Skip to main content
Log in

Microwave-mediated synthesis of spinel CuAl2O4 nanocomposites for enhanced electrochemical and catalytic performance

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The present study explores synthesis of spinel copper aluminate nanocomposites (CuAl2O4 NCs) for electrochemical applications and solvent-free synthesis of xanthanedione derivatives. CuAl2O4 NCs were synthesized from copper nitrate and aluminum nitrate with/without use of sodium dodecyl sulfate (SDS) by aqueous precipitation and microwave-assisted (MW) technique. As-synthesized CuAl2O4 NCs were characterized structurally and morphologically using X-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, diffuse reflectance spectroscopy (DRS), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Formation of cubic spinel structure after calcination at 900 °C was confirmed by XRD analysis, while Raman, XPS, and EDS validated the composition and purity. TEM revealed that the particles had uniform nanosphere shape with average size of 10 nm for microwave-assisted with surfactant (MWS-CuAl2O4), while aqueous precipitation with surfactant (APS-CuAl2O4) NCs exhibited nanograins with particle size of 17 nm. AFM revealed higher surface roughness for MWS-CuAl2O4 NCs than APS-CuAl2O4 NCs. The electrochemical performance of the CuAl2O4 NCs was examined in aqueous Na2SO4 (1 M) as electrolyte using cyclic voltammetry (CV), revealing that the MWS-CuAl2O4 NCs demonstrated high specific capacitance (125 F g−1 at current density of 0.5 mA cm−2). Furthermore, one-pot, facile, eco-friendly MWS-CuAl2O4 NC-catalyzed synthesis of xanthanediones was developed, exhibiting excellent yield and reusability with negligible reduction in efficiency even after four consecutive cycles.

Graphical Abstract

MWS-CuAl2O4 NCs showed enhanced electrochemical and catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3

Similar content being viewed by others

Abbreviations

NCs:

Nanocomposites

SDS:

Sodium dodecyl sulfate

AP:

Aqueous precipitation

MW:

Microwave

MWS:

Microwave-assisted with surfactant (SDS)

APS:

Aqueous precipitation with surfactant (SDS)

XRD:

X-ray diffraction

FT-IR:

Fourier-transform infrared

DRS:

Diffuse reflectance spectroscopy

EDS:

Energy-dispersive X-ray spectroscopy

XPS:

X-ray photoelectron spectroscopy

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

AFM:

Atomic force microscopy

CV:

Cyclic voltammetry

RBF:

Round-bottomed flask

TLC:

Thin-layer chromatography

JCPDS:

Joint Committee on Powder Diffraction Standards

SERB:

Science and Engineering Research Board

References

  1. R. Schlogl, Angew. Chem. Int. Ed. 54, 3465 (2015)

    Article  Google Scholar 

  2. M. Climent, A. Corma, S. Iborra, M. Sabater, ACS Catal. 4, 870 (2014)

    Article  CAS  Google Scholar 

  3. J. Kun-Ming, U. Luesakul, S. Zhao, N. Muangsin, N. Neamati, Y. Jin, J. Lin, ACS Omega 2, 3123 (2017)

    Article  Google Scholar 

  4. C. Zou, Z. Zhang, X. Xu, Q. Gong, J. Li, C.D. Wu, J. Am. Chem. Soc. 134, 87 (2012)

    Article  CAS  Google Scholar 

  5. H. Sun, X. Yang, L. Zhao, T. Xu, J. Lian, J. Mater. Chem. A 4, 9455 (2016)

    Article  CAS  Google Scholar 

  6. H. Dadhania, D. Raval, A. Dadhania, Res. Chem. Intermed. (2017). https://doi.org/10.1007/s11164-017-3093-2

    Google Scholar 

  7. F. Wang, M. Wei, D. Evans, X. Duan, J. Mater. Chem. A 4, 5773 (2016)

    Article  CAS  Google Scholar 

  8. S. Kalita, S.J. Saikia, N. Deka, D.C. Deka, H. Mecadon, Res. Chem. Intermed. 42, 6863 (2016)

    Article  CAS  Google Scholar 

  9. S. Hassanzadeh-Tabrizi, R. Pournajaf, A. Moradi-Faradonbeh, S. Sadeghinejad, Ceram. Int. 42, 14121 (2016)

    Article  CAS  Google Scholar 

  10. N. Yang, H. Sun, Coord. Chem. Rev. 25, 2354 (2007)

    Article  Google Scholar 

  11. A. Wiercinska, Electrochim. Acta 55, 5917 (2010)

    Article  Google Scholar 

  12. N. Rajeevan, R. Kumar, D. Shukla, P. Pradyumnan, S. Arora, I. Shvets, Mater. Sci. Eng. B 163, 48 (2009)

    Article  CAS  Google Scholar 

  13. K.B. Kwak, S.D. Park, S.Y. Yun, J. Yi, Catal. Commun. 24, 90 (2012)

    Article  CAS  Google Scholar 

  14. J. Yanyan, L. Jinggang, S. Xiaotao, N. Guiling, W. Chengyu, G. Xiumei, J. Sol Gel Sci. Technol. 42, 41 (2007)

    Article  Google Scholar 

  15. M. Salavati-Niasari, F. Davar, M. Farhadi, J. Sol Gel Sci. Technol. 51, 48 (2009)

    Article  CAS  Google Scholar 

  16. W. Lv, L. Zhongkuan, H. Yang, B. Liu, W. Weng, J. Liu, Ultrason. Sonochem. 17, 344 (2010)

    Article  CAS  Google Scholar 

  17. J. Chandradass, K. Kim, J. Ceram. Process. Res. 11, 96 (2010)

    Google Scholar 

  18. C. Ragupathi, J. Vijaya, L. JohnKennedy, M. Bououdina, Mater. Sci. Semicond. Process. 24, 146 (2014)

    Article  CAS  Google Scholar 

  19. A. Zhihui, L. Zhang, F. Kong, H. Liu, W. Xing, J. Qiu, Mater. Chem. Phys. 111, 162 (2008)

    Article  Google Scholar 

  20. E. Nyutu, W. Conner, S. Auerbach, C. Chen, S. Suib, J. Phys. Chem. 112, 1407 (2008)

    CAS  Google Scholar 

  21. P. Veronesi, C. Leonelli, F. Bondioli, Powder Technol. 53, 42 (2017)

    Google Scholar 

  22. S. Menon, K. Choudhari, S. Shivashankar, C. Santhosh, S. Kulkarni, J. Alloys Compd. 728, 1083 (2017)

    Article  CAS  Google Scholar 

  23. R. Yuvasravana, P. George, N. Devanna, Mater. Today Proc. 4, 10664 (2017)

    Article  Google Scholar 

  24. I. Sahu, D. Bisen, R. Sharma, Res. Chem. Intermed. 42, 2791 (2016)

    Article  CAS  Google Scholar 

  25. M. Shahmirzaee, M. Shafiee Afarani, A. Arabi, A. Nejhad, Res. Chem. Intermed. 43, 321 (2017)

    Article  CAS  Google Scholar 

  26. A. Pramanik, S. Bhar, Catal. Commun. 20, 17 (2012)

    Article  CAS  Google Scholar 

  27. W. Lv, B. Liu, Q. Qiu, F. Wang, Z. Luo, P. Zhang, S. Wei, J. Alloys Compd. 479, 480 (2009)

    Article  CAS  Google Scholar 

  28. J. Tanna, R. Chaudhary, N. Gandhare, A. Rai, S. Yerpude, H. Juneja, J. Exp. Nanosci. 11, 884 (2016)

    Article  CAS  Google Scholar 

  29. J. Tanna, R. Chaudhary, N. Gandhare, H. Juneja, Adv. Mater. Lett. 7, 933 (2016)

    Article  CAS  Google Scholar 

  30. D. Ding, M. Long, W. Cai, Y. Wu, D. Wu, Chem. Commun. 24, 3588 (2009)

    Article  Google Scholar 

  31. M. Naderi, A. Shamirian, M. Edrisi, J. Sol Gel Sci. Technol. 58, 557 (2011)

    Article  CAS  Google Scholar 

  32. V. D’Ippolito, B. Giovanni, B. Danilo, P. Lottici, J. Raman Spectrosc. 12, 1255 (2015)

    Article  Google Scholar 

  33. F. Ospitali, T. Franca, M. Carla, D. Lonardo, J. Raman Spectrosc. 36, 18 (2005)

    Article  CAS  Google Scholar 

  34. L. Kock, D. De, D. Waal, J. Raman Spectrosc. 38, 1480 (2007)

    Article  CAS  Google Scholar 

  35. M. Bouchard, A. Gambardella, J. Raman Spectrosc. 41, 1477 (2010)

    Article  Google Scholar 

  36. G. De Wijs, A. Fang, G. Kresse, Phys. Rev. B 65, 094305 (2002)

    Article  Google Scholar 

  37. G. Moretti, G. Fierro, M. LoJacono, P. Porta, Surf. Interface Anal. 16, 352 (1990)

    Article  CAS  Google Scholar 

  38. R. Pan, Y. Wu, Q. Wang, Y. Hong, Chem. Eng. J. 153, 206 (2009)

    Article  CAS  Google Scholar 

  39. H. An, H. Yang, Z. Liu, Z. Zhang, LWT Food Sci. Technol. 41, 1466 (2008)

    Article  CAS  Google Scholar 

  40. D. Shaikh, P. Rosaiah, O. Hussain, Adv. Sci. Eng. Med. 8, 140 (2016)

    Article  Google Scholar 

  41. D. Dubal, R. Holze, New J. Chem. 37, 403 (2013)

    Article  CAS  Google Scholar 

  42. D. Yan, H. Zhang, L. Chen, G. Zhu, Z. Wang, H. Xu, A. Yu, RSC Adv. 4, 23649 (2014)

    Article  CAS  Google Scholar 

  43. D. Shaikh, P. Rosaiah, O. Hussain, J. Adv. Chem. 12, 3919 (2015)

    Google Scholar 

  44. A. Romainor, S. Chin, C. Pang, L. Bilung, J. Nanomater. 2014, 130 (2014)

  45. S. Guoyong, B. Wang, H. Luo, L. Yang, Catal. Commun. 8, 673 (2007)

    Article  Google Scholar 

  46. E. Mosaddegh, M. Islami, A. Hassankhani, Arab. J. Chem. 5, 77 (2012)

    Article  CAS  Google Scholar 

  47. B. Sadeghi, A. Hassanabadi, E. Taghvatalab, J. Chem. Res. 35, 707 (2011)

    Article  CAS  Google Scholar 

  48. A. Thakur, A. Sharma, A. Sharma, Synth. Commun. 46, 1766 (2016)

    Article  CAS  Google Scholar 

  49. G. Verma, K. Raghuvanshi, R. Verma, P. Dwivedi, M. Singh, Tetrahedron 67, 3698 (2011)

    Article  CAS  Google Scholar 

  50. S. Kahandal, A. Burange, S. Kale, P. Prinsen, R. Luque, R. Jayaram, Catal. Commun. 97, 138 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.G.C. thanks the Science and Engineering Research Board (SERB), India for providing a research grant (no. SB/EMEQ-366/2014) under the scheme “Empowerment and Equity Opportunities for Excellence in Science”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratiram Gomaji Chaudhary.

Ethics declarations

Conflict of interest

The authors have no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, R.G., Sonkusare, V.N., Bhusari, G.S. et al. Microwave-mediated synthesis of spinel CuAl2O4 nanocomposites for enhanced electrochemical and catalytic performance. Res Chem Intermed 44, 2039–2060 (2018). https://doi.org/10.1007/s11164-017-3213-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3213-z

Keywords

Navigation