu, D., Zhang, W., Lin, H., Li, Y., Lu, H., et al., “A Green Technology for the Preparation of High Capacitance Rice Husk-Based Activated Carbon,” Journal of Cleaner Production, Vol. 112, pp. 1190–1198, 2016.

    Article  Google Scholar 

  3. Dwivedi, S. P., Sharma, S., and Mishra, R. K., “Mechanical and Metallurgical Characterizations of AA2014/Eggshells Waste Particulate Metal Matrix Composite,” Int. J. Precis. Eng. Manuf.- Green Tech., Vol. 3, No. 3, pp. 281–288, 2016.

    Article  Google Scholar 

  4. Adloo, A., Sadeghi, M., Masoomi, M., and Pazhooh, H. N., “High Performance Polymeric Bipolar Plate Based on Polypropylene/Graphite/Graphene/Nano-Carbon Black Composites for PEM Fuel Cells,” Renewable Energy, Vol. 99, pp. 867–874, 2016.

    Article  Google Scholar 

  5. Sung, J.-W., Kim, K.-H., and Kang, M.-C., “Effects of Graphene Nanoplatelet Contents on Material and Machining Properties of GNP-Dispersed Al2O3 Ceramics for Micro-Electric Discharge Machining,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 3, pp. 247–252, 2016.

    Article  Google Scholar 

  6. Odom, T. W., Jin-Lin, H., Kim, P., and Lieber, C. M., “Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes,” Nature, Vol. 391, No. 6662, pp. 62–64, 1998.

    Article  Google Scholar 

  7. Yim, Y.-J., Rhee, K. Y., and Park, S.-J., “Electromagnetic Interference Shielding Effectiveness of Nickel-Plated MWCNTs/ High-Density Polyethylene Composites,” Composites Part B: Engineering, Vol. 98, pp. 120–125, 2016.

    Article  Google Scholar 

  8. Mittal, G., Rhee, K. Y., and Park, S. J., “The Effects of Cryomilling CNTs on the Thermal and Electrical Properties of CNT/PMMA Composites,” Polymers, Vol. 8, No. 5, p. 169, 2016.

    Google Scholar 

  9. Ratso, S., Kruusenberg, I., Sarapuu, A., Rauwel, P., Saar, R., et al., “Enhanced Oxygen Reduction Reaction Activity of Iron-Containing Nitrogen-Doped Carbon Nanotubes for Alkaline Direct Methanol Fuel Cell Application,” Journal of Power Sources, Vol. 332, pp. 129–138, 2016.

    Article  Google Scholar 

  10. Kim, J.-H., Shim, B. S., Kim, H. S., Lee, Y.-J., Min, S.-K., et al., “Review of Nanocellulose for Sustainable Future Materials,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 197–213, 2015.

    Article  Google Scholar 

  11. Silambarasan, D., Vasu, V., Iyakutti, K., Surya, V., and Ravindran, T., “Reversible Hydrogen Storage in Functionalized Single-Walled Carbon Nanotubes,” Physica E: Low-Dimensional Systems and Nanostructures, Vol. 60, pp. 75–79, 2014.

    Article  Google Scholar 

  12. Pitchan, M. K., Bhowmik, S., Balachandran, M., and Abraham, M., “Effect of Surface Functionalization on Mechanical Properties and Decomposition Kinetics of High Performance Polyetherimide/ MWCNT Nano Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 90, pp. 147–160, 2016.

    Article  Google Scholar 

  13. Endo, M., Hayashi, T., and Kim, Y.-A., “Large-Scale Production of Carbon Nanotubes and their Applications,” Pure and Applied Chemistry, Vol. 78, No. 9, pp. 1703–1713, 2006.

    Article  Google Scholar 

  14. Kumar, R., Singh, R. K., and Singh, D. P., “Natural and Waste Hydrocarbon Precursors for the Synthesis of Carbon Based Nanomaterials: Graphene and CNTs,” Renewable and Sustainable Energy Reviews, Vol. 58, pp. 976–1006, 2016.

    Article  Google Scholar 

  15. Jiang, J., Feng, T., Cheng, X., Dai, L., Cao, G., et al., “Synthesis and Growth Mechanism of Fe-Catalyzed Carbon Nanotubes by Plasma- Enhanced Chemical Vapor Deposition,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 244, No. 2, pp. 327–332, 2006.

    Article  Google Scholar 

  16. Baviskar, P., Chavan, P., Kalyankar, N., and Sankapal, B., “Decoration of CdS Nanoparticles on MWCNT’s by Simple Solution Chemistry,” Applied Surface Science, Vol. 258, No. 19, pp. 7536–7539, 2012.

    Article  Google Scholar 

  17. Chen, Y., Wang, X., Zhang, Q., Li, Y., and Wang, H., “Synthesis and Characterization of MWCNTs/Co1−xZnxFe2O4 Magnetic Nanocomposites and their Use in Hydrogels,” Journal of Alloys and Compounds, Vol. 509, No. 9, pp. 4053–4059, 2011.

    Article  Google Scholar 

  18. Prolongo, S., Meliton, B., Del Rosario, G., and Ureña, A., “New Alignment Procedure of Magnetite-CNT Hybrid Nanofillers on Epoxy Bulk Resin with Permanent Magnets,” Composites Part B: Engineering, Vol. 46, pp. 166–172, 2013.

    Article  Google Scholar 

  19. Liu, Y. and Gao, L., “A Study of the Electrical Properties of Carbon Nanotube-NiFe2O4 Composites: Effect of the Surface Treatment of the Carbon Nanotubes,” Carbon, Vol. 43, No. 1, pp. 47–52, 2005.

    Article  Google Scholar 

  20. Song, Q., Ding, Y., Wang, Z. L., and Zhang, Z. J., “Tuning the Thermal Stability of Molecular Precursors for the Nonhydrolytic Synthesis of Magnetic MnFe2O4 Spinel Nanocrystals,” Chemistry of Materials, Vol. 19, No. 19, pp. 4633–4638, 2007.

    Article  Google Scholar 

  21. Willey, R. J., Noirclerc, P., and Busca, G., “Preparation and Characterization of Magnesium Chromite and Magnesium Ferrite Aerogels,” Chemical Engineering Communications, Vol. 123, No. 1, pp. 1–16, 1993.

    Article  Google Scholar 

  22. Lamastra, F., Nanni, F., Camilli, L., Matassa, R., Carbone, M., et al., “Morphology and Structure of Electrospun CoFe2O4/Multi-Wall Carbon Nanotubes Composite Nanofibers,” Chemical Engineering Journal, Vol. 162, No. 1, pp. 430–435, 2010.

    Article  Google Scholar 

  23. Wu, H., Liu, G., Wang, X., Zhang, J., Chen, Y., et al., “Solvothermal Synthesis of Cobalt Ferrite Nanoparticles Loaded on Multiwalled Carbon Nanotubes for Magnetic Resonance Imaging and Drug Delivery,” Acta Biomaterialia, Vol. 7, No. 9, pp. 3496–3504, 2011.

    Article  Google Scholar 

  24. Zhang, Q., Zhu, M., Zhang, Q., Li, Y., and Wang, H., “Synthesis and Characterization of Carbon Nanotubes Decorated with Manganese–Zinc Ferrite Nanospheres,” Materials Chemistry and Physics, Vol. 116, No. 2, pp. 658–662, 2009.

    Article  Google Scholar 

  25. Baughman, R. H., Zakhidov, A. A., and De Heer, W. A., “Carbon Nanotubes-The Route Toward Applications,” Science, Vol. 297, No. 5582, pp. 787–792, 2002.

    Article  Google Scholar 

  26. Sutka, A. and Mezinskis, G., “Sol-Gel Auto-Combustion Synthesis of Spinel-Type Ferrite Nanomaterials,” Frontiers of Materials Science, Vol. 6, No. 2, pp. 128–141, 2012.

    Article  Google Scholar 

  27. Ding, F., Larsson, P., Larsson, J. A., Ahuja, R., Duan, H., et al., “The Importance of Strong Carbon-Metal Adhesion for Catalytic Nucleation of Single-Walled Carbon Nanotubes,” Nano Letters, Vol. 8, No. 2, pp. 463–468, 2008.

    Article  Google Scholar 

  28. Monthioux, M., “Filling Single-Wall Carbon Nanotubes,” Carbon, Vol. 40, No. 10, pp. 1809–1823, 2002.

    Article  Google Scholar 

  29. Chen, J., Huang, Y., Zhang, X., Chen, X., and Li, C., “MnO2 Grown in Situ on Graphene@ CNTs as Electrode Materials for Supercapacitors,” Ceramics International, Vol. 41, No. 10, pp. 12680–12685, 2015.

    Article  Google Scholar 

  30. Dhand, V., Bharadwaj, S., Amareshwari, K., Himabindu, V., Rhee, K. Y., et al., “Facile, Soot Free Approach Toward Synthesis of Carbon Nanoropes via Chemical Vapor Deposition of Acetylene in the Presence of MnFe2O4 Coated on Stainless Steel,” Applied Surface Science, Vol. 359, pp. 797–804, 2015.

    Article  Google Scholar 

  31. Dhand, V., Rhee, K., and Park, S.-J., “The Facile and Low Temperature Synthesis of Nanophase Hydroxyapatite Crystals Using Wet Chemistry,” Materials Science and Engineering: C, Vol. 36, pp. 152–159, 2014.

    Article  Google Scholar 

  32. Chopra, N., Wu, J., and Summerville, L., “Controlled Assembly of Graphene Shells Encapsulated Gold Nanoparticles and their Integration with Carbon Nanotubes,” Carbon, Vol. 62, pp. 76–87, 2013.

    Article  Google Scholar 

  33. Voorhees, P. W., “The Theory of Ostwald Ripening,” Journal of Statistical Physics, Vol. 38, No. 1, pp. 231–252, 1985.

    Article  Google Scholar 

  34. Berkmans, A. J., Jagannatham, M., Priyanka, S., and Haridoss, P., “Synthesis of Branched, Nano Channeled, Ultrafine and Nano Carbon Tubes from Pet Wastes Using the Arc Discharge Method,” Waste Management, Vol. 34, No. 11, pp. 2139–2145, 2014.

    Article  Google Scholar 

  35. Kang, J., Li, J., Du, X., Shi, C., Zhao, N., et al., “Synthesis of Carbon Nanotubes and Carbon Onions by CVD Using a Ni/Y Catalyst Supported on Copper,” Materials Science and Engineering: A, Vol. 475, No. 1, pp. 136–140, 2008.

    Article  Google Scholar 

  36. Smontara, A., Tonejc, A., Gradeč ak, S., Tonejc, A., Bilušić, A., et al., “Structural (XRD and HRTEM) Investigations of Fullerite C60 and C70 Samples,” Materials Science and Engineering: C, Vol. 19, No. 1, pp. 21–25, 2002.

    Article  Google Scholar 

  37. Kim, H. and Sigmund, W., “Iron Particles in Carbon Nanotubes,” Carbon, Vol. 43, No. 8, pp. 1743–1748, 2005.

    Article  Google Scholar 

  38. Viana, G. and Marques, F., “Raman and Thermal Desorption Spectroscopy Analyses of Amorphous Graphite-Like Carbon Films with Incorporated Xenon,” Vacuum, Vol. 112, pp. 17–24, 2015.

    Article  Google Scholar 

  39. Kumar, A., Singh, F., Koinkar, P., Avasthi, D., Pivin, J., et al., “Effect of Intense Laser and Energetic Ion Irradiation on Raman Modes of Multiwalled Carbon Nanotubes,” Thin Solid Films, Vol. 517, No. 15, pp. 4322–4324, 2009.

    Article  Google Scholar 

  40. Cuentas-Gallegos, A., Frausto, C., Ortiz-Frade, L., and Orozco, G., “Raman Spectra of Hybrid Materials Based on Carbon Nanotubes and Cs3PMo12O40,” Vibrational Spectroscopy, Vol. 57, No. 1, pp. 49–54, 2011.

    Google Scholar 

  41. Ferrari, A. C. and Robertson, J., “Interpretation of Raman Spectra of Disordered and Amorphous Carbon,” Physical Review B, Vol. 61, No. 20, Paper No. 14095, 2000.

    Google Scholar 

  42. Ma, T.-B., Hu, Y.-Z., and Wang, H., “Formation and Coalescence of Linear Chains in Growth of Nanostructured sp–sp2 Amorphous Carbon Films,” Chemical Physics Letters, Vol. 462, No. 1, pp. 104–108, 2008.

    Article  Google Scholar 

  43. Jourdain, V. and Bichara, C., “Current Understanding of the Growth of Carbon Nanotubes in Catalytic Chemical Vapour Deposition,” Carbon, Vol. 58, pp. 2–39, 2013.

    Article  Google Scholar 

  44. Chatterjee, B. K., Dey, A., Ghosh, C. K., and Chattopadhyay, K. K., “Interplay of Bulk and Surface on the Magnetic Properties of Low Temperature Synthesized Nanocrystalline Cu1-x Zn xFe2O4 (x=0.00, 0.02, 0.04 and 0.08),” Journal of Magnetism and Magnetic Materials, Vol. 367, pp. 19–32, 2014.

    Article  Google Scholar 

  45. Zhang, B., Xu, J., Xin, P., Han, Y., Hong, B., et al., “Magnetic Properties and Adsorptive Performance of Manganese–Zinc Ferrites/ Activated Carbon Nanocomposites,” Journal of Solid State Chemistry, Vol. 221, pp. 302–305, 2015.

    Article  Google Scholar 

  46. Rai, R., Verma, K., Sharma, S., Nair, S. S., Valente, M. A., et al., “Study of Structural and Ferromagnetic Properties of Pure and Cd Doped Copper Ferrite,” Journal of Physics and Chemistry of Solids, Vol. 72, No. 7, pp. 862–868, 2011.

    Article  Google Scholar 

  47. Jang, J.-W., Lee, K. W., Lee, C. E., Kim, B., and Lee, C. J., “Differences in the Catalyst Removal from Single-and Double-Walled Carbon Nanotubes,” Current Applied Physics, Vol. 13, No. 6, pp. 1069–1074, 2013.

    Article  Google Scholar 

  48. Lee, C. J., Park, J., Huh, Y., and Lee, J. Y., “Temperature Effect on the Growth of Carbon Nanotubes Using Thermal Chemical Vapor Deposition,” Chemical Physics Letters, Vol. 343, No. 1, pp. 33–38, 2001.

    Article  Google Scholar 

  49. Pillai, V. and Shah, D., “Synthesis of High-Coercivity Cobalt Ferrite Particles Using Water-in-Oil Microemulsions,” Journal of Magnetism and Magnetic Materials, Vol. 163, Nos. 1-2, pp. 243–248, 1996.

    Article  Google Scholar 

  50. Liu, Z., Wang, J., Xie, D., and Chen, G., “Polyaniline Coated Fe3O4 Nanoparticle–Carbon Nanotube Composite and Its Application in Electrochemical Biosensing,” Small, Vol. 4, No. 4, pp. 462–466, 2008.

    Article  Google Scholar 

  51. Sutradhar, S., Das, S., and Chakrabarti, P., “Magnetic and Enhanced Microwave Absorption Properties of Nanoparticles of Li0.32Zn0.26Cu0.1Fe2.32O4 Encapsulated in Carbon Nanotubes,” Materials Letters, Vol. 95, pp. 145–148, 2013.

    Article  Google Scholar 

  52. Singh, R. K., Yadav, A., Prasad, K., and Narayan, A., “Dependence of Magnetic and Structural Properties of Ni0.5M0.5Fe2O4 (M = Co, Cu) Nanoparticles Synthesized by Citrate Precursor Method on Annealing Temperature,” International Journal of Engineering, Science and Technology, Vol. 2, No. 8, pp. 73–79, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyong Yop Rhee or Soo-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhand, V., Mittal, G., Rhee, K.Y. et al. Synthesis and comparison of different spinel ferrites and their catalytic activity during chemical vapor deposition of polymorphic nanocarbons. Int. J. of Precis. Eng. and Manuf.-Green Tech. 4, 441–451 (2017). https://doi.org/10.1007/s40684-017-0049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-017-0049-3

Keywords

Navigation